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Abstract. We discuss the numerical solution of structured generalized eigenvalue problems that
arise from linear-quadratic optimal control problems, H∞ optimization, multibody systems, and
many other areas of applied mathematics, physics, and chemistry. The classical approach for these
problems requires computing invariant and deflating subspaces of matrices and matrix pencils with
Hamiltonian and/or skew-Hamiltonian structure. We extend the recently developed methods for
Hamiltonian matrices to the general case of skew-Hamiltonian/Hamiltonian pencils. The algorithms
circumvent problems with skew-Hamiltonian/Hamiltonian matrix pencils that lack structured Schur
forms by embedding them into matrix pencils that always admit a structured Schur form. The
rounding error analysis of the resulting algorithms is favorable. For the embedded matrix pencils, the
algorithms use structure-preserving unitary matrix computations and are strongly backwards stable,
i.e., they compute the exact structured Schur form of a nearby matrix pencil with the same structure.
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1. Introduction and preliminaries. In this paper we study eigenvalue and
invariant subspace computations involving matrices and matrix pencils with the fol-
lowing algebraic structures.

Definition 1.1. Let J :=
[

0
−In

In
0

]
, where In is the n× n identity matrix.

(a) A matrix H ∈ C
2n,2n is Hamiltonian if (HJ )H = HJ . The Lie algebra of

Hamiltonian matrices in C
2n,2n is denoted by H2n.

(b) A matrix H ∈ C
2n,2n is skew-Hamiltonian if (HJ )H = −HJ . The Jordan

algebra of skew-Hamiltonian matrices in C
2n,2n is denoted by SH2n.

(c) If S ∈ SH2n and H ∈ H2n, then αS−βH is a skew-Hamiltonian/Hamiltonian
matrix pencil.

(d) A matrix Y ∈ C
2n,2n is symplectic if YJYH = J . The Lie group of sym-

plectic matrices in C
2n,2n is denoted by S2n.

(e) A matrix U ∈ C
2n,2n is unitary symplectic if UJUH = J and UUH = I2n.

The compact Lie group of unitary symplectic matrices in C
2n,2n is denoted

by US2n.
(f) A subspace L of C

2n is called Lagrangian if it has dimension n and xHJ y = 0
for all x, y ∈ L.
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A matrix S ∈ C
2n,2n is skew-Hamiltonian if and only if iS is Hamiltonian. Conse-

quently, there is little difference between the structure of complex skew-Hamiltonian
matrices and complex Hamiltonian matrices. However, real skew-Hamiltonian matri-
ces are not real scalar multiples of Hamiltonian matrices, so there is a greater differ-
ence between the structure of real skew-Hamiltonian matrices and real Hamiltonian
matrices.

The structures in Definition 1.1 arise typically in linear-quadratic optimal con-
trol [27, 33, 35] and H∞ optimization [18, 39]. Moreover, instances of skew-Hamil-
tonian/Hamiltonian pencils appear in several other areas of applied mathematics,
computational physics, and chemistry, e.g., gyroscopic systems [20], numerical sim-
ulation of elastic deformation [28, 34], and linear response theory [30]. Linear-
quadratic optimal control and H∞ optimization problems are related to skew-Hamil-
tonian/Hamiltonian pencils in [4, 5].

It is important to exploit and preserve algebraic structures (like symmetries in
the matrix blocks or symmetries in the spectrum) as much as possible. Such algebraic
structures typically arise from the physical properties of the problem. If rounding
errors or other perturbations destroy the algebraic structures, then the results may be
physically meaningless. Not coincidentally, numerical methods that preserve algebraic
structures are typically more efficient as well as more accurate.

Despite the advantages associated with exploiting matrices with special structure,
condensing data into a compact, structured matrix using finite precision arithmetic
may be ill-advised. A discussion of avoiding normal-equations-like numerical instabil-
ity when embedding linear-quadratic optimal control problems and H∞ optimization
problems into skew-Hamiltonian/Hamiltonian pencils appears in [4, 5].

Although the numerical computation of n-dimensional Lagrangian invariant sub-
spaces of Hamiltonian matrices and the related problem of solving algebraic Riccati
equations have been extensively studied (see [12, 22, 27, 35] and the references therein),
finding completely satisfactory methods for general Hamiltonian matrices and matrix
pencils remains an open problem. Completely satisfactory methods would be nu-
merically backward stable, have complexity O(n3), and preserve structure. There
are several reasons for this difficulty, all of which are well demonstrated in the con-
text of algorithms for Hamiltonian matrices. First of all, an algorithm based upon
structure-preserving similarity transformations (including QR-like algorithms) would
require a triangular-like Hamiltonian Schur form that displays the desired deflating
subspaces. A Hamiltonian Schur form under unitary symplectic similarity transfor-
mations is presented in [31]. (See (1.1).) Unfortunately, not every Hamiltonian matrix
has this kind of Hamiltonian Schur form. For example, the Hamiltonian matrix J in
Definition 1.1 is invariant under arbitrary unitary similarity transformations but is
not in the Hamiltonian Schur form described in [31]. (Similar difficulties arise in the
skew-Hamiltonian/Hamiltonian pencil case for the Schur-like forms of skew-Hamil-
tonian/Hamiltonian matrix pencils in [25, 26] and for the other structures given in
Definition 1.1 in [24].) A second problem comes from the fact that even when a Hamil-
tonian Schur form exists, there is no completely satisfactory structure-preserving nu-
merical method to compute it. It has been argued in [2] that, except in special cases
[13, 14], QR-like algorithms are impractically expensive because of the lack of a Hamil-
tonian Hessenberg–like form. For this reason other methods such as the multishift
method of [1] and the structured implicit product methods of [6, 7, 38] do not follow
the QR-algorithm paradigm. (The implicit product methods [6, 7] do come quite
close to optimality. We extend the method of [6] to skew-Hamiltonian/Hamiltonian
matrix pencils in section 4.) A third difficulty arises when the Hamiltonian matrix or
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the skew-Hamiltonian/Hamiltonian matrix pencil has eigenvalues on the imaginary
axis. In that case, the desired Lagrangian subspace is, in general, not unique [29].
Furthermore, if finite precision arithmetic or other errors perturb the matrix off the
Lie algebra of Hamiltonian matrices, then it is typically the case that the perturbed
matrix has no Lagrangian subspace or does not have the expected eigenvalue pairings;
see, e.g., [7, 38].

We close the introduction by introducing some notation. To simplify notation,
the term eigenvalue is used both for eigenvalues of matrices and, in the context of a
matrix pencil αE−βA, for pairs (α, β) ∈ C\(0, 0) for which det(αE−βA) = 0. These
pairs are not unique. If β �= 0, then we identify (α, β) with (α/β, 1) and λ = α/β.
Pairs (α, 0) with α �= 0 are called infinite eigenvalues.

By Λ(E,A) we denote the set of eigenvalues of αE−βA including finite and infi-
nite eigenvalues, both counted according to multiplicity. We will denote by Λ−(E,A),
Λ0(E,A), and Λ+(E,A) the set of finite eigenvalues of αA− βE with negative, zero,
and positive real parts, respectively. The set of infinite eigenvalues is denoted by
Λ∞(E,A). Multiple eigenvalues are repeated in Λ−(E,A), Λ0(E,A), Λ+(E,A), and
Λ∞(E,A) according to algebraic multiplicity. The set of all eigenvalues counted ac-
cording to multiplicity is Λ(E,A) := Λ−(E,A)∪Λ0(E,A)∪Λ+(E,A)∪Λ∞(E,A). Sim-
ilarly, we denote by Def−(E,A), Def0(E,A), Def+(E,A), and Def∞(E,A) the right
deflating subspaces corresponding to Λ−(E,A), Λ0(E,A), Λ+(E,A), and Λ∞(E,A),
respectively.

Throughout this paper, the imaginary number
√−1 is denoted by i. The inertia

of a Hermitian matrix A consists of the triple In(A) = (π, ω, ν), where π = π(A),
ω = ω(A), and ν = ν(A) represent the number of eigenvalues with positive, zero, and
negative real parts, respectively.

By abuse of notation, we identify a subspace and a matrix whose columns span
this subspace by the same symbol.

We call a matrixHamiltonian block triangular if it is Hamiltonian and has the form[
F G
0 −FH

]
.

If, furthermore, F is triangular, then we call the matrix Hamiltonian triangular. The
terms skew-Hamiltonian block triangular and skew-Hamiltonian triangular are defined
analogously.

The Hamiltonian (skew-Hamiltonian) Schur form of a Hamiltonian (skew-Hamil-
tonian) matrix H is the factorization

H = UT UH ,(1.1)

where U ∈ US2n, and T is Hamiltonian (skew-Hamiltonian) triangular. As mentioned
above, not all Hamiltonian matrices have a Hamiltonian Schur form. Real skew-
Hamiltonian matrices always have one [38], but not all complex skew-Hamiltonian
matrices do. For Hamiltonian matrices that have no purely imaginary eigenvalues the
existence of a Hamiltonian Schur form was proved in [31]. Necessary and sufficient
conditions for the existence of the Hamiltonian Schur form in the case of arbitrary
spectra were suggested in [23], and a proof based on a structured Hamiltonian Jordan
form was recently given in [24].

2. Schur-like forms of skew-Hamiltonian/Hamiltonian matrix pencils.
In this section we derive the theoretical background for algorithms to compute eigen-
values and deflating subspaces of skew-Hamiltonian/Hamiltonian matrix pencils. A
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primary theoretical and computational tool is the J-congruence. A J-congruence
transformation of a 2n × 2n pencil αS − βH by a nonsingular matrix Y ∈ C

2n,2n is
the congruence transformation JYHJ T (αS −βH)Y, where J is as in Definition 1.1.
The structure of skew-Hamiltonian/Hamiltonian matrix pencils is preserved by J-
congruence transformations [25, 26]; i.e., if αS − βH is a skew-Hamiltonian/Hamil-
tonian pencil and Y is nonsingular, then JYHJ T (αS − βH)Y is also skew-Hamil-
tonian/Hamiltonian.

The skew-Hamiltonian/Hamiltonian Schur form of a skew-Hamiltonian/Hamil-
tonian pencil αS − βH is the factorization

αS − βH = JQJ T

(
α

[
S11 S12

0 SH
11

]
− β

[
H11 H12

0 −HH
11

])
QH ,(2.1)

where Q ∈ C
2n,2n is unitary, S11 ∈ C

n,n and H11 ∈ C
n,n are upper triangular, S12 ∈

C
n,n is skew-Hermitian, and H12 ∈ C

n,n is Hermitian. Note that the skew-Hamil-
tonian/Hamiltonian Schur form is a special case of the Schur form of a general matrix
pencil and that it displays the eigenvalues and a nested system of deflating subspaces.
This definition of a skew-Hamiltonian/Hamiltonian Schur form is essentially consistent
with the definition of the Hamiltonian Schur form of a Hamiltonian matrix (1.1). If
(2.1) holds with S = I, then it is not difficult to show that Q is a unitary diagonal
matrix multiple of a unitary symplectic matrix and that there is a unitary symplectic
choice of Q, QH = Q−1 = JQHJT , for which (2.1) holds with S11 = I and S12 = 0.

Skew-Hamiltonian/Hamiltonian matrix pencils often have the characteristic that
the skew-Hamiltonian matrix S is block diagonal [4, 5], i.e., S =

[
E
0

0
EH

]
for some

matrix E ∈ C
n,n. In this case (among others), the matrix S factors in the form

S = JZHJ TZ,(2.2)

where Z = diag(I, EH). Such a factorization may also be intrinsic to the problem
formulation for nonblock diagonal skew-Hamiltonian matrices S; see, e.g., [28].

Let 〈x, y〉 be the indefinite inner product on C
2n×C

2n defined by 〈x, y〉 = yHJ x.
If Z ∈ C

2n,2n, then for all x, y ∈ C
2n, 〈(Zx), y〉 = 〈x, (J−TZHJ T )y〉; i.e., the adjoint

of Z with respect to 〈 . , . 〉 is J−TZHJ T . Because J−1 = J T = −J , the adjoint
may also be expressed as JZHJ T . From this point of view, (2.2) is a symmetric-like
factorization of S into the product of adjoints JZJ T and Z. By analogy with the
factorization of symmetric matrices, we will use the term J -semidefinite to refer to
skew-Hamiltonians matrices which have a factorization of the form (2.2). A J -definite
skew-Hamiltonian matrix is a skew-Hamiltonian matrix that is both J -semidefinite
and nonsingular.

The property of J -semidefiniteness arises frequently in applications [3, 4, 5].
We show below that all real skew-Hamiltonian matrices are J -semidefinite. We
also show that if a skew-Hamiltonian/Hamiltonian matrix pencil has a skew-Hamil-
tonian/Hamiltonian Schur form, then the skew-Hamiltonian part is J -semidefinite.

Although J -semidefiniteness is a common property of skew-Hamiltonian matrices,
it is not universal. The following lemma shows that neither iJ nor any nonsingular,
skew-Hamiltonian matrix of the form iJLLT is J -semidefinite.

Lemma 2.1. A nonsingular skew-Hamiltonian matrix S is J -definite if and only
if iJS is Hermitian with n positive and n negative eigenvalues.

Proof. If S is J -definite, then Z in (2.2) is nonsingular and the Hermitian matrix
iJS is congruent to −iJ T = iJ . It follows from Sylvester’s law of inertia [16, p. 296],
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[21, p. 188] that iJS is a Hermitian matrix with n positive eigenvalues and n negative
eigenvalues.

Conversely, suppose that iJS is Hermitian with n positive and n negative eigen-
values. The matrix iJ T also has n positive and n negative eigenvalues, so, by an
immediate consequence of Sylvester’s law of inertia, there is a nonsingular matrix
Z ∈ C

2n,2n for which iJS = ZH(iJ T )Z. It follows that (2.2) holds with this ma-
trix Z.

Lemma 2.1 suggests that J -semidefiniteness might be a characteristic of the in-
ertia of iJS. The next lemma shows that this is indeed the case.

Lemma 2.2. A matrix S ∈ SH2n is J -semidefinite if and only if iJS satisfies
both π(iJS) ≤ n and ν(iJS) ≤ n.

Proof. Suppose that S ∈ SH2n is J -semidefinite. For some Z satisfying (2.2), de-
fine S(ε) by S(ε) = J (Z+εI)HJ T (Z+εI). For ε small enough, Z+εI is nonsingular,
and, by Lemma 2.1, π(iJS(ε)) = n and ν(iJS(ε)) = n. Because eigenvalues are con-
tinuous functions of matrix elements and S = limε→0 S(ε), it follows that π(iJS) ≤ n
and ν(iJS) ≤ n.

For the converse, if π(iJS) = p ≤ n and ν(iJS) = q ≤ n, then there exists a
nonsingular matrix W for which iJS = WHLW with signature matrix

L =




p n− p q n− q

p Ip 0 0 0
n− p 0 0 0 0
q 0 0 −Iq 0
n− q 0 0 0 0


.

Because p ≤ n and q ≤ n, L factors as L = Ldiag(In,−In)L, where In is the n × n
identity matrix. The matrix diag(In,−In) is the diagonal matrix of eigenvalues of
iJ T , so L = L(UH(iJ T )U)L, where U = (1/

√
2)
[
In
iIn

In
−iIn

]
is the unitary matrix of

eigenvectors of iJ T . Hence, (2.2) holds with Z = ULW.

The following immediate corollary also follows from [15].

Corollary 2.3. Every real skew-Hamiltonian matrix S is J -semidefinite.

Proof. If S is real, then JS is real and skew-symmetric. The eigenvalues of
JS appear in complex conjugate pairs with zero real part. Hence, the eigenvalues
of iJS lie on the real axis in ± pairs. In particular, π(iJS) = ν(iJS). It follows
from the trivial identity π(iJS) + ω(iJS) + ν(iJS) = 2n that π(iJS) ≤ n and
ν(iJS) ≤ n.

The next lemma and its corollary show that J -semidefiniteness of both S and iH
are necessary conditions for a skew-Hamiltonian/Hamiltonian matrix pencil αS −βH
to have a skew-Hamiltonian/Hamiltonian Schur.

Lemma 2.4. If S ∈ SH2n and there exists a nonsingular matrix Y such that

JYHJ TSY =

[
S11 S12

0 SH
11

]

with S11, S12 ∈ C
n,n, then S is J -semidefinite.

Proof. Let T be the Hermitian matrix

T = YH(iJS)Y =

[
0 iSH

11

−iS11 −iS12

]
,
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and set T (ε) = T + ε
[

0 In
In In

]
. For ε sufficiently small, both εIn− iS12 and εIn− iS11

are nonsingular and T (ε) is congruent to[ −(εIn − iS11)(εIn − iS12)
−1(εIn − iS11)

H 0
0 (εIn − iS12)

]
.

By Sylvester’s law, the inertia of the negative of the (1, 1) block is equal to the
inertia of the (2, 2) block. This implies π(T (ε)) = ν(T (ε)) = n. Continuity of
eigenvalues as ε → 0 implies π(T ) ≤ n and ν(T ) ≤ n. The assertion now follows from
Lemma 2.2.

Corollary 2.5. If H ∈ H2n and there exists a nonsingular matrix Y such that

JYHJ THY =

[
H11 H12

0 −HH
11

]

with H11, H12 ∈ C
n,n, then iH is J -semidefinite.

Proof. Apply Lemma 2.4 to the skew-Hamiltonian matrix iH.
It follows from Lemma 2.4 and Corollary 2.5 that if αS − βH is a skew-Hamil-

tonian/Hamiltonian matrix pencil that has a skew-Hamiltonian/Hamiltonian Schur
form, then S and iH are J -semidefinite. As noted above, the factor Z in (2.2) is
often given explicitly as part of the problem statement. It can also be obtained as
in the proof of Lemma 2.2 or by a modification of Gaussian elimination [3]. The
next theorem shows that if S is nonsingular, then the skew-Hamiltonian/Hamiltonian
Schur form (if it exists) can be expressed in terms of block triangular factorizations of
Z and H without explicitly using S. This opens the possibility of designing numerical
methods that work directly on Z andH and avoid the normal-equations-like numerical
instability of forming S explicitly.

For regular skew-Hamiltonian/Hamiltonian matrix pencils, the following theorem
gives necessary and sufficient conditions for the existence of a skew-Hamiltonian/
Hamiltonian Schur form.

Theorem 2.6 (see [25, 26]). Let αS−βH be a regular skew-Hamiltonian/Hamil-
tonian matrix pencil, with ν pairwise distinct, finite, nonzero, purely imaginary eigen-
values iα1, iα2, . . . , iαν of algebraic multiplicity p1, p2, . . . , pν , and associated right de-
flating subspaces Q1,Q2, . . . ,Qν . Let p∞ be the algebraic multiplicity of the eigenvalue
infinity and let Q∞ be its associated deflating subspace. The following are equivalent.

(i) There exists a nonsingular matrix Y such that

JYHJ T (αS − βH)Y = α

[
S11 S12

0 SH
11

]
− β

[
H11 H12

0 −HH
11

]
,(2.3)

where S11 and H11 are upper triangular while S12 is skew-Hermitian and H12

is Hermitian.
(ii) There exists a unitary matrix Q such that JQHJ T (αS − βH)Q is of the

form on the right-hand side of (2.3).
(iii) For k = 1, 2, . . . , ν, QH

k JSQk is congruent to a pk×pk copy of J . (If ν = 0,
i.e., if αS−βH has no finite, nonzero, purely imaginary eigenvalue, then this
statement holds vacuously.)
Furthermore, if p∞ �= 0, then QH

∞JHQ∞ is congruent to a p∞ × p∞ copy
of iJ .

Similar results cover real Schur-like forms of real Hamiltonian matrices and skew-
Hamiltonian/Hamiltonian matrix pencils [24, 25, 26].
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Theorem 2.6 gives necessary and sufficient conditions for the existence of a struc-
tured triangular-like form for skew-Hamiltonian/Hamiltonian pencils. It also demon-
strates that whenever a structured triangular-like form exists, then it also exists under
unitary transformations. It is partly because of this fact that there exist structure-
preserving, numerically stable numerical algorithms like those described here and
in [4].

Theorem 2.7. Let αS − βH be a skew-Hamiltonian/Hamiltonian matrix pencil
with nonsingular, J -semidefinite skew-Hamiltonian part S = JZHJ TZ. If any of
the equivalent conditions of Theorem 2.6 holds, then there exists a unitary matrix Q
and a unitary symplectic matrix U such that

UHZQ =

[
Z11 Z12

0 Z22

]
,(2.4)

JQHJ THQ =

[
H11 H12

0 −HH
11

]
,(2.5)

where Z11, ZH
22, and H11 are n× n and upper triangular.

Proof. WithQ as in Theorem 2.6(ii) we obtain (2.5) and JQHJ TSQ =
[
S11

0
S12

SH
11

]
.

Partition Z̃ = ZQ as Z̃ = [Z1, Z2], where Z1, Z2 ∈ C
2n,n. Using S = JZHJ TZ, we

obtain

Z̃HJ Z̃ =

[
0 SH

11

−S11 −S12

]
.(2.6)

In particular, ZH
1 JZ1 = 0, i.e., the columns of Z1 form a basis of a Lagrangian

subspace, and therefore the columns of Z1 form the first n columns of a symplectic
matrix. (It is easy to verify from Definition 1.1 that using the nonnegative definite
square root [Z1, −JZ1(Z

H
1 Z1)

−1/2] is symplectic.) It is shown in [11] that Z1 has a
unitary symplectic QR factorization

UHZ1 =

[
Z11

0

]
,

where U ∈ US2n is unitary symplectic and Z11 ∈ C
n,n is upper triangular. Setting

UHZQ = UHZ̃ =

[
Z11 Z12

0 Z22

]

we obtain from (2.6) that ZH
22Z11 = S11. Since S11 and Z11 are both upper triangular

and Z11 is nonsingular, we conclude that ZH
22 is also upper triangular.

Note that the invertibility of Z is only a sufficient condition for the existence of
U as in (2.4) and (2.5). However, there is no particular pathology associated with
Z being singular. The algorithms described below and in [4] do not require Z to be
nonsingular.

If both S and H are nonsingular, then the following stronger form of Theorem 2.7
holds.

Corollary 2.8. Let αS−βH be a skew-Hamiltonian/Hamiltonian matrix pencil
with nonsingular J -semidefinite skew-Hamiltonian part S = JZHJ TZ and nonsin-
gular J -semidefinite Hamiltonian part iH = JWHJ TW. If any of the equivalent
conditions of Theorem 2.6 holds, then there exist a unitary matrix Q and unitary
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symplectic matrices U and V such that

UHZQ =

[
Z11 Z12

0 Z22

]
, VHWQ =

[
W11 W12

0 W22

]
,

where Z11, ZH
22 and W11, WH

22 are n× n and upper triangular.
Proof. The proof is similar to that of Theorem 2.7.
In the following we derive the theoretical background for algorithms to compute

eigenvalues and deflating subspaces of skew-Hamiltonian/Hamiltonian matrix pencils.
We will obtain the structured Schur form of a complex skew-Hamiltonian/Hamil-

tonian matrix pencil from the structured Schur form of a real skew-Hamiltonian/skew-
Hamiltonian matrix pencil of double dimension. The following theorem establishes
that, in contrast to the complex skew-Hamiltonian/Hamiltonian case, every real, reg-
ular skew-Hamiltonian/skew-Hamiltonian pencil admits a structured real Schur form.

Theorem 2.9. If αS − βN is a real, regular skew-Hamiltonian/skew-Hamil-
tonian matrix pencil with S = JZTJ TZ, then there exist a real orthogonal matrix
Q ∈ R

2n,2n and a real orthogonal symplectic matrix U ∈ R
2n,2n such that

UTZQ =

[
Z11 Z12

0 Z22

]
,(2.7)

JQTJ TNQ =

[
N11 N12

0 NT
11

]
,(2.8)

where Z11 and ZT
22 are upper triangular, N11 is quasi upper triangular, and N12 is

skew-symmetric.
Moreover,

JQTJ T (αS − βN )Q = α

[
ZT

22Z11 ZT
22Z12 − ZT

12Z22

0 ZT
11Z22

]
− β

[
N11 N12

0 NT
11

]
(2.9)

is a J -congruent skew-Hamiltonian/skew-Hamiltonian matrix pencil.
Proof. A constructive proof for the existence of Q and U satisfying (2.7) and

(2.8) is Algorithm 3 in [4]. To show (2.9), recall that U is orthogonal symplectic and
therefore commutes with J . Hence,

JQTJ TSQ = JQTJ T (JZTJ TZ)Q
= JQTJ T (JZTJ TU)(UTZQ)

= J (UTZQ)TJ T (UTZQ).

Equation (2.9) now follows from the block triangular form of (2.7).
Note that this theorem does not easily extend to complex skew-Hamiltonian/skew-

Hamiltonian matrix pencils.
A method for computing the structured Schur form (2.9) for real matrices was

proposed in [32], but if S is given in factored form, then Algorithm 3 in [4] is more
robust in finite precision arithmetic, because it avoids forming S explicitly.

Neither the method in [32] nor Algorithm 3 in [4] applies to complex skew-Hamil-
tonian/Hamiltonian matrix pencils because those algorithms depend on the fact that
real diagonal skew-symmetric matrices are identically zero. This property is also
crucial for the structured Schur form algorithms in [6, 38].

Algorithm 1 given below computes the eigenvalues of a complex skew-Hamil-
tonian/Hamiltonian matrix pencil αS − βH using an unusual embedding of C into
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R
2, which was recently proposed in [8]. Let αS − βH be a complex skew-Hamil-

tonian/Hamiltonian matrix pencil with J -semidefinite skew-Hamiltonian part S =
JZHJ TZ. Split the skew-Hamiltonian matrix N = iH ∈ SH2n as iH = N =
N1 + iN2, where N1 is real skew-Hamiltonian and N2 is real Hamiltonian, i.e.,

N1 =

[
F1 G1

H1 FT
1

]
, G1 = −GT

1 , H1 = −HT
1 ,

N2 =

[
F2 G2

H2 −FT
2

]
, G2 = GT

2 , H2 = HT
2 ,

and Fj , Gj , Hj ∈ R
n×n for j = 1, 2. Setting

Yc =

√
2

2

[
I2n iI2n
I2n −iI2n

]
,

P =




In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In


 ,(2.10)

Xc = YcP(2.11)

and using the embedding BN = diag(N , N̄ ), we obtain that

Bc
N := XH

c BNXc =




F1 −F2 G1 −G2

F2 F1 G2 G1

H1 −H2 FT
1 FT

2

H2 H1 −FT
2 FT

1


(2.12)

is a real skew-Hamiltonian matrix in SH4n. Similarly, set

BZ :=

[ Z 0
0 Z̄

]
,(2.13)

BT :=

[ JZHJ T 0

0 JZHJ T

]
,(2.14)

BS :=

[ S 0
0 S̄

]
= BT BZ .(2.15)

Hence,

αBS − βBN =

[
αS − βN 0

0 αS̄ − βN̄
]
.

One can easily verify that

Bc
Z := XH

c BZXc,(2.16)

Bc
T := XH

c BT Xc = J (Bc
Z)

TJ T ,

Bc
S := XH

c BSXc = J (Bc
Z)

TJ TBc
Z(2.17)

are all real. Therefore,

αBc
S − βBc

N = XH
c (αBS − βBN )Xc

= XH
c

[
αS − βN 0

0 αS̄ − βN̄
]
Xc(2.18)
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is a real 4n× 4n skew-Hamiltonian/skew-Hamiltonian matrix pencil. For this matrix
pencil we can employ Algorithm 3 in [4] to compute the structured factorization (2.8);
i.e., we can determine an orthogonal symplectic matrix U and an orthogonal matrix
Q such that

B̃c
Z := UTBc

ZQ =

[ Z11 Z12

0 Z22

]
,(2.19)

B̃c
N := JQTJ TBc

NQ =

[ N11 N12

0 N T
11

]
.(2.20)

Thus, if B̃c
S := J (B̃c

Z)
TJ T B̃c

Z , then

αB̃c
S − βB̃c

N = α(JQTJ TBc
SQ)− β(JQTJ TBc

NQ)

is a J -congruent skew-Hamiltonian/skew-Hamiltonian matrix pencil in Schur form.
By (2.18) and the fact that the finite eigenvalues of αS − βN are symmetric with
respect to the real axis, we observe that the spectrum of the extended matrix pencil
αBc

S − βBc
N consists of two copies of the spectrum of αS − βN . Consequently,

Λ(S,H) = Λ(S,−iN ) = Λ(ZT
22Z11,−iN11).

In this way, Algorithm 1 below computes the eigenvalues of the complex skew-Hamil-
tonian/Hamiltonian matrix pencil αS − βH = αS + iβN .

From this we can also derive the skew-Hamiltonian/Hamiltonian Schur form of
αBS − βBH, where

BH = −iBN =

[ H 0
0 −H̄

]
(2.21)

and BS is as in (2.17). The spectrum of the extended matrix pencil αBS − βBH
consists of two copies of the spectrum of αS − βH [6]. If

Bc
H = −iBc

N = XH
c BHXc,(2.22)

then it follows from (2.19) and (2.20) that

B̃c
Z := UTBc

ZQ =

[ Z11 Z12

0 Z22

]
,(2.23)

B̃c
H := JQTJ TBc

HQ =

[ −iN11 −iN12

0 −(−iN11)
H

]
,(2.24)

and the matrix pencil αB̃c
S − βB̃c

H := αJ (B̃c
Z)

HJ T B̃c
Z − βB̃c

H is in skew-Hamil-
tonian/Hamiltonian Schur form. We have thus obtained the structured Schur form
of the extended complex skew-Hamiltonian/Hamiltonian matrix pencil αBc

S − βBc
H.

Moreover,

αB̃c
S − βB̃c

H = JQHJ T (αBc
S − βBc

H)Q = (XcJQJ T )H (αBS − βBH)XcQ(2.25)

is in skew-Hamiltonian/Hamiltonian Schur form.
We have seen so far that we can compute structured Schur forms and thus are

able to compute the eigenvalues of the structured matrix pencils under consideration
using the embedding technique into a structured matrix pencil of double size.
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3. Deflating subspaces of skew-Hamiltonian/Hamiltonian matrix pen-
cils. For the solution of problems involving skew-Hamiltonian/Hamiltonian matrix
pencils as described in the introduction it is usually necessary to compute n-dimen-
sional deflating subspaces associated with eigenvalues in the closed left half plane. To
get the desired subspaces we generalize the techniques developed in [6]. For this we
need a structure-preserving method to reorder the eigenvalues along the diagonal of
the structured Schur form so that all eigenvalues with negative real part appear in the
(1, 1) block and eigenvalues with positive real part appear in the (2, 2) block. Such a
reordering method is described in Appendix B of [4].

The following theorem uses this eigenvalue ordering to determine the desired
deflating subspaces of the matrix pencil αS − βH from the structured Schur form
(2.25).

Theorem 3.1. Let αS−βH ∈ C
2n,2n be a skew-Hamiltonian/Hamiltonian matrix

pencil with J -semidefinite skew-Hamiltonian matrix S = JZHJ TZ. Consider the
extended matrices

BZ = diag(Z, Z̄),

BT = diag(JZHJ T ,JZHJ T ),

BS = BT BZ = diag(S, S̄),
BH = diag(H,−H̄).

Let U ,V,W be unitary matrices such that

UHBZV =

[ Z11 Z12

0 Z22

]
=: RZ ,

WHBT U =

[ T11 T12

0 T22

]
=: RT ,(3.1)

WHBHV =

[ H11 H12

0 H22

]
=: RH,

where Λ−(BS ,BH) ⊂ Λ(T11Z11,H11) and Λ(T11Z11,H11) ∩ Λ+(BS ,BH) = ∅. Here
Z11, T11,H11 ∈ C

m,m. Suppose Λ−(S,H) contains p eigenvalues. If [V1

V2
] ∈ C

4n,m are
the first m columns of V, 2p ≤ m ≤ 2n − 2p, then there are subspaces L1 and L2

such that

rangeV1 = Def−(S,H) + L1, L1 ⊆ Def0(S,H) + Def∞(S,H),
rangeV2 = Def+(S,H) + L2, L2 ⊆ Def0(S,H) + Def∞(S,H).

(3.2)

If Λ(T11Z11,H11) = Λ−(BS ,BH), and [U1

U2
], [W1

W2
] are the first m columns of U , W,

respectively, then there exist unitary matrices QU , QV , QW such that

U1 = [P−
U , 0]QU , U2 = [0, P+

U ]QU ,
V1 = [P−

V , 0]QV , V2 = [0, P+
V ]QV ,

W1 = [P−
W , 0]QW , W2 = [0, P+

W ]QW

and the columns of P−
V and P+

V form orthogonal bases of Def−(S,H) and Def+(S,H),
respectively. Moreover, the matrices P−

U , P+
U , P−

W , and P+
W have orthonormal columns

and the following relations are satisfied:

ZP−
V = P−

U Z̃11, JZHJ TP−
U = P−

W T̃11, HP−
V = P−

W H̃11,

ZP+
V = P+

U Z̃22, JZHJ TP+
U = P+

W T̃22, HP+
V = −P+

W H̃22.
(3.3)
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Here, Z̃kk, T̃kk, and H̃kk, k = 1, 2, satisfy Λ(T̃11Z̃11, H̃11) = Λ(T̃22Z̃22, H̃22) =
Λ−(S,H).

Proof. The factorizations in (3.1) imply that BSV = WRT RZ and BHV = WRH.
Comparing the first m columns and making use of the block forms, we have

SV1 = W1(T11Z11), HV1 = W1H11,

SV2 = W2 (T11Z11), HV2 = −W2 H11.
(3.4)

Clearly, rangeV1 and rangeV2 are both deflating subspaces of αS − βH. Since

Λ−(S,H) ⊆ Λ−(BS ,BH) ⊆ Λ(T11Z11,H11)

and Λ(T11Z11,H11) contains no eigenvalue with positive real part, we get

rangeV1 ⊆ Def−(S,H) + L1, L1 ⊆ Def0(S,H) + Def∞(S,H),

rangeV2 ⊆ Def+(S,H) + L2, L2 ⊆ Def0(S,H) + Def∞(S,H).

We still need to show that

Def−(S,H) ⊆ rangeV1, Def+(S,H) ⊆ rangeV2.(3.5)

Let Ṽ1 and Ṽ2 be full rank matrices whose columns form bases of Def−(S,H) and

Def+(S,H), respectively. It is easy to show that the columns of
[
Ṽ1

0

0

Ṽ2

]
span

Def−(BS ,BH). This implies that

range

[
Ṽ1 0

0 Ṽ2

]
⊆ range

[
V1

V2

]
.

Therefore,

range

[
Ṽ1

0

]
, range

[
0

Ṽ2

]
⊆ range

[
V1

V2

]
,

and from this we obtain (3.5) and hence (3.2).
If Λ(T11Z11,H11) = Λ−(BS ,BH), where p is the number of eigenvalues in Λ−(S,H),

then from (3.2) we have m = 2p and

rangeV1 = Def−(S,H), rangeV2 = Def+(S,H).

Hence, rankV1 = rankV2 = p and furthermore T11, Z11, andH11 must be nonsingular.
Using (3.4) we get

HV1 = SV1((T11Z11)
−1H11),

HV2 = −SV2 ((T11Z11)−1H11).

Let V1 = [P−
V , 0]QV be an RQ (triangular-orthogonal) decomposition [17] with P−

V

of full column rank. Since rankV1 = p we have rankP−
V = p. Partition V2Q

H
V =

[PV , P+
V ] conforming to V1Q

H
V . Since the columns of [V1

V2
] are orthonormal, we obtain

(P+
V )HP+

V = Ip and hence rankP+
V = p. Furthermore, since rankV2 = p, we have

rangePV ⊆ rangeP+
V = rangeV2,
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and using orthonormality, we obtain PV = 0. Therefore, the columns of P−
V and P+

V

form orthogonal bases of Def−(S,H) and Def+(S,H), respectively.

From (3.1) we have

ZV1 = U1Z11, JZHJ TU1 = W1T11, HV1 = W1H11,(3.6)

and

ZV2 = U2 Z11, JZHJ TU2 = W2 T11, HV2 = −W2 H11.(3.7)

Let U1 = [P−
U , 0]QU and W1 = [P−

W , 0]QW be RQ (triangular-orthogonal) decompo-
sitions, with P−

U , P−
W of full column rank. Using V1 = [P−

V , 0]QV and the fact that
ZP−

V , SP−
V , and HP−

V are of full rank (otherwise there would be a zero or infinite
eigenvalue associated with the deflating subspace rangeP−

V ), from the first and third
identity in (3.6) we obtain

rankP−
U = rankP−

W = rankP−
V = p.

Moreover, setting

Z̃ = QUZ11Q
H
V , T̃ = QWT11Q

H
U , H̃ = QWH11Q

H
V ,

we obtain

Z̃ =

[
Z̃11 0

Z̃21 Z̃22

]
, T̃ =

[
T̃11 0

T̃21 T̃22

]
, H̃ =

[
H̃11 0

H̃21 H̃22

]
,

where all diagonal blocks are p× p.

Set U2Q
H
U =: [PU , P+

U ], W2Q
H
W =: [PW , P+

W ] and take V2Q
H
V =: [0, P+

V ]. The block

forms of Z̃, T̃ , and H̃ together with the first identity of (3.7) imply that PU Z̃11 =

P+
U Z̃21. Since the columns of [U1

U2
] are orthonormal, we have (P+

U )HP+
U = Ip and

(P+
U )HPU = 0. Hence, Z̃21 = 0, and consequently PU = 0. Similarly, from the third

identity of (3.7) we get PW = 0, H̃21 = 0, and from the second identity we obtain
T̃21 = 0. Combining all these observations, we obtain

[ Z 0
0 Z̄

] [
P−
V 0
0 P+

V

]
=

[
P−
U 0
0 P+

U

] [
Z̃11 0

0 Z̃22

]
,

[ JZHJ T 0

0 JZHJ T

] [
P−
U 0
0 P+

U

]
=

[
P−
W 0
0 P+

W

] [
T̃11 0

0 T̃22

]
,

[ H 0
0 −H̄

] [
P−
V 0
0 P+

V

]
=

[
P−
W 0
0 P+

W

] [
H̃11 0

0 H̃22

]
,

which gives (3.3).

We remark that (3.1) can be constructed from (2.25) by reordering the eigenvalues
properly.

Theorem 3.1 provides a way for obtaining the stable deflating subspace of a skew-
Hamiltonian/Hamiltonian matrix pencil from the deflating subspaces of an embedded
skew-Hamiltonian/Hamiltonian matrix pencil of double size. This will be used by the
algorithms formulated in the next section.
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4. Algorithms. The results of Theorem 3.1 together with the embedding tech-
nique lead to the following algorithm to compute the eigenvalues and the deflating
subspaces Def−(S,H) and Def+(S,H) of a complex skew-Hamiltonian/Hamiltonian
matrix pencil αS − βH. Since the algorithms are rather technical, we do not discuss
details like eigenvalue reordering or explicit elimination orders in the construction of
the structured Schur forms. Instead we refer the reader to the technical report [4] for
these details.

In summary, Algorithm 1 proposed below transforms a 2n × 2n complex skew-
Hamiltonian/Hamiltonian matrix pencil with J -semidefinite skew-Hamiltonian part
into a 4n× 4n complex skew-Hamiltonian/Hamiltonian matrix pencil in Schur form.
The process passes through intermediate matrix pencils of the following types.

2n× 2n complex skew-Hamiltonian/Hamiltonian matrix pencil
αS − βH with S = JZHJ TZ.

⇓
Equation (2.18)

⇓
4n× 4n real skew-Hamiltonian/skew-Hamiltonian matrix pencil

αBc
S − βBc

N with Bc
S = J (Bc

Z)
TJ TBc

Z
⇓

Algorithm 3 in [4]
⇓

4n× 4n real skew-Hamiltonian/skew-Hamiltonian matrix pencil in Schur form
αB̃c

S − βB̃c
N with B̃c

S = J (B̃c
Z)

TJ T B̃c
Z

and B̃c
Z = UTBc

ZQ =
[Z11

0
Z12
Z22

]
, B̃c

N = JQTJ TBc
NQ =

[N11
0

N12

NT
11

]
as in (2.19) and (2.20)

⇓
Algorithm 4 in [4]

⇓
4n× 4n complex skew-Hamiltonian/Hamiltonian matrix pencil in Schur form

with ordered eigenvalues.

The required deflating subspaces of the original skew-Hamiltonian/Hamiltonian
matrix pencil are then obtained from the deflating subspaces of the final 4n × 4n
complex skew-Hamiltonian/Hamiltonian matrix pencil. (Unfortunately, if there are
nonreal eigenvalues, then Algorithm 4 in [4] (the eigenvalue sorting algorithm) rein-
troduces complex entries into the 4n× 4n extended real matrix pencil.)

Algorithm 1. Given a complex skew-Hamiltonian/Hamiltonian matrix pencil
αS − βH with J -semidefinite skew-Hamiltonian part S = JZHJ TZ, this algorithm
computes the structured Schur form of the extended skew-Hamiltonian/Hamiltonian
matrix pencil αBc

S − βBc
H, the eigenvalues of αS − βH, and orthonormal bases of the

deflating subspace Def−(S,H) and the companion subspace rangeP−
U .

Input: Hamiltonian matrix H and the factor Z of S.
Output: P−

V , P−
U as defined in Theorem 3.1.

Step 1:
Set N = iH and form matrices Bc

Z , Bc
N as in (2.16) and (2.12), respectively.

Find the structured Schur form of the skew-Hamiltonian/skew-Hamiltonian
matrix pencil αBc

S−βBc
N using Algorithm 3 in [4] to compute the factorization

B̃c
Z = UTBc

ZQ =

[ Z11 Z12

0 Z22

]
,

B̃c
N = JQTJ TBc

NQ =

[ N11 N12

0 N T
11

]
,
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where Q is real orthogonal, U is real orthogonal symplectic, Z11, ZT
22 are

upper triangular, and N11 is quasi upper triangular.
Step 2:

Reorder the eigenvalues using Algorithm 4 in [4] to determine a unitary matrix
Q̃ and a unitary symplectic matrix Ũ such that

ŨH B̃c
ZQ̃ =

[ Z̃11 Z̃12

0 Z̃22

]
=: B̌c

Z ,

J Q̃HJ T (−iB̃c
N )Q̃ =

[ H11 H12

0 −HH
11

]
=: B̌c

H,

with Z̃11, Z̃H
22, H11 upper triangular such that Λ−(J (B̌c

Z)
HJ T B̌c

Z , B̌c
H) is

contained in the spectrum of the 2p × 2p leading principal subpencil of
αZ̃H

22Z̃11 − βH11.
Step 3:

Set V = [I2n, 0]XcQQ̃[ I2p0 ], U = [I2n, 0]XcUŨ [ I2p0 ] (where Xc is as in (2.11))

and compute P−
V , P−

U , orthogonal bases of rangeV and rangeU , respectively,
using any numerically stable orthogonalization scheme.

End
Based on flop counts, we estimate the cost of this algorithm to be roughly 50% of

the cost of the periodic QZ algorithm [10, 19] applied to the 2n× 2n complex pencil
αJZHJ TZ − βH (treating JZHJ T as one matrix).

If S is not factored, then the algorithm can be simplified by using the method of
[32] to compute the real skew-Hamiltonian/Hamiltonian Schur form of αBc

S − βBc
H

directly.
Algorithm 2. Given a complex skew-Hamiltonian/Hamiltonian matrix pencil

αS − βH, this algorithm computes the structured Schur form of the extended skew-
Hamiltonian/Hamiltonian matrix pencil αBc

S−βBc
H, the eigenvalues of αS−βH, and

an orthogonal basis of the deflating subspace Def−(S,H).
Input: A complex skew-Hamiltonian/Hamiltonian matrix pencil αS − βH.
Output: P−

V as defined in Theorem 3.1.
Step 1:

Set N = iH and form the matrices Bc
S , Bc

N as in (2.17) and (2.12), respec-
tively.
Find the structured Schur form of the skew-Hamiltonian/skew-Hamiltonian
matrix pencil αBc

S−βBc
N using Algorithm 5 in [4] to compute the factorization

B̌c
S = JQTJ TBc

SQ =

[ S11 S12

0 ST
11

]
,

B̌c
N = JQTJ TBc

NQ =

[ N11 N12

0 N T
11

]
,

where Q is real orthogonal, S11 is upper triangular, and N11 is quasi upper
triangular.

Step 2:
Reorder the eigenvalues using Algorithm 6 in [4] to determine a unitary matrix
Q̃ such that

J Q̃HJ T B̌c
SQ̃ =

[ S̃11 S̃12

0 S̃H
11

]
,
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J Q̃HJ T (−iB̌c
N )Q̃ =

[ H11 H12

0 −HH
11

]
,

with S̃11, H11 upper triangular and such that Λ−(B̌c
S ,−iB̌c

N ) is contained in
the spectrum of the 2p× 2p leading principal subpencil of αS̃11 − βH11.

Step 3:
Set V = [I2n, 0]XcQQ̃[ I2p0 ] (where Xc is as in (2.11)) and compute P−

V , the
orthogonal basis of rangeV , using any numerically stable orthogonalization
scheme.

End
Algorithm 2 needs roughly 80% of the 1600n3 real flops required by the QZ

algorithm applied to the 2n×2n complex pencil αS−βH as suggested in [37]. If only
the eigenvalues are computed, then Algorithm 2 without accumulation of V needs
roughly 60% of the 960n3 real flops required by the QZ algorithm.

In this section we have presented numerical algorithms for the computation of
(complex) structured triangular forms. Various details appear in [4]. In the next
section we give an error analysis. The analysis is a generalization of the analysis for
Hamiltonian matrices in [6, 7, 8].

5. Error and perturbation analysis. In this section we will give the pertur-
bation analysis for eigenvalues and deflating subspaces of skew-Hamiltonian/Hamil-
tonian matrix pencils. Variables marked with a circumflex denote perturbed quanti-
ties.

We begin with the perturbation analysis for the eigenvalues of αS − βH and
αJZHJ TZ − βH. In principle, we could multiply out JZHJ TZ and apply the
classical perturbation analysis of matrix pencils using the chordal metric [36], but
this may give pessimistic bounds and would display neither the effects of perturbing
each factor separately nor the effects of structured perturbations. Therefore, we make
use of the perturbation analysis for formal products of matrices developed in [9].

If Algorithm 2 is applied to the skew-Hamiltonian/Hamiltonian matrix pencil
αS − βH, then we compute the structured Schur form of the extended skew-Hamil-
tonian/Hamiltonian matrix pencil αBc

S −βBc
H. The well-known backward error anal-

ysis of orthogonal matrix computations implies that rounding errors in Algorithm 2
are equivalent to perturbing αBc

S −βBc
H to a nearby matrix pencil αB̂c

S −βB̂c
H, where

B̂c
S = Bc

S + ES ,(5.1)

B̂c
H = Bc

H + EH,(5.2)

with ES ∈ SH4n, EH ∈ H4n and

||ES ||2 < cSε ||Bc
S ||2 ,(5.3)

||EH||2 < cHε ||Bc
H||2 .(5.4)

Here ε is the unit round of the floating point arithmetic and cS and cH are modest
constants depending on the details of the implementation and arithmetic. Let x and
y be unit norm vectors such that

Hx = α1y, Sx = β1y,(5.5)

and let λ = α1/β1 be a simple eigenvalue of αS−βH. If λ is finite and Reλ �= 0, then
−λ̄ is also a simple eigenvalue of αS − βH. Let u, v be unit norm vectors such that

Hu = α2v, Su = β2v,(5.6)
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and α2/β2 = −λ̄. Then we have

−H̄ū = −ᾱ2v̄, S̄ū = β̄2v̄.(5.7)

Using the equivalence of the matrix pencils αBc
S − βBc

H and αBS − βBH, and setting

U1 = XH
c

[
y 0
0 v̄

]
, U2 = XH

c

[
x 0
0 ū

]
,(5.8)

we obtain from (5.5) and (5.7) that

Bc
HU2 = U1

[
α1 0
0 −ᾱ2

]
, Bc

SU2 = U1

[
β1 0
0 β̄2

]
,

which implies that λ is a double eigenvalue of αBc
S − βBc

H with a complete set of
linearly independent eigenvectors. Similarly, −λ̄ is a double eigenvalue of αBc

S −βBc
H

with a complete set of linearly independent eigenvectors and

Bc
HV2 = V1

[
α2 0
0 −ᾱ1

]
, Bc

SV2 = V1

[
β2 0
0 β̄1

]
,

where

V1 = XH
c

[
v 0
0 ȳ

]
, V2 = XH

c

[
u 0
0 x̄

]
.(5.9)

Note that the finite eigenvalues with nonzero real part appear in pairs as in (5.5) and
(5.6), but infinite and purely imaginary eigenvalues may not appear in pairs. Conse-
quently, in the following perturbation theorem, the bounds for purely imaginary and
infinite eigenvalues are different from the bounds for finite eigenvalues with nonzero
real part.

Theorem 5.1. Consider the skew-Hamiltonian/Hamiltonian matrix pencil αS −
βH along with the corresponding extended matrix pencils αBc

S − βBc
H = XH

c (αBS −
βBH)Xc, where BS is given by (2.15), BH by (2.21), Bc

H by (2.22), Xc by (2.11), and

Bc
S by (2.17). Let αB̂c

S − βB̂c
H be a perturbed extended matrix pencil satisfying (5.1)–

(5.4) with constants cH, cS and let ε be equal to the unit round of the floating point
arithmetic.

If λ is a simple eigenvalue of αS−βH with vectors x and y as in (5.5) and vectors
u and v as in (5.6), then the corresponding double eigenvalue of αBc

S −βBc
H may split

into two eigenvalues λ̂1 and λ̂2 of the perturbed matrix pencil αB̂c
S − βB̂c

H, each of
which satisfies the following bounds.

(i) If λ is finite and Reλ �= 0, then∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤ ε

|uHJ y|
(

cH
|α1| ||H||2 +

cS
|β1| ||S||2

)
+O(ε2), k = 1, 2.

(ii) If λ is finite and Reλ = 0, then

|λ̂k − λ| ≤ ε

|β1||xHJ y| (cH ||H||2 + cS |λ| ||S||2) +O(ε2), k = 1, 2.

(iii) If λ = ∞, then

1

|λ̂k|
≤ ε

cS ||S||2
|α1||xHJ y| +O(ε2), k = 1, 2.
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Proof. We first consider the case that λ is finite and Reλ �= 0. Let U1 and U2 be
defined by (5.8) and V1 and V2 be defined by (5.9). Using the perturbation theory for
formal products of matrices (see [9]), we obtain∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤ min

(∣∣∣∣
∣∣∣∣(VH

2 JU1CS)−1VH
2 J

(
1

λ
EH − ES

)
U2

∣∣∣∣
∣∣∣∣
2

,

∣∣∣∣
∣∣∣∣(VH

2 JU1)
−1VH

2 J
(
1

λ
EH − ES

)
U2C

−1
S

∣∣∣∣
∣∣∣∣
2

)
+O(ε2).

Here, CS =
[
β1

0
0
β̄2

]
and VH

2 JU1 =
[
u
0

0
x̄

]HXcJXH
c

[
y
0

0
v̄

]
=

[
uHJ y

0
0

xTJ v̄

]
. The

second equation in (5.6) implies uHJS = β̄2v
HJ . Combining this with the second

equation of (5.5) we get β̄2v
HJ x = β1u

HJ y. Hence,∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤
∣∣∣∣
∣∣∣∣(VH

2 JU1CS)−1VH
2 J

(
1

λ
EH − ES

)
U2

∣∣∣∣
∣∣∣∣
2

+O(ε2)

≤ ∣∣∣∣(VH
2 JU1CS)−1

∣∣∣∣
2

∣∣∣∣
∣∣∣∣ 1λEH − ES

∣∣∣∣
∣∣∣∣
2

+O(ε2)

≤ 1

|uHJ y|
( ||EH||2

|β1λ| +
||ES ||2
|β1|

)
+O(ε2)

≤ ε

|uHJ y|
(

cH
|α1| ||H||2 +

cS
|β1| ||S||2

)
+O(ε2).

If λ is purely imaginary or infinite, then the bounds are obtained by adapting the
classical perturbation theory in [36] to a formal product of matrices (for details see
[9]) and by replacing (5.7) with −H̄x̄ = −ᾱ1ȳ and S̄x̄ = β̄1ȳ as well as replacing u,
v, α2, and β2 by x, y, α1, and β1, respectively.

The bound in part (i) appears to involve only u, y, α1, and β1 but not v, x, α2,
and β2. However, note in the proof that β̄2v

HJ x = β1u
HJ y, so the bound implicitly

involves all the parameters. Note further that if S is nonsingular, then vHJ x and
uHJ y are just the reciprocals of the condition number of λ as eigenvalue of S−1H
and HS−1, respectively; see [6].

If S is given in factored form, Algorithm 1 computes a unitary symplectic matrix
U and a unitary matrix Q which reduce the perturbed matrices

B̂c
Z := Bc

Z + EZ , B̂c
H := Bc

H + EH(5.10)

to block upper triangular form as in (2.23) and (2.24), where

||EZ ||2 ≤ cZε ||Bc
Z ||2 , ||EH||2 ≤ cHε ||Bc

H||2 ,(5.11)

and cZ and cH are constants. The eigenvalue perturbation bounds then are essentially
the same as in Theorem 5.1.

Theorem 5.2. Consider the skew-Hamiltonian/Hamiltonian matrix pencil αS −
βH with J -semidefinite skew-Hamiltonian part S = JZHJ TZ. Let αBc

S − βBc
H =

XH
c (αBS − βBH)Xc be the corresponding extended matrix pencils, where Bc

S =
J (Bc

Z)
HJ TBc

Z , BZ and Bc
Z are given by (2.13) and (2.16), BH and Bc

H by (2.21)

and (2.22), and Xc by (2.11). Let (B̂c
Z , B̂c

H) be the perturbed extended matrix pair in
(5.10), (5.11) with constants cH, cZ .
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Let λ be a simple eigenvalue of αS −βH = αJZHJ TZ −βH with Reλ �= 0, and
let x, y, z, u, v, w be unit norm vectors such that

JZHJ Tx = α1y, Hz = β1y, Zz = γ1x,(5.12)

with λ = β1

α1γ1
, and

JZHJ Tu = α2v, Hw = β2v, Zw = γ2u,(5.13)

with −λ̄ = β2

α2γ2
.

The corresponding double eigenvalue of αBc
S−βBc

H may split into two eigenvalues

λ̂1 and λ̂2 of the perturbed matrix pencil αB̂c
S − βB̂c

H, each of which satisfies the
following bounds.

(i) If λ is finite and Reλ �= 0, then∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤ ε

(
cH

|β1wHJ y| ||H||2 + 2
cZ

min{|γ1uHJ x|, |α1wHJ y|} ||Z||2
)
+O(ε2).

(ii) If λ is purely imaginary, then

|λ̂k − λ| ≤ ε

(
cH

|α1γ1yHJ z| ||H||2 +
2|λ|cZ

|γ1uHJ x| ||Z||2
)
+O(ε2).

(iii) If λ = ∞, then |λ̂k|−1
= O(ε2).

Proof. The perturbation analysis follows [9]. If λ is finite and Reλ �= 0, then∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤
∣∣∣∣
∣∣∣∣(VH

2 JU3)
−1(C̃1C̃3)

−1

(
VH

3 EH
Z JU1C3 + C̃H

3 UH
1 J EZU3 − 1

λ
VH

3 J EHU3

)∣∣∣∣
∣∣∣∣
2

+O(ε2),

where U1 = XH
c

[
x
0

0
ū

] ∈ C
4n,2, U3 = XH

c

[
z
0

0
w̄

] ∈ C
4n,2, V2 = XH

c

[
v
0

0
ȳ

] ∈ C
4n,2,

V3 = XH
c

[
w
0

0
z̄

] ∈ C
4n,2, and C̃1 =

[
α2

0
0
ᾱ1

] ∈ C
2,2, C̃3 =

[
γ2

0
0
γ̄1

] ∈ C
2,2, C3 =[

γ1

0
0
γ̄2

] ∈ C
2,2.

From VH
2 JU3 =

[
vHJ z

0
0

yTJ w̄

]
, it follows that∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤
max{|γ1|, |γ2|} ||EZ ||2 + 1

|λ| ||EH||2
min{|ᾱ2γ̄2vHJ z|, |α1γ1wHJ y|} +

||EZ ||2
min{|ᾱ2vHJ z|, |α1wHJ y|} +O(ε2).

From (5.12) and (5.13), we also have

ᾱ2v
HJ z = γ1u

HJ x, γ̄2u
HJ x = α1w

HJ y, β̄2v
HJ z = −β1w

HJ y.(5.14)

It follows that

|ᾱ2γ̄2v
HJ z| = |γ̄2γ1u

HJ x| = |γ1α1w
HJ y|.

Hence,

max{|γ1|, |γ2|}
min{|ᾱ2γ̄2vHJ z|, |α1γ1wHJ y|} =

1

min{|ᾱ2vHJ z|, |α1wHJ y|} ,

|λ|min{|ᾱ2γ̄2v
HJ z|, |α1γ1w

HJ y|} = |β1w
HJ y|,
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and∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤ ε

(
cH

|β1wHJ y| ||H||2 +
2cZ

min{|ᾱ2vHJ z|, |α1wHJ y|} ||Z||2
)
+O(ε2).

Equation (5.14) implies that ᾱ2v
HJ z = γ1u

HJ x. The first part of the theorem
follows.

If λ is purely imaginary, the proof is analogous.

If λ = ∞, then α1 = 0 or γ1 = 0 and β1 �= 0. Using the first equation of (5.14),
we have ᾱ1y

HJ z = γ1x
HJ x, where we have replaced u, v, and α2 by x, y, and α1,

respectively ((5.12) and (5.13) are the same now). Since λ is simple, i.e., yHJ z �= 0
and xHJ x �= 0, we have α1 = γ1 = 0 and hence

C1 =

[
α1 0
0 ᾱ1

]
= 0, C3 =

[
γ1 0
0 γ̄1

]
= 0, C2 =

[
β1 0
0 β̄1

]
�= 0.

Therefore,

E∞ := CH
1 C−H

2 UH
3 EH

Z JU1 − UH
1 J EZU3C

−1
2 C1 − CH

1 C−H
2 UH

3 J EHU3C
−1
2 C1 = 0.

From [9, Theorem 23(b)], we get

∣∣∣∣ 1λ̂k

∣∣∣∣ ≤ ∣∣∣∣(UH
1 JU1)

−1E∞
∣∣∣∣
2
+O(ε2) = O(ε2).(5.15)

If the matrix pencil αS − βH with J -semidefinite skew-Hamiltonian part S =
JZHJ TZ has semisimple, multiple, infinite eigenvalues, then the perturbation bound
(5.15) weakens to O(ε) [9].

To study the perturbations in the computed deflating subspaces we need to study
the perturbations for the extended matrix pencil in more detail. As mentioned before,
by applying Algorithm 2 to αBc

S − βBc
H we actually compute a unitary matrix Q̂

such that

J Q̂HJ T (αB̂c
S − βB̂c

H)Q̂ = αR̂S − βR̂H

=: α

[ Ŝ11 Ŝ12

0 ŜH
11

]
− β

[ Ĥ11 Ĥ12

0 −ĤH
11

]
,(5.16)

where B̂c
S and B̂c

H are defined in (5.1) and (5.2), and Λ(Ŝ11, Ĥ11) = Λ−(B̂c
S , B̂c

H). If
we assume that the matrix pencil αS −βH has no purely imaginary eigenvalues, then
by Theorem 2.6 there exist unitary matrices Q1, Q2 such that

JQH
1 J T (αS − βH)Q1 = α

[
S−

11 S−
12

0 (S−
11)

H

]
− β

[
H−

11 H−
12

0 −(H−
11)

H

]

with Λ(S−
11, H

−
11) = Λ−(S,H), and

JQH
2 J T (αS − βH)Q2 = α

[
S+

11 S+
12

0 (S+
11)

H

]
− β

[
H+

11 H+
12

0 −(H+
11)

H

]
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with Λ(S+
11, H

+
11) = Λ+(S,H), respectively. Set Q = XH

c diag(Q1, Q̄2)P with P and
Xc as in (2.10) and (2.11). Then Q is unitary and

JQHJ T (αBc
S − βBc

H)Q

= α




S−
11 0 S−

12 0

0 S+
11 0 S+

12

0 0 (S−
11)

H 0

0 0 0 (S+
11)

H


− β




H−
11 0 H−

12 0

0 −H+
11 0 −H+

12

0 0 −(H−
11)

H 0

0 0 0 (H+
11)

H




=: α

[ S11 S12

0 SH
11

]
− β

[ H11 H12

0 −HH
11

]
=: αRS − βRH.

(5.17)

This is the structured Schur form of the extended skew-Hamiltonian/Hamiltonian
matrix pencil αBc

S − βBc
H. Moreover, Λ(S11,H11) = Λ−(Bc

S ,Bc
H).

In the following, we will use the linear space C
n,n ×C

n,n endowed with the norm

||(X,Y )|| = max{||X||2 , ||Y ||2}.
Theorem 5.3. Let αS −βH be a regular skew-Hamiltonian/Hamiltonian matrix

pencil with neither infinite nor purely imaginary eigenvalues. Let P−
V be the orthogonal

basis of the deflating subspace of αS − βH corresponding to Λ−(S,H), and let P̂−
V be

the perturbation of P−
V obtained by Algorithm 2 in finite precision arithmetic. Denote

by Θ ∈ C
n,n the diagonal matrix of canonical angles between P−

V and P̂−
V .

Using the structured Schur form of the extended skew-Hamiltonian/Hamiltonian
matrix pencil αBc

S − βBc
H (as in (2.17) and (2.22)) given by (5.17), define δ by

δ = min
Y ∈C2n,2n\{0}

∣∣∣∣(HH
11Y + Y HH11,SH

11Y − Y HS11)
∣∣∣∣

||Y ||2
.(5.18)

If

8 ||(ES , EH)|| (δ + ||(S12,H12)||) < δ2,(5.19)

then

||Θ||2 < cb
||(ES , EH)||

δ
< cbε

||(cSS, cHH)||
δ

,(5.20)

where cS and cH are the modest constants in (5.3)–(5.4) and cb = 8(
√
10+4)/(

√
10+

2) ≈ 11.1.
Proof. Let αR̂S − βR̂H, Q̂ be the output of Step 2 in Algorithm 2 in finite

precision arithmetic, where B̂c
S , B̂c

H satisfy (5.1) and (5.2). Let Q̃ be the unitary
matrix computed by Algorithm 2 in exact arithmetic such that

J Q̃HJ T (αBc
S − βBc

H)Q̃ = αR̃S − βR̃H

= α

[ S̃11 S̃12

0 S̃H
11

]
− β

[ H̃11 H̃12

0 −H̃H
11

]
,

with Λ(S̃11, H̃11) = Λ−(Bc
S ,Bc

H). Since (5.17) is another structured Schur form with
the same eigenvalue ordering, there exists a unitary diagonal matrix G = diag(G1, G2)
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such that Q = Q̃G. Therefore, we have∣∣∣∣∣∣(S̃12, H̃12)
∣∣∣∣∣∣ = ||(S12,H12)|| ,

and for δ given in (5.18) we also have

δ = min
Y ∈C2n,2n\{0}

∣∣∣∣∣∣(H̃H
11Y + Y HH̃11, S̃H

11Y − Y H S̃11)
∣∣∣∣∣∣

||Y ||2
.

Let

ẼS := J Q̃HJ TESQ̃ =:

[ E11 E12

E21 EH
11

]
, ẼH := J Q̃HJ TEHQ̃ =:

[ F11 F12

F21 −FH
11

]

and set γ = ||(E21,F21)||, η = ||(S̃12 + E12, H̃12 + F12)||, and δ̃ = δ − 2 ||(E11,F11)||.
Since we have ||(ẼS , ẼH)|| = ||(ES , EH)||, condition (5.19) implies that

δ̃ ≥ δ − 2 ||(ES , EH)|| > 3

4
δ,

and clearly

4 ||(ES , EH)|| ||(S12,H12)|| < δ2 − 4δ ||(ES , EH)|| .

Hence

γη

δ̃2
≤ ||(ES , EH)|| {‖(S̃12, H̃12)‖+ ||(ES , EH)||}

(δ − 2 ||(ES , EH)||)2

<
||(ES , EH)||2 + (δ2 − 4δ ||(ES , EH)||)/4

(δ − 2 ||(ES , EH)||)2 =
1

4
.

Following the perturbation analysis for a formal product of matrices in [9], it can be
shown that there exists a unitary matrix

W =

[
(I +WHW )−

1
2 −WH(I +WWH)−

1
2

W (I +WHW )−
1
2 (I +WWH)−

1
2

]

with

||W ||2 < 2
γ

δ̃
<

8

3

γ

δ
<

1

3
(5.21)

such that

J (Q̃W)HJ T (αB̂c
S − βB̂c

H)(Q̃W)

is another structured Schur form of the perturbed matrix pencil. Since there are nei-
ther infinite nor purely imaginary eigenvalues, (5.16) implies that Q̂HQ̃W is unitary
block diagonal.

Without loss of generality we may take Q̂ = Q̃W. If Xc is as in (2.11) and
XcQ̃ =

[Q11

Q21

Q12

Q22

]
, then it follows from Theorem 3.1 that P−

V = rangeQ11. Clearly

P̂−
V = range{(Q11 + Q12W )(I + WHW )−

1
2 }. The upper bound (5.20) can then be
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derived from (5.21) by using the same argument as in the proof of Theorem 4.4
in [6].

If S is given in factored form, then we obtain a similar result. In this case, by
using Algorithm 1 we compute a unitary matrix Q̂ and a unitary symplectic matrix
Û such that

ÛH B̂c
ZQ̂ = R̂Z =:

[ Ẑ11 Ẑ12

0 Ẑ22

]
,

J Q̂HJ T B̂c
HQ̂ = R̂H =:

[ Ĥ11 Ĥ12

0 −ĤH
11

]
,(5.22)

where B̂c
Z and B̂c

H are defined in (5.10) and (5.11), and Λ(ẐH
22Ẑ11, Ĥ11) = Λ−(B̂c

S , B̂c
H),

where B̂c
S = J (B̂c

Z)
HJ T B̂c

Z .
Analogous to Theorem 2.7, if αS −βH has no purely imaginary eigenvalues, then

there exist unitary matrices Q1, Q2 and unitary symplectic matrices U1, U2 such that

UH
1 ZQ1 =

[
Z−

11 Z−
12

0 Z−
22

]
, JQH

1 J THQ1 =

[
H−

11 H−
12

0 −(H−
11)

H

]
,

with Λ((Z−
22)

HZ−
11, H

−
11) = Λ−(S,H), and

UH
2 ZQ2 =

[
Z+

11 Z+
12

0 Z+
22

]
, JQH

2 J THQ2 =

[
H+

11 H+
12

0 −(H+
11)

H

]
,

with Λ((Z+
22)

HZ+
11, H

+
11) = Λ+(S,H), respectively. Set

Q = XH
c diag(Q1, Q̄2)P, U = XH

c diag(U1, Ū2)P,

where P and Xc are as in (2.10) and (2.11). Then Q is unitary and U ∈ US4n, and a
simple calculation yields

UHBc
ZQ =




Z−
11 0 Z−

12 0

0 Z+
11 0 Z+

12

0 0 Z−
22 0

0 0 0 Z+
22


 =:

[ Z11 Z12

0 Z22

]
=: RZ ,(5.23)

JQHJ TBc
HQ =




H−
11 0 H−

12 0

0 −H+
11 0 −H+

12

0 0 −(H−
11)

H 0

0 0 0 (H+
11)

H


 =:

[ H11 H12

0 −HH
11

]
=: RH.

(5.24)
This leads to the structured Schur form of the extended skew-Hamiltonian/Hamil-
tonian matrix pencil αJ (Bc

Z)
HJ TBc

Z − βBc
H with Λ(ZH

22Z11,H11) = Λ−(Bc
S ,Bc

H).
Theorem 5.4. Consider the regular skew-Hamiltonian/Hamiltonian matrix pen-

cil αS − βH with nonsingular, J -definite skew-Hamiltonian part S = JZHJ TZ.
Suppose that αS − βH has no eigenvalue with zero real part. Let the extended skew-
Hamiltonian and Hamiltonian matrix Bc

Z and Bc
H be as in (2.16) and (2.22), respec-

tively, with structured triangular form given by (5.23) and (5.24). Define δp as

δp = min
(X,Y )∈C2n,2n×C2n,2n\{(0,0)}

∣∣∣∣(HH
11Y + Y HH11, XZ11 −Z22Y )

∣∣∣∣
||(X,Y )||2

.
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Define errors EZ and EH by (5.10) and (5.11). Let P−
V , P−

U , P̂−
V , and P̂−

U be the
deflating subspaces computed by Algorithm 1 in exact and finite precision arithmetic,
respectively. Denote by ΘV ,ΘU ∈ C

n,n the diagonal matrices of canonical angles
between P−

V and P̂−
V , P−

U , and P̂−
U , respectively.

If

8 ||(EZ , EH)|| (δp + ||(Z12,H12)||) < δ2
p,

then

||ΘV ||2 , ||ΘU ||2 < cb
||(EZ , EH)||

δp
< cbε

||(cZZ, cHH)||
δp

,

with cb as in Theorem 5.3.
Proof. The proof is analogous to the proof of Theorem 5.3.
It follows that the described numerical algorithms are numerically backwards

stable. These algorithms can also be used to compute deflating subspaces which
contain eigenvectors associated with infinite or purely imaginary eigenvalues. By
Theorem 3.1 we get partial information also in these cases, but we face the difficulty
that the desired deflating subspace may not be unique or may not exist. (See the
recent analysis for Hamiltonian matrices [29].)

6. Conclusion. We have presented numerical procedures for the computation
of structured Schur forms, eigenvalues, and deflating subspaces of matrix pencils with
matrices having a Hamiltonian and/or skew-Hamiltonian structure. These methods
generalize the recently developed methods for Hamiltonian matrices which use an
extended, double dimension Hamiltonian matrix that always has a Hamiltonian Schur
form.

The algorithms circumvent problems with skew-Hamiltonian/Hamiltonian matrix
pencils that lack a structured Schur form by embedding them in extended matrix
pencils that always admit a structured Schur form. For the extended matrix pencils,
the algorithms use structure-preserving unitary matrix computations and are strongly
backwards stable; i.e., they compute the exact structured Schur form of a nearby
matrix pencil with the same structure. Such structured Schur forms can always be
computed regardless of the regularity of the original matrix pencil.

It is still somewhat unsatisfactory that the algorithms do not efficiently exploit
the microstructures of the extended matrix pencils, as, for example, in the matrix Bc

N
in (2.12). How best to use these microstructures is still an open question.

Practical implementation and numerical experiments are in progress and will be
reported elsewhere. For detailed algorithms and implementation issues see [4].

Acknowledgment. We gratefully acknowledge Daniel Kressner for his assis-
tance implementing and testing experimental versions of parts of the algorithms dis-
cussed here.
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