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Abstract.

We study the perturbation theory for the eigenvalue problem of a formal matrix
product Aj'--- ApP, where all A are square and sx € {—1,1}. We generalize the
classical perturbation results for matrices and matrix pencils to perturbation results
for generalized deflating subspaces and eigenvalues of such formal matrix products. As
an application we then extend the structured perturbation theory for the eigenvalue
problem of Hamiltonian matrices to Hamiltonian/skew-Hamiltonian pencils.

AMS subject classification: 65F15, 93B40, 93B60, 65H17.

Key words: Perturbation theory, eigenvalue problem, formal matrix products, peri-
odic QZ algorithm, Hamiltonian matrix, skew-Hamiltonian matrix, deflating subspace.

1 Introduction.

The perturbation theory for eigenvalues, eigenvectors and deflating subspaces
of matrices and matrix pencils is well established, see the monograph [33] for
the classical theory and further references. In this paper we extend some of
these results to formal matrix products A5'--- Ap? for a given set of p square
matrices Aq,..., 4, € C"" and p parameters s1,...,s, € {—1,1}. Here if
s; = —1 the inverse of the matrix A; is not required to exist but the inverse is
considered only formally to simplify the notation. Our interest in such matrix
products arises from applications in the computation of deflating subspaces of
Hamiltonian/skew-Hamiltonian pencils, see [2, 3], and from the computation of
the periodic Schur decomposition introduced in [9, 17]. Other applications of
such formal products of matrices are monodromy relations arising for instance
in discrete-time periodic (descriptor) systems [1, 8, 23, 34]. For Aj' -+ A,” and
s1,...,8p € {—1,1} as described, it is known [9, 17] that there exist p unitary
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matrices Q1, ..., Qp € C™*™ such that for Qpy1 := Q1 and

1-s
(1.1) qk: 2 k7 k:17' ’p)
all the matrices
H
_ AH ) Qp ArQry1 sk =1
(12) Rk - Qk+qkAka+l—qk - { QkH_;’_lAka; Sk = ~1
are upper triangular for k = 1,...,p. Such a form is called periodic Schur form

of a formal product.

The periodic Schur form is the generalization of the usual Schur form for a
square matrix A or the generalized Schur form for a square matrix pencil A—\B,
which are the special cases with p =1, sy =1, and p=2 and sy = 1,85 = —1
or s = —1, 89 = 1, respectively.

Numerical methods for computing the periodic Schur decomposition (1.2) were
introduced in [9, 17]. These methods, the periodic QR algorithm and periodic
QZ algorithm are direct generalizations of the QR and QZ algorithms, e.g.,
[13, 15, 28, 35].

If all the matrices Ay corresponding to s = —1 are nonsingular, then for

B = AP AR,
(1.3) B, = AZ"’~~A;PA§1~-A2’“_‘11, ce
B, = AyA} .. AT

p—1>
the periodic Schur form (1.2) simultaneously gives the Schur forms of By, ..., B,.
In fact from (1.2) we have R}* = Q¥ A7*Qy1, which leads to

(1.4) QEBLQy = Ri* - RRy - R

for k =1,...,p. Observe that in this case all matrices By, are similar and hence
have equal spectra.

It follows that the periodic Schur form is related to the eigenvalue problem for
the matrices By,...,B,. But the periodic Schur form is more general, since it
always exists, regardless of the singularity of the matrices Ay.

In theory, if all the matrices with negative exponent are nonsingular, then the
solution of the eigenvalue problem for By can be obtained by the QR algorithm
[15] applied to the explicitly formed product Bj. However, it is well-known
that by forming the product the rounding errors, ill-conditioned inverses and
subtractive cancellation may lead to a computed product matrix By which is
nowhere close to the exact formal product. Another problem is that if all Schur
forms of Bj are needed, explicitly updating all By may be very expensive. For
this reason, in [9, 17] the periodic QR algorithm was suggested that allows
to compute eigenvalues and invariant subspaces of By simultaneously without
forming the product. Algorithms to compute the products By without forming
inverses were introduced in [1].

In this paper we discuss the perturbation analysis of the eigenvalue problem
for the formal products By based on perturbations in the separate factors. The
analysis can be viewed as generalization of the usual perturbation theory for
eigenvalue problems, see e.g., [33].
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We consider the formal product as a map acting on matrix tuples A =
(Aq,...,Ap) in the linear space C"*™ x ... x C"*". The signs s; are combined

p
in a sign tuple s := (s1,..., 5p).

The connection between the matrix tuples (4i,...,4,) and (By,...,B,) in
(1.3) allows to define the eigenstructure corresponding to A. Let A have a

periodic Schur form (1.2). Let the diagonal elements of Ry be 711k, - - -, Tnnik
for k =1,...,p. To define the eigenvalues of A, we only consider the case that
for any j € {1,...,n} there are no integers ki, ko with si, sk, = —1 such that

Tjjki = Tjjke = 0. If this is the case, then we say that A is a regular tuple,
generalizing the concept of regularity for matrix pencils. In this paper we only
discuss regular tuples.

For an integer j € {1,...,n}, if all rj;,; corresponding to s; = —1 are nonzero
then \; := r;jl-;l = ~7“;§;p is a finite eigenvalue of A associated with the sign tuple

s.
If all 7;;. corresponding to s, = 1 are nonzero and some 7;;,; corresponding
to s = —1 is zero then A has an infinite eigenvalue \; := oo.
The spectrum of A, i.e., the set of eigenvalues of By including the infinite
eigenvalue is denoted by A(A).

Let nonzero vectors uy,...,u, and scalars oy, ..., a), satisfy
(1.5) AkukJrl,qk = OkUk+qy, > k= 17 SN VN
with upy1 = uy. Consider unitary matrices Qi, k =1,...,p, such that Qre; =

%uk, where 7, = \/ukHuk and e; is the first unit vector. Then we obtain from
(1.5) that

Tk+1—qp

H _
Qhtqp Ak Qrt1—q = 0 i,

Thtay o H
R
, k=1,...p,

1). If for all s; with s = —1 we have ay # 0, then

(1.
() () - e

Tk+1—qx 1

is a finite eigenvalue of A. Moreover, if for all s, with s = 1 we have ay # 0
and there exists some k with s = —1 and af = 0, then 1/\ = 0 and )\ is an
infinite eigenvalue. In this sense we call a vector tuple u = (uq, ..., u,) satisfying
(1.5) with ug, #0 for k = 1,...,p a right eigenvector of A corresponding to the
eigenvalue X\. As we will see in Section 2 the restriction that u; # 0 identifies
the eigenvector. If vectors uy = 0 are allowed, then there may be many vectors
u satisfying (1.5). This is a major difference between the classical eigenvalue
problem and that for formal matrix products.

EXAMPLE 1.1. Letp = 2, s1 = s9 = 1 and Ay = Ay = [0 (1)} Then for
Uy = U2 = e,

with index ¢ as in

Tk+1

Ajug = 0-uy,  Axup = uy,

which implies that (e1,ey1) is the eigenvector corresponding to the eigenvalue 0.
However, if zero vectors are allowed then u; = 0, ug = ey also satisfy

AQUQZO'ul, AQU1:0'UQ.
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In order to define deflating subspaces, let Qr = [Ug, Vi| be a unitary matrix
such that
Cyp Fy

H .
(1.6) Qht g Ak Qkt1-q, = { 0 Dy ] =: T},
where Cj, € C™*™ and U, € C"*™ for k =1,...,p. Then

AkUk+1—qk :UkJquOk, k=1,...,p,

and we call the space spanned by the columns of U = (Ui, ...,U,) a right gen-
eralized deflating subspace of A associated with the sign tuple s corresponding
to the spectrum A(C). Again, if all products B, k = 1,...,p in (1.3) are
well defined, then from (1.4) for each k, the columns of Uy span an orthonor-
mal basis of the invariant subspace of Bj corresponding to the eigenvalues of
Ok OoPO8T .. O0F 1,

k p “1 f—1

In this paper we derive the perturbation theory for the eigenvalues and deflat-
ing subspaces of formal products A. Some of these results extend the classical
perturbation theory for matrices and matrix pencils. We will first study pertur-
bations of generalized deflating subspaces, followed by perturbation results for
the eigenvalues. These results will be contained in Section 2. Some numerical
examples indicating how these bounds work in practice are given in Section 3.
As an application, we then study the perturbation theory for Hamiltonian/skew-
Hamiltonian pencils under structured perturbations in Section 4.

We use ||| to denote the spectral norm. The smallest singular value of a matrix
A is denoted by omin(A). Throughout this paper we identify k and k mod p. We

will always use [[]_; Ajk = A7 A7 .. A;j for i < j, i.e., the product is formed

in increasing order of k. If ¢ > j then [[,_, A" = I. We will also use the
, -1 _
formal inverse (chzi AZ’“) to represent A;SJ .. A for i < j. When i > j

, —1
then ( T Az’“) = I. Finally we denote by A ® B = [a;; B] the Kronecker

product of matrices A and B and for a matrix Z = [z1,..., 2z,] the operation
‘Vec’ is defined via Vec(Z) = [2T,...,2T]T.

rTn

2 Perturbation Theory for Generalized Deflating Subspaces and Eigen-
values.

In this section we derive the perturbation theory for the eigenvalues and gen-
eralized deflating subspaces of formal matrix products. We restrict ourselves to
the case that the matrix tuple A is regular. In the case of a nonregular tuple or
a tuple that is close to a nonregular tuple, the computation of the generalized
deflating subspaces may be an ill-posed problem. Nonregular matrix tuples or
tuples close to nonregular tuples already pose a severe difficulty in the case of
matrix pencils, see [10, 11, 12, 33].

For the perturbation analysis we will need the following linear transforma-
tion. Let C = (Cy,...,Cp) be a tuple of m x m matrices with sign tuple
s = (s1,...,8p) and let D = (Dy,...,D,) be another tuple of ! x [ matrices
with the same sign tuple s. Define a linear transformation on matrix tuples
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X = (X1,...,X,) € CX™ x ... x C™*™ via
p
(2.1) Pcp(X) = (DiXo—gq, — X14:C1, D2 X3¢, — X24,C, . ..
o DpXprig, — p+qpcp)a

with g asin (1.1). In the usual notation for linear operators, ®c p is nonsingular
if &¢ p(X) =0 implies that X =0, ie, X; =... =X, =0.

The following result can be viewed as a generalization of the classical existence
result for homogeneous Sylvester equations [14]. It is one of the basic tools for
the perturbation analysis.

LEMMA 2.1. For matriz tuples C and D with the same sign tuple s, let Pcp
be defined as in (2.1). Then ®c p is nonsingular if and only if C and D are
regular and A(C) N A(D) = 0.

PROOF. Suppose that we have the periodic Schur decompositions

UlﬁqukUkJrlqu = Dka k= 11"'7pa
ngquka+lqu = ék? k= 1,....p,
where all Dy, = [d;j;x] are upper triangular and all C, = [cij;k] are lower tri-

angular. The latter form can be easily obtained by simultaneously reordering
the rows and columns of a periodic Schur form, where all factors are in upper
triangular form. Set X, = U,kaVk for k=1,...,p. Then ®¢ p(X) =0 if and
only if

q)(:,]j(x) = (D1X2—q1 - X1+q1él7 s aDp p+l—qp — Xp+qpép) =Y

Let
Gl Kl
(2.2) Z = R 7
K
Kp Gp
where for k=1,...,p,
székTQ@{z, Ky = —I, ® Dy, if sy =1,

Gy =1, ® Dy, K}g:_é]?@]l, if s, =-1

and let = = [Vec(X1)7, ..., Vec(X,)T]T. Then a simple calculation yields that
(DC,D(X) = 0 if and only if Zz = 0, i.e., ¢ p is nonsingular if and only if Z

is nonsingular. Since all matrices C’g and Dy are upper triangular, using the
special block structure of Z, a straightforward calculation gives

I m V4 p
det Z = H H (k laij;k - ]Hﬂij;k) )

i=1j=1

where
Qijsk = Cijiks  Bigk = diggee 1 sp =1,
Qijik = digsk,s Bijik = Cjjke if sp = —1.
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Hence det Z = 0 if and only if at least one of the terms [Th_, i — [Toeq Bijik
is zero. From the definitions of a;j,, and B,k it is not difficult to see that this is
the case if and only if either at least one of the two tuples C, D is not a regular
tuple or if A(C)NA(D) # 0. O

After these general observations we study perturbations of generalized deflat-
ing subspaces.

2.1 Generalized deflating subspaces

Consider a regular matrix tuple A = (A, ..., A,) with sign tuple s = (s1,...,5p)
and suppose that there exist unitary matrices Q = [Uy, Vi] with Uy € C**™
that satisfy (1.6). The goal of the perturbation analysis is to analyze how much
the subspace range U := (rangeU,...,rangeU,) changes if we consider per-
turbed quantities Ax + AAg, k = 1,...,p. In order to get meaningful results,
we consider only the case that the generalized deflating subspace is uniquely
defined. The following lemma gives a sufficient condition for the uniqueness of
the subspace.

LEMMA 2.2. Consider a regular matriz tuple A with sign tuple s having the
decomposition (1.6). If A(C)NA(D) = 0, then the generalized deflating subspace
range U corresponding to A(C) is unique.

PROOF. Suppose there exists another tuple of unitary matrices Qy = [Ug, Vi]
for which (1.6) also holds, i.e., for k =1,...,p we have

- - C. F -
(2.3) Qi g ArQrs1—q, = { Ok D’Z ] =: T},

- . ~ Witk Wia

; — _ _AHpO. . 113k 12;k
with A(C) = A(C) and A(D) = A(D). Let W, = Q}/ Qr =: { Warr Was }
for k = 1,...,p. Then the generalized deflating subspace is unique if and only
if the tuple Wy := (Wa1,1,..., Way,p) is the zero tuple. By (1.6) and (2.3) we
have Ty Wii1—q, = Witq, Tk, which implies that DipWaik11—q, = Watik+q,Ck
for k = 1,...,p. Since A(D) N A(C) = 0 by employing Lemma 2.1 we get
‘W51 = 0. Hence the generalized deflating subspace is unique. 0O

Suppose that the matrix tuple A is perturbed by AA := (AA4,...,AA4,) and
set

A= (A, A) = (AL +AAy, ... A, + AA).
We assume that A is in the form (1.6), i.e.,

Cr F
Tk = Qg{quAka%»lqu = |: Ok D’;; :| y k= 1, oD,

where Cy, € C™*™ for k = 1,...,p. Since the eigenvalues of C will also be
perturbed, we consider an associated perturbed generalized deflating subspace
of A corresponding to eigenvalues near those of C. This subspace is obtained as
follows. Introducing

AC,  AF
(2.4) ATy, = Qi AARQr 11 —g, = { Ekk ADI,Z ] ’
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we have
. . Cy + AC, Fy + AF,
— (H _ k k k k
(2.5) Tr = QuiqArQrti—qn = { B Dy, + AD,
_ [G B
B Ey Dy |’
If'V:=(Vi,...,V,) is an orthonormal basis of a generalized deflating subspace of

T := (Tl, . ,Tp), then (Q1V4,...,Q,V}) is an orthonormal basis of the associ-
ated generalized deflating subspace of A corresponding to the same eigenvalues.

In the following we therefore consider the perturbation analysis for T and T.
If the perturbations are sufficiently small, then we may simultaneously trian-

gularize the matrices Tl, ..., T}, via unitary matrices of the forms
_ I’rn X;f Hl,k 0
(26) Ye= { S A A } { 0 Hyy |’

where Hy = (I, —&—X,lek)_% and Ho p, = (In—m —&—XkX,f)_% fork=1,...,p.
Here the matrix A~2 denotes the Hermitian positive definite square root of an
Hermitian positive definite matrix A~!. To make T block upper triangular, the
matrix tuple X := (X3, ..., X,) must solve the system of discrete-time periodic
Riccati equations

(2.7) D Xi1-qp — Xt Cr — B + Xy FuXis1-q, =0, k=1,...,p.

For the analysis of equations of this type see [7, 8]. Let

(2-8) (I)C,D(X) = (D1X2—q1 D ST G Dpo-i-l—qp - Xp-l-qpcp)

and introduce the quadratic transformation

(2.9) U(X) = (X[ FiXo g, Xk FoXpi1g,),

as well as the tuple E = (E4,...,Ep). Then (2.7) can be rewritten as

(2.10) D ﬁ(X) —-E+9(X)=0.

If a solution X to (2.10) exists, then we get

: Cp o+
(2.11) Vi TeYig1—g, = [ o by ] ,
where

Cp = Hi;+qk (C, — Fka+1—qk)H1,k+1—qk7

Dy = Hjjyq, (Dk + Xlgr% Fk)H;»l;’l*q*’.
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To evaluate upper bounds of | Xi|,...,|X,|, we introduce a norm on matrix
tuples X = (X3,...,X,) via

X[ = max | Xkl.
e{1,...,p}

For ®¢ 5 (X) as in (2.8) we set

2.12 §:= min [[®a~ (X
(2.12) \||x||\:1”| ep X

and similarly for ®c p(X) as in (2.1)

2.13 0 := min [|® XOII.
(213) in [8cp(X)]

The quantities § and 5 are generalizations of the sep operator for matrices and
matrix pencils, see [15, 33]. Since the quantities C, D and the perturbed quan-
tities C, D are related via (2.1), (2.4), (2.5), and (2.8), we have the following
inequalities R

(2.14) o — JAC| - [[AD] < 9 <5+ [JAC| + [|AD].

For ¥(X) as in (2.9), using the tuple F = (F1,..., F},), we obtain

(2.15) e Xl < IF )
and A
(2.16) [ (X) = (V) < 2| F | max{| X[, Y I}HIX - Y.

We then have the following perturbation result.

THEOREM 2.3. Let T be as in (1.6), T = T + AT as in (2.5), AT as in
(2.4), ®cp asin (2.1), g p asin (2.8), and ¥ as in (2.9). If 6 > 0 is as in
(2.12) and if

E||F
(2.17) IENE]

1
TR
then there exists a unique solution X = (X1,...,X,) of (2.10) satisfying

2 E| _HIEl
fJo—qEEy O

PROOF. Since the transformation ¥ satisfies (2.15) and (2.16), and since
0 > 0 the result follows from Theorem V.2.11 in [33, p.242] together with (2.17),
applied to the quadratic equation (2.10). O

Using this result we get the following perturbation result for generalized de-
flating subspaces of A.

THEOREM 2.4. Let A = (A1,...,A,) be a regular tuple of the form (1.6)
with sign tuple s = (s1,...,8p). Let Qr = [Uy, Vi|, for k = 1,...,p, and let
U = (Uy,...,U,) be an orthonormal basis of the generalized deflating subspace
corresponding to A(C). Let A = (A1 + AAq,..., A, + AA,) be the perturbed

(2.18) X1 <
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matriz tuple and let AT = (ATy,...,AT,) with AT, = Qg_qkAAkaH,qk

be partitioned as in (2.4). If § > 0 satisfies (2.17), then A has a generalized
deflating subspace with orthonormal basis

(2.19) U= (Ul,...,ﬁp) - (Ql { _I;;l ]HH,...7QP[ _I)”}p ]Hlp>

corresponding to the eigenvalues of

C= (H£11+q1 (él - F1X27QI)H1727(]17 ) Hi;+qp (Op - FpoJrlfqp)Hl,anlfqp)a
(2.20)
where Hyg = (Iy + XF X)"2 fork=1,...,p.

Furthermore, for k=1,...,p and § as in (2.12), the maximal principal angle
between range Uy, and range Uy is less than arctan (2@).

PROOF. The relations (2.19) and (2.20) follow from the relationship between
A, T and the perturbed quantities A, T, respectively, Theorem 2.3, and formula
(2.11).

Following [33, Corollary 1.5.4] the principal angle between range Uy, and range Uy,
is given by

| X

m = arctan ”Xk ”
k

arcsin |V;2 Uy | = arcsin | X Hy | = arcsin

Using the monotonicity of the function arctan and the fact that | Xg| < [|X],
the last statement follows. O
Using (2.14), the conditions 0 > 0 and (2.17) in Theorem 2.3 can be replaced

by

(2.21) p =6 |AC|| - |AD]| > 0
and IEI(IF] + JAF]) 1

Jr
2.22 —
(2.22) e <7
respectively. In this case we obtain

2B IE|

IX] < : <ol
o+ V2 —AIEI(F] + JAF]) ~ »

REMARK 2.1. By definition, § > 0 is a necessary and sufficient condition for
the nonsingularity of ®c p. Since § > 0, we obtain that ®¢ p is nonsingular

and A(C)NA(D) = (). Similarly, using (2.14), condition (2.21) implies that both

®c,p and P p are nonsingular, A(C) NA(D) = 0 and A(C) N A(D) = 0.
REMARK 2.2. The conditions 6> 0 and (2.17) imply that A(C) N A(D) = 0,
with C as in (2.20) and

D = (Hy14q, (D1 + X{\ F1)Hy 5 oo, Hapig, (Dp + X2

[ —1
FP)H2,p+l—qp)’
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with Ho j, = (In—m + XkX,f)_%, for k=1,...,p. To show this, by Lemma 2.1
and Remark 2.1 we only need to show that for the linear transformation Qe p

corresponding to C and D we have
min [[®~ = (Z) > 0.
in 1e,5 (2

Using inequalities similar to (2.12), (2.17) and (2.18), it can be shown that

: 1 < AIEIF)
min &4 5(Z) > 6 — = > 0.
iz, Pen? 1+|IXIII2< 0

Similar bounds are also obtained if the conditions 4 > 0 and (2.17) are replaced
by p > 0 and (2.22), respectively.

REMARK 2.3. The quantity § can be considered as the reciprocal of the con-
dition number for the generalized deflating subspace. Usually it is not easy
to estimate §. But if we use the induced norm ||X||r = |[X1,...,Xp]lr =

Vo1 | Xk|%, we can determine

0F = min P X = Omin(4 s
pi= i 19en (0l = oin(2)

where the matrix Z is defined in (2.2).

The results of this section show that the classical perturbation results for de-
flating subspaces of matrix pencils as in [33] can be extended to generalized
deflating subspaces for matrix tuples. In the next subsection we derive pertur-
bation results for simple eigenvalues in a similar way.

2.2  FEigenvalue perturbations

In this subsection we study the first order perturbation analysis of simple eigen-
values and the associated eigenvectors of formal matrix products for sufficiently
small perturbations AA = (AAg,...,AA,).

THEOREM 2.5. Consider a regular tuple A with sign tuple s and let A be a
simple eigenvalue of A. Let A be transformed via

ap F
(2.23) Qbs o AkQrv1—q, = [ Ok D]Z } =: Ty,

fork=1,...,p. Let \=aj" - o’ and let u = (Q1e1,...,Qpe1) be the unit

norm right eigenvector associated with A. Consider a perturbed tuple A=A+
AA and set

Aap AF
QkHJqu AAka:Jrlqu = |: Ekk ADIZ }

I . o Aoy,  AF} o O Fk
Qk+QkAka‘+1—Qk |: 0 Dy :| +|: FEy ADy | Ey Dk '
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If |AA| is sufficiently small, then there exists a unit norm right eigenvector
of A with Aptlig11—q, = GrUkyq,, such that fork=1,...,p,

(2.24) ap —ap = Aap — (Fk + AFk)xk-i-l—qu
1 0
(2.25) Uy —up, = —F———=0Q% [ } )
V1+|zkl3 Tk
where x1,...,%, are the first columns of Xq,...,X,, respectively, and X =

(X1,...,X,) solves
B p(X) — E + ¥(X) =0,

with ®¢ p, and ¥ defined in (2.8) and (2.9), and C=(G1,...,0).
Moreover, let 6 be defined as in (2.13), then for k=1,...,p

N F
(2.26) an - anl < 124l (1+ 51} < oqaape)
o Y
(227 -l < IBAL ogaaye)

PROOF. Since the eigenvector is the simplest case of a generalized deflat-
ing subspace, equations (2.24) and (2.25) follow directly from Theorem 2.4 and
(2.11). Since ||AA| is sufficiently small, separating the first order perturbations,
equation (2.10) can be written as

®c,p(X) =E + O(JAA[?),

where C = (a4, ...,q,). Hence
E AA
ixi < B ogaar < PAL ogaap)

and the bounds (2.26), (2.27) follow. O

REMARK 2.4. In principle, the second order terms in both (2.26) and (2.27)
can be expressed as c[|AA||? with some constant ¢, which is related to the tuple
A and §. However, from the proof we see that the constant is independent of p,
i.e., the number of matrices in A.

Note that we have given the perturbations in the components «j rather than
in A itself. But since the factors a, ..., o, are uniquely determined up to a unit
modular factor in each g, (2.24) immediately gives a first order perturbation
bound for the eigenvalue A, too. However, we will also give a different expression
by employing the left eigenvectors. For this consider (2.23) and a linear system
for vectors y1,...,y, given by

(2.28) aky,’;{+17qk — nyquDk =F, k=1,...,p.

If A is a simple eigenvalue, then as in Lemma 2.1 we can show that the linear
operator corresponding to the left side of (2.28) is nonsingular. Hence (2.28) has
a unique solution yi,...,y,. Set

Wy, = L w N w = (w wy)
k — Yk 5 k ”wk”, . 13-+, Wp).
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Then the vectors wy, ..., w, have unit norm and satisfy
H H J0kt1-g.|
Wiy, Tr = Brwig g Br = akm, k=1,...,p.
k

Hence w can be viewed as unit norm left eigenvector of T corresponding to A.

Note that the related unit norm right eigenvector of T then is (eq,...,e;) and
we have

" 1
(2.29) wpe =——>0, k=1,...,p.

|

Obviously, (Qiwi,...,Qpwp) is the unit norm left eigenvector of A. Similar
to Lemma 2.2, for A\ simple, we can show that the unit norm left eigenvector
v = (v1,...,v,) of A corresponding to A is unique and satisfies
(2.30) O 0 Ak = Btk g, k=1,....p,
where A = gyt -+ Bpr. Let u = (uy,... ,Up) be a corresponding unit norm right

eigenvector, i.e.,
S P
(2.31) AUk 1—qp = QklUktq,, k=1,...,p, A=aj" - --apP.

Multiplying wg4+1—g, from the right in (2.30) we obtain

(232) akvl?—l—qkuk-i-% = ﬂkvlﬁil—qkuk-ﬁ-l—%'
Due to the uniqueness of the eigenvector, it follows from (2.29) that
(2.33) ke =vhup #0, k=1,...,p.

Note that if all the matrices By,...,B, in (1.3) exist, one can verify that
|k1], ..., |kp| are just the reciprocal condition numbers corresponding to the same
eigenvalue A of By, ..., B}, respectively, and hence the classical condition number
for a simple eigenvalue of one matrix, see [35], is reproduced.

Using these relations we now derive the first order perturbation theory for the
eigenvalues of a perturbed formal product. For this we need to separate the
positive and negative signs in the sign tuple s = (s1,...,s,) via

Iy = {k|sp =1}, I_={k|s,=—1}.

THEOREM 2.6. Consider a regular tuple A with sign tuple s of the form (2.23).
Let A € A(A) be a simple eigenvalue and let

u:(ul,...,up)7 V:(Uh...,vp)

be the corresponding unit norm right and left eigenvectors satisfying (2.30) and
(2.81), respectively. Let A = A + AA with ||AA|| sufficiently small. Then the
perturbed tuple A has unit norm eigenvectors 4 = (i, ..., 0,) satisfying

(2.34) Agiii1-g, = Ahilgrgy,
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fork=1,...,p, such that with kj defined in (2.33) the perturbations satisfy

HdkHOék—HdkHak

kel kel_ kel_ kel
P vl AAu g
(35 = (-7 [[er | T Lo(aAl),
j=1 k#j J+3;

PROOF. Expansions (2.24) and (2.25) in Theorem 2.5 imply that
dr = ap+Aap+O(JAAJ),  |Ack| = O(JAA]),
=+ Au + O(JAA]),  [Auk] = O(JAA]),

for k=1,...,p. Using these expansions in (2.34) and applying (2.31), it follows
that the first order terms satisfy

AkAUIc+1—qk + AAkUk-i-l—qk = a;.cAuk_,_qk + Aakuk+qk.

Multiplying by v,ﬁqu from the left and using (2.30) and (2.33), we then get

Aay, = (B 1 — g At 1 - =V g Attt g 0 g, DA 1-g,)+ O(JAA]?).

Kk+qy,
Using the relation
Bre au,

Kk+qp Kk4+1—qg ’
which follows from (2.32), we have

H H H
.  Uhtq AApUri1—g, Vi 1— g DUkt1—g,  Vkpg AUkt
ap—0oy = ‘o —

Kk+qx

>+0(||AA|||2),

KEk4+1—qx Kk+qy
(2.36)

for k=1,...,p. Note that ¢ =0 if s, =1 and g = 1 if s, = —1. Expansion
(2.36) then implies that

Moo - (Mo (Z(AA)

kely kel kel Rk+1 Kk
H
vt AAu 11
+> | II en ] Z———+0(2Al?)
Jeli \k€ly k#j

and similarly

H G = H e (1+ Z (U’?Iiuk _ ”£+1Auk+1>

K
kel kel kel k+1

v AAu;
+z( [T o] 2525 0(1aal).
j

jel_
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Using the periodicity, i.e., that

H H
'Up+1Aup+1 _ v Aul

)

Rp+1 K1
the identity
zp: Auk _ U]?JrlAuk_,_l —0
1 KEk+1

implies that

H H H H
Z v Aug U1 AU _ Z Vi1 AUkt v Aug
R

bel. KEk+1 Kels REk+1 Kk

Hence

Hdknak—HdkHak

kel, kel kel  kely

’U AA jUj+1 AjUj
= 2 (Lo ) =—— -2 | IIew | =+ 0U2A)

J€Ly \k#j J jeI_ \k#j Rj+
P AA 1—
> (=17 [ J]ew T o(laAl).
j=1 ki fita;

which is (2.35). O

Expansion (2.35) gives first order perturbations only for the ay, but the first
order perturbations for A are easily derived as a corollary.

COROLLARY 2.7. Consider a regular tuple A with sign tuple s. Let A\ be
a simple eigenvalue of the formal product and let o, ..., ap associated with A

satisfy (2.31). If A = A + AA with |AA| sufficiently small, then A has an
eigenvalue X that satisfies the following first order perturbation results.

a) If A is finite and nonzero then

A=) & ofh . AApurii—g,
2.37 A —1)% Tk + O(J|AA|?).
Y (INYE!

b) If A =0 and kg is an index such that s, = 1 and o, = 0, then

H
eru,k#ko U Vo AApyUgot1 "

(2:38) A= O(IAA]?).
[rer o Kko
c) If A =00 and kg is an index such that sy, = —1 and oy, =0, then
1 ar vl AAgu
ao Lo ot Bt o)
A [lier, ar Rko+1
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PRrROOF. If X is finite and nonzero then all ay are nonzero. If ||AA| is suf-
ficiently small, then from (2.26) we also have that [[,.; dx # 0. Multiplying

with
1

A (erl_ ak) (erl_ dk)

on both sides of (2.35) and using that

[Ther, o .
= " II ar = ] e+ OUlaA]),

A= II ’
o
kel %k kel_ kel_

we obtain (2.37).
If A = 0 then, since A is regular, there exists at least one ky € I, such that
ag, =0 and [[,.; ar # 0. Hence the right-hand side of (2.35) reduces to

HAA
[T on | 22t L ogaal?).

K
Ktk ko

Similarly, by multiplying with
1
(erL ak) (erl, 6"6)

on both sides of (2.35) we obtain (2.38).

The expansion (2.39) in the case A = oo is derived similarly to the case A = 0.
g

We see that the perturbations for an eigenvalue A\ and its components «y are
of slightly different nature. For the component oy, from (2.36) the perturbation
has two parts. One arises directly from AAj in the term

H
kaqu AAkuk+1_qk

Kk+qp
The other part arises from the perturbation of the eigenvector in the term

H H
o <Uk+1—qk AukJrl*Qk Vk+qs AukJer )
k — .

Kk+1—qs Kk+qx

For the eigenvalue A\, however, only the first term occurs. But, nevertheless, we
see from (2.24) and (2.35) that the perturbations in A and «y, are of the same
order.

REMARK 2.5. Corollary 2.7 implies that for the eigenvalue 0 with at least two
indices ki, k2 such that ax, = o, = 0 with s, = sg, = 1, the corresponding
perturbation is of second order. The same holds for the eigenvalue infinity if
there exists ay, = ag, = 0 with s, = s, = —1.

REMARK 2.6. As mentioned in Remark 2.4, for the expansions (2.37)-(2.39),
the second order terms can also be expressed as c[|AA]|?. But in this case in
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general the constant ¢ will depend on p. This can be seen by forming [] & in
the proof of Theorem 2.6. The analysis yields that if p||AA| is not relatively
small, then roughly c is proportional to p?.

In this subsection we have shown that the classical perturbation results for
simple eigenvalues and associated eigenvectors can be directly extended to for-
mal matrix products. The perturbations for the factors of an eigenvalue are
slightly different from those for the complete factor as was to be expected al-
ready from the perturbation theory of matrix pencils, see [33]. The situation
changes drastically for the case of multiple eigenvalues that we discuss in the
next subsection.

2.8 Perturbations of multiple eigenvalues

The perturbation theory for multiple eigenvalues is complicated even for the
case of one matrix. If the matrix is diagonalizable, then the perturbation theory
for the eigenvalue is still similar to that for simple eigenvalues [35]. However, for
the eigenvectors usually there are no similar results. For completeness we will
present the perturbation result for multiple eigenvalues with a slightly different
proof than in [33]. This proof will then also be used for the formal matrix
product case.

THEOREM 2.8. Let A € C™*"™ be diagonalizable, let \ be an eigenvalue of A of
algebraic multiplicity m and let U, V' form orthonormal bases of the correspond-
ing right and left eigenvector spaces. Consider a perturbation A = A+ AA with
|AA| sufficiently small. Then A has m associated eigenvalues and for each such

eigenvalue X, there exists a unit norm vector x € C™ such that for an arbitrary
nonzero vector y € C™ with y?VHUz # 0, we have

yIVHEAA Uz

(2.40) A== WiATatiios + O(|AAJP).
Moreover,
Hy /H
% . |yPVEAAUx
A=Al = min | " +O(|AAJP)
[AA] 2 |AA] 2
—_— AA|*) € —————— AA|%).
< Tymgey T OUAP) < T+ 0(A4P)

PROOF. By assumption there exists a unitary matrix Q with Q = [U, U] such
that

ae=q 1.

Partition
M,, + AC F+ AF ]

QHAQ:[ E  D+AD

Since |AA]| is sufficiently small, there exists a matrix X that solves

(D + AD)X — X(AL, + AC) — E+ X(F + AF)X =0,
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and, furthermore, |X| is of order |AA|. Then

(2.41) AQ[ e ] Q[ e } (M + AC — (F + AF)X).
Let AX be an eigenvalue of AC — (F + AF)X with corresponding unit norm
eigenvector z. Clearly A is of order |AA| and A + A is an eigenvalue of A.
Pre- and postmultiplying y? V¥ x in (2.41) and using the formulas for V and
Q, if y"VHUz # 0, then we get

yAVEAAUz = ANyEVHEUz + O(|AAJ?)

and we obtain (2.40). Setting y = mVHUm we have the first upper bound.

The second bound follows from |VZUz| > o (VEU). D

As in the classical case of matrices and pencils, the reciprocal of the condition
number of a multiple eigenvalue \ is given by o (VEU).

Unlike for the case of simple eigenvalues, the eigenvectors Uz and Vy in (2.40)
depend on the perturbations. Neither the eigenvalues nor the eigenvectors are
analytic functions in the elements of AA in the neighborhood of the origin. For
example, let A =1 and AA = [% ¢]|. Then A has two eigenvalues 1 + € + |¢| .
It may also happen that the perturbed matrix is not diagonalizable, as we see
from the example A = Iy and AA = [8 z] .

For a matrix tuple A with sign tuple s, let A be an eigenvalue of A with
algebraic multiplicity m. If there exists a matrix tuple W = (W1,...,W,) with
Wy, € C™*™ of full column rank such that

Aka-i-l—qk = Wk-l—qkrka Fk = dia’g(,)/l;ka s a’Ym;k)v

for k =1,...,pand A = [T}, mh = -+ = [y v Uizt = - =

- 7;15,’; = 0 for infinite eigenvalues), then we say that A has a complete set
of right eigenvectors. Note that for p = 1, this is equivalent to saying that A has
equal algebraic and geometric multiplicities. But it is not clear how to define the
geometric multiplicity in case p > 1 as a zero or infinite eigenvalue \, considered
as an eigenvalue of By from (1.3), may have different geometric multiplicities for
different values of k as the following example shows.

EXAMPLE 2.1. Letp=2, s =(1,1) and

S

0 1 0 0
Bl_A1A2_|:O 0:|, B2_A2A1_|:O 0:|

Then

Hence the eigenvalue A = 0 has geometric multiplicities 1 as an eigenvalue of
By and 2 as an eigenvalue of Bs. )
Let Uy be an orthonormal basis of range W}, and let Q) = [Ug, Ux] be unitary.

As before we set o
F
(2.42) Q]IC—I-F(IkAk‘Qk-Fl—qk = { Ok Dl/i ] ,
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and
(2.43) ArUk+1-g, = Uk+, Cks

with A(C) = {A\}. Moreover, if X is finite, then

(2.44) CRr- - CorCt - O = M,
and if A is infinite, then

(2.45) Cplt™t OOy O™ =0,

for all k = 1,...,p. If X\ is nonzero finite, then all C} are nonsingular and we
can verify that (2.44) holds for all k¥ = 1,...,p if and only if it holds for one
k. Moreover, (2.44) is also a sufficient condition for A to have a complete set
of eigenvectors associated with an eigenvalue \. To verify this, one can simply
take W1 = Uy and Wy, = Uy, H?:k C’;j for k = 2,...,p. If X is zero or infinite,
however, then we do not know of such a simple connection. We conjecture that
if equations (2.44) or (2.45) hold for all k = 1,...,p then also complete sets of
eigenvectors exist for the eigenvalues zero and infinity.

We will now analyze perturbations in equations (2.43) and (2.44), (2.45). Let
V be an orthonormal basis of the left eigenvector subspace, i.e.,

(2.46) V;g_qk A = észfil_qk-

Then, similarly to the case of simple eigenvalues, see (2.33) in Subsection 2.2, we
can show that Hy := V,f'U}, is nonsingular. From (2.46) and (2.43), we obtain

(2.47) Co = Hyyq,CeH 0 k=1,....p.

Let A + AA be the perturbed matrix tuple with [|[AA| sufficiently small. Then
as in Subsection 2.1 there exists X with || X]|| = O(|JAA||) such that for Uy :=

Qr [_;}J we have
(2.48) (Ak + AARUks1-g, = Ukyq, (Cr + ACy),
where
AC, = U, AAUps1—g, + (Fr + UL ) AAUs1—g,) Xkt 1—g,

for k=1,...,p. As |AC| = O(J|AA])) and |JAA]| is assumed to be sufficiently

small, the eigenvalues of C + AC are just the m eigenvalues of A + AA closest

to A\. Let x = (x1,...,x,) be the unit norm right eigenvector of an eigenvalue
of C + AC, i.e.,

(249) (Ck + AC’k)ka_qk = dkxk+qk, k=1,...,p,

and suppose that the eigenvalue A is finite. Then all C}, corresponding to s = —1

are nonsingular, and setting

(2.50) Ly = (C1 + AC))* - (Cp 4+ ACY)*» = Al + ALy + Ly
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with

P k—1 P
ALy =Y (-1)% (H cjj) Cp ™ ACKC, ™ ( 1T cjf) :

k=1 j=1 j=k+1

it follows that |L1| = O([JAAJ|?). For A = [[%_, &*, applying Theorem 2.8 and
using (2.49) for a given y; with yfx; # 0 we have

< H(AL, + L
joa = BB ogaap)
Y1 1
H
yi ALjx
= A1 o(1aAl?)

H
Y1 T1

yf {0 () (TN OO ™ ACKC, ™ (T ) i
= o + O(JAAJP).
1

By (2.48) and (2.46), we have
Vk{li-quk-&-qk (Ck + ACk) = ékvklil—qkﬁk-&-l—qk + Vlg_qkAAkUk-i-l—qk-

Note that Uy = Uy + O(JJAA|]). From these relations and (2.47), if s, = 1 we
get

AC, = H 'V AA U1 + CLH L VR Ui — H'WETLCL + O(JAAJP).
If s, = —1, then

~CACKE = —C L VL (AAURCE! = Uy )~ H VI OLC +O(IAATR).

These two formulas have the form

(—1)®CL R ACKCL ™ = (=1)%Cy q’“ijqkV,ﬁquAAkUkH,qu,;q’C

+CPH L VE U — HP'WVEULC + O(JAA?).

k—1 P
k H ij C’;‘Ik ACkC];qk H C;j
Jj=1 j=k+1

k-1 )
) Hc;j O H L Vil AU p1—q, Cp ™ H o
=t j=k+1
k p
+ HC;J Hy ViU H Cy
=1 j=k+1

k—1 D
- (H O?’) H 'V Uy (H ) +O(JAA]?).
j=1 =

Hence
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Since [[h_, C;* = AI, we have

D k P k—1 P
3 H oyl v O | T] 7 | - | TT o | Eavidon | [T ¢
k=1 j=1 j=k+1 j=1 j=k
P ‘ R P _
=[] cyE " 0 - HVPT ] ¢ =0
j=1 Jj=1
and hence
A=
1 5] - = u v
= H—xyl Z(—l)qk HCjJ C qulc_+quk+qkAAkUk+1—Qka E H ij
b1 k=1 j=1 j=k+1
+O(AA]?)
1 P k4+qr—1 . p v
- Tﬁcy{[ Z(il)% H OjJ Hk_-‘er Vk{IFQk AAkUk‘H_% H Cj]
i k=1 j=1 J=k+1-qx
(28| AA[?).
If X is infinite then by taking the index as (—s1,...,—sp) and considering i we

obtain a formula similar to (2.51).

The following theorem gives the perturbation analysis for multiple eigenvalues.

THEOREM 2.9. Let A be a regular matriz tuple with sign tuple s and let A
be an eigenvalue of A with multiplicity m having a complete set of eigenvectors.
Let the corresponding orthonormal bases of the left and right generalized deflating
subspaces V and U be chosen to satisfy (2.46) and (2.43) and let Hy = V;EUy.
Consider a perturbation A + AA with ||AA| sufficiently small. Then there
are m associated eigenvalues of A + AA, and for every such eigenvalue A\, let
x = (z1,...,2p) be of unit norm satisfying (2.49) and let (Ul, .. .,U ) satisfy

(2.48). Then for every 1 € {1,...,p} and for any y, such that yFz; # 0, we
have the following.

a) If A is finite, then with Oy := Hkilq" ! C;j we have

) 1 p+i—1 p+i—1
A=A = eyl 0 Y DT ORH Vi AU | T Y
Yot k=1 J=k+1-gx
(2.52) +O(IAA]?)
p+i—1 p+l—1

1

Z1

I

Z1

iy D DRGSO B | B N7 {@k Hy Lo Vil g A AUk 11— qk}xk a

T
LR j=k+1—qx

(2.53) +O(lAA]?)
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and the following bound holds.

pHi- p+i—1
A=A < min Z DO H ) Vil AU | [ ©F H
=l j=k+1—qi
(2.54) +O([[AA]?)

JAAg|
Omin (Hk+qk )

p p
< Y| I |l atio-o)| | 108, Ab) ™
k=1 \j=1,j#k

(2.55)  +O(JAA]P).

—1 —1
b) If X is infinite, then with Qy := (Hf+f€+1qk 6]) , (here (HTm C’;J) =

1
Crsm .. .C7° ifi <m and (Hj:i ij) =lLifi>m,)

pH—1 k—a

1 1 .
= = 'S (O ViR AU, | T] O z
A yl X el 1
(2.56) +O([AA]?)
1 p+1—1 k—qr
~A—S8j
- 7ylel Z (=1)* H a; ui' {Qk k+quk+qkAAkUk+l qk}xkﬂ ax
k=l =l
(2.57) +O([AA]?)
and
pti—1 k=g -1
<l < min | RSG D)@ QAL Vi, AUk, | [T 677 | +OUAAP)
k= L
p p
s |AA,
<3S 1I H(UMJA Ujt1g)) H H(U,giqkAkUM,q)qk 1>H %
k=1 \j=1,j#k min\{Lk+qy

(2:59) +O(JAA[).

PrOOF. If X is an eigenvalue of C+ AC, then using reordering in the periodic
Schur form (see [9, 17]), regardless whether A is simple or multiple there always
exists a unit norm right eigenvector x. Hence we have (2.51) if A is finite.

Formula (2.51) is generated by considering the matrix product L; in (2.50).
Since there exists a complete set of eigenvectors associated with A\, performing
the same analysis on

— (G4 AC)™ - (Cpyr1 + ACpyr 1) v+,
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for [ = 2,...,p we get the analogous formula for A — \. Hence we have (2.52).
By (2.49) we have

p+i—1 p+i—1
T ¢ |u= TI & )2sa+2 l=ul=002A]),

j=k+1—qy j=k+1—qx

which implies (2.53). Formulae (2.56) and (2.57) are derived analogously.

The upper bounds (2.54), (2.55) and (2.58), (2.59) are derived by setting y; =
x; in (2.52) and (2.56) respectively, and using the fact that Cy, = UlfiqkAkUk—i-l—qm
which follows from (2.42). O

The main difference between the perturbation results for simple and multiple
eigenvalues is that instead of the components oy the matrices Cj are involved.
Another difference is that for A € {0,00} in (2.38) or (2.39) only one AAy,
affects the eigenvalue, while in (2.52) or (2.56) the perturbed eigenvalue seems
to be influenced by all perturbations. However, by choosing a proper vector y;
in (2.52) or (2.56) it is still possible to obtain a result similar to (2.38) or (2.39).
Consider for example A = 0 in (2.52). Then there exists an integer [y such that
51, = 1 and (), is singular. Let y;, be a unit norm vector such that legC’lO =0.
Note that s;, = 1 and ¢, = 0 in this case. If y//z;, # 0 then equations (2.52)
and (2.53) corresponding to | = ly reduce to

Hpr—1y/H pHlo—1 ~s;
Yio Hzo Vi, AAL Uiyt (Hj=l0+1 Cj

_ ) +O(IAA)

y{ngo
pilo—1 Hp-lWHAA, U, 1
= | I ay | e T SELTEIIL L ojaA?),
=lo+1 Yio *lo

We conjecture that we can always choose such a proper y; and similar simplified
formulae hold also for all other eigenvalues.

The first order perturbation bounds for multiple eigenvalues with a complete
set, of eigenvectors depend on the eigenvectors of the perturbed eigenvalues which
is not the case for simple eigenvalues. Since these eigenvectors are determined
by the perturbation matrices, this makes the formulae less useful. However, the
bounds of (2.55) and (2.59) can be used to evaluate the perturbation in the
eigenvalues.

Note that even if A has a complete set of eigenvectors, in general the matrices
Cr in (2.43) are not diagonal if U is unitary. For example, if p = 3, s =

(1,-1,-1) and
a=([o 2] Lo 1] [o 2))

then it is easy to verify that there does not exist any triple of unitary matrices
(Q1,Q2,Q3), such that QF A1Qq, QI A2Q, and Q¥ A3Q3 are simultaneously
diagonal. If p =1 or p = 2, however, C} can be chosen to be diagonal.

LEMMA 2.10. Let X be an eigenvalue of A with sign tuple s and suppose
that there exists a complete set of eigenvectors. If p = 1 or p = 2 then the
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orthonormal basis U can be chosen such that the matrices Cy, k=1,...,p, are
all diagonal.

PROOF. For p = 1, with C; = Al for s = (1) or C} = 1[I if s = (1), the
result is obvious.

For p = 2 we only consider the case that A\ is finite. The infinite case is
proved analogously. Consider the case that s = (1,—1), the case s = (—1,1) is
analogous. We have to find unitary matrices Q;, Q2 such that Q¥ C,1Q, and
QT CyQ4 are both diagonal. Since \ is finite, Co must be nonsingular. Let
Q{{CQQQ = D5 be the singular value decomposition of C5. Since Cngl =
M, we have QC1Q2 = ADy =: D; and the assertion follows. If s = (1,1)
(or in a similar way if s = (—1,—1)), then we have to find unitary matrices
such that Q¥ C1Q and QI C»Q, are both diagonal. If ) is nonzero, then let
Q¥ CyQ1 = Dy be the singular value decomposition of Cy. Since then Dy must
be nonsingular, using C1Cy = CoCy = Al we have Q{{ClQQ = /\D2_1 =D;. If

A is zero, then let ng C’g@l = [%2 8] be the singular value decomposition of

Cy with ﬁg is nonsingular. Using the commutativity, i.e., C1Cy = C2C; = 0,

it follows that the matrix Q{fclc}z has the form [8 691] Let Wf{éle be

the singular value decomposition of C; then for Q = Q4 diag(I,W;) and Qo =
Q- diag(I, W), the matrices Q¥ C1Q, and Q¥ C>Q; are diagonal. [

Using this lemma we obtain the classical perturbation results for matrix pencils
A — AB. considered as a formal matrix product with p = 2, s = (1,—1) and
A = (A B).

THEOREM 2.11. Let A be an eigenvalue of A — AB of multiplicity m with a
complete set of eigenvectors. Let U = (Uy,Us) be an orthonormal basis of the
right generalized deflating subspace, such that

AUQ = Uch, BU2 = Ucha

with
Ca = diag(ai, ..., am), Cp=diag(Bi,...,0m), L=.. =9m_)
51 ﬂm
Let V = (V1, Va) be an orthonormal basis of the left generalized deflating subspace
corresponding to A and let ko be an integer such that |Bg,| = min{|B1], ..., |Om|}
for X finite and let |ag, | = min{|aq|,...,|am|} for X = co. If A— AB =

(A+ AA) — A(B+ AB) and ||(AA, AB)| is sufficiently small, then for all the
m associated eigenvalues \ of A — AB the following inequalities hold.

a) If X is nonzero and finite, then

A=A

A

IA

1
min{H(VlHUlCB)_lVlH(XAA — AB)Us|,

1
[V 00) TV (S AA = AB)UCR' [} + O(I(A4, AB) )

1 1 1
sl
Omin (Vl Ul ) (677 ﬁko

AB| +O(I(A4, AB)|).
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b) If A\ =0, then

Al < min{|(T0UCE) T VT AAU, [(VITUL) T VT AADSC ) + O(I(AA, AB)|P)
1

< - -
B ﬁko Omin (VlH Ul)

|AA] + O(I(AA, AB)|?).

c) If A = oo, then

|
IN

A min{[| (Vi U1Ca) " VT ABU|, [(ViTU1) VT ABU2CG [} + O(I(AA, AB)|?)

1
Ak Omin (VlH Ul )

IN

|AB] + O(l(AA, AB)J?).

PROOF. If ) is finite, then using (2.54) and C4Cz' = C5'Ca = I, we have

A=A < min{|(VIU.Cp) 'V (AA — AAB)Us|,
(2.60) |V U) " VT (AA = AMAB)USCE' |} + O(Il(AA, AB)|?).

If A is nonzero, then the first inequality is obvious, and since

A=A < 5 IV UN)THIAA = AAB| + O(J(AA, AB)|?)
_ 1
Bhro

Umin(VlHUl)

the second inequality follows since ag,/Bk, = .

If X =0 the assertion is obvious from (2.60).

If A\ = oo, the assertion follows by applying the inequality (2.58). O

The bounds given here depend on amin(VlH Ui), which is the reciprocal of
the condition number of X related to the formal product AB~!. One may also
use the bound given by amin(V2HU2) related to B~1A. This can be derived
as follows. Let ViTA = CuVif!, VEB = CpV#. Then CAVHU, = VHU,Cx
and CpV{ Uy = VIHU,Cp. If ) is finite and Cp, Cp are nonsingular, then the
alternative bound in terms of oy, (Vs#Uz) follows from (2.60). For A = oo the
construction is similar. This trick can also be applied in the general case p > 2
if A is simple.

REMARK 2.7. We have already noted that for nonzero finite eigenvalues it is
enough if one of the conditions in (2.44) is satisfied. However, for zero or infinite
eigenvalues, the situation is different. For example, let p =2, s = (1,1) and

S
0 0 0]

But even though only one of the identities (2.44) or (2.45) is satisfied for some
lo, following the analysis, the perturbation results (2.52), (2.55) or (2.56), (2.59)

(AA = AAB)| +O(I(AA, AB)|),

Then
Bl = A1A2 = |:

o O

], BQA2A1|:

~
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still hold for this particular ly. This means that even in this case we still have
first order perturbation results.

In this section we have extended the classical perturbation results for eigen-
values and eigenvectors of matrices and matrix pencils, as given, e.g., in [33],
to formal products of p matrices. If the formal products consist of structured
matrices, then one is interested also in structured perturbations. Typically the
perturbation results change if structured perturbations are considered. This
case will be studied in the Section 4 for the special case of Hamiltonian/skew-
Hamiltonian pencils. But first we will illustrate the results obtained in this
section using some numerical examples.

3 Numerical Examples.

In this section we present some numerical examples to illustrate the eigenvalue
bounds (2.37) — (2.39) and the bound in (2.18) for deflating subspaces. The ex-
amples will demonstrate the sharpness of the bounds and the factors responsible
for ill-conditioning. Furthermore, we will give a comparison between the results
for formal products and explicit product forms.

All computations were performed on a PC Pentium-IV with machine precision
€~ 2.22 x 10716, using MATLAB version 5.3.

ExXAMPLE 3.1. Consider the perturbations of the eigenvalue 1 for the matrix
tuple
1 10 1 1

10 , 10 1
10 1

A =
0.1

with sign tuple s = (1,—1,1). The three reciprocal condition numbers of 1
defined in (2.33) are 0.7017, 0.9949 and 0.9904. In Table 3.1 we denote by ¢ the
order of the perturbations. For each order we used 40 different perturbations
T of the form ¢ * T}, where T} is randomly generated and has unit norm. In
the second column of Table 3.1 we show the smallest and largest error (out of
all 40 examples) for the eigenvalue of A 4+ T closest to 1. The third column
displays the smallest and largest first order perturbation bound from (2.37) for
the eigenvalue 1. The last column then shows the ratio of perturbation bound
and eigenvalue error.

§ || eig. error ‘ pert. bound ratio
102 3.87 x 1079 ~ 1.85 x 1072 3.87 x 1075~ 1.86 x 1072 | 0.8192 ~ 1.3164
1077 2.50 x 1078 ~ 1.87 x 10~* 2.50 x 1075 ~ 1.87 x 10=% | 0.9995 ~ 1.0001
107F 6.36 x 1073 ~ 1.87 x 1076 6.36 x 1078 ~ 1.87 x 107 1
10-8 1.27x 10710 ~ 179 x 1078 | 1.27x 10710 ~ 1.79 x 108 1
10710 [ 311 x 1002 ~ 179 x 10719 | 311 x 10712 ~ 1.79 x 10710 1 ~ 1.0001
1072 [ 1.62x 107 ~1.71 x 10712 | 1.61 x 107 ~ 1.71 x 10712 | 0.9925 ~ 1.0043
107 [] 6.66 x 10716 ~2.07 x 1071 | 4.45 x 10716 ~ 2.07 x 10~ 1% | 0.5013 ~ 1.1546

Table 3.1: Eigenvalue errors and bounds for Example 3.1

The numerical tests demonstrate that the perturbation bound usually gives



26 P. BENNER, V. MEHRMANN AND H. XU

accurate estimates, but there are also cases where the bounds overestimate the
real error.

To demonstrate the dependence of the perturbations on the number of terms
in the formal product, we give the following example.

ExampLE 3.2. Consider two matrix tuples

A - 1 1 10 1 10
L= 14107 [’ 0 1+1073 || 0 1+107° '
A 1 1 1
2 - 14+1075 |’ 141075 | 1+10°°

with s; = ... = s, = 1. Both tuples have the two eigenvalues 1 and 0.9”. In Ta-
ble 3.2 we demonstrate how the eigenvalue 1 changes under perturbations when
p increases. In both cases we perturb every matrix of the formal product by the
same positive randomly generated perturbation of order of 1071° (constructed
using the MATLAB function rand). Here, x denotes the average of k1, ..., Ky
as defined in (2.33) for the eigenvalue 1. In this example the value of x is ap-
proximately the same for all p and we see that the eigenvalue 1 in the tuple A,
is ill-conditioned, while in A5 it is well-conditioned.

p Ay A,
K | eig. —error | bound k| eig.—error | bound

2 1200x107% [ 155x10° [275x10° || 1] 7.16 x 10~ [ 7.16 x 101
10 [ 1.11x107% | 1.63 x 107 [ 430 x107* || 1 | 3.42x 10710 | 3.42 x 10~10
20 [ 111 x107% | 3.08x107* | 7.81 x 10~ * || 1 | 9.09 x 10~ | 9.09 x 1010
30 [[ 1.03x107% | 462x107* | 1.17x 1073 || 1 | 1.23x107Y | 1.23 x 107°
40 || 1.03x107% [ 6.35x107* [ 1.64x 103 || 1 | 1.57x 1077 | 1.57 x 107?
50 [ 1.02x10°% | 838 x 10 % [224x10 2 [[ 1| 1.98x 1079 | 1.98 x 1077
60 || 1.02x107% [ 1.01x1073 [ 271 x 1073 || 1 | 250 x 1077 | 2.50 x 10~
70 [ 1.01x107% | 1.19x 1072 [ 3.23x 1072 || 1 | 2.86 x 1079 | 2.86 x 1077
80 [[1.01x107%] 1.37x1073 [ 3.72x 103 [[ 1 | 315 x 1079 | 3.15 x 1079
90 || 1.01x107% | 1.53x 1073 | 414 x 1073 || 1 | 3.61 x 107 | 3.61 x 107°
100 [ 1.01 x 1078 [ 1.73 x 1073 [ 4.72x 103 [ 1 | 3.95x 1079 | 3.95 x 10~°

Table 3.2: Test results for Example 3.2

The example demonstrates that our perturbation bound is sharp in both cases
and that the dependence on the number of terms p in the formal product is not
significant. In other words, the second order term in the bound is negligible in
this example, which supports our observation in Remark 2.6. The eigenvalue
error is increasing only slightly when p increases.

Our next example demonstrates the dangereous effects that may occur when a
matrix product is explicitly formed instead of working with the formal product.

EXAMPLE 3.3. Let

=

Ol
o O
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with s = (1,1). In this example

2
0

Sl

B1A1A2|: 0 0

], BZAZAl{2 0}
So the tuple A has eigenvalues 2 and 0. The reciprocal condition numbers of By

and By are k1 = §/v/0%2 + 1 and ko = 1. We perturb the matrices A; and A,
with

0.25 0.21

0.95 0.14

— —10
By =(2/9)10 [ 0.66 —0.56

] , By =max{1,6}1071° [ 0.220.79 } ,

Note that for the eigenvalue 2 the associated diagonal elements in A are 2/4,9
and the left and right eigenvectors are

; ’ 0 ) 0 ’ 0 .
VS
For 0 < 0 < 1, by (2.37) it follows that

A-2] <

oI Eiu vl Eyu
2( i v By 2>+0<|||E|||2>
1K1 Q2k9

= 2x1071%{(0.25 — 0.21/6) + 0.22/6} + O(|| E||?).
We also perturb the matrices By and By with

0.08 -0.10

— ~10
Fy, = max{1,2/6}10 [ 093 0.97

} , Fy=max{1,2/6}1071° { 0.70  0.67 ] '

—0.70 0.57

Here we chose the norms of F; and F5 to match the order of perturbation of
Bl - (Al -+ El)(AQ + EQ) and BQ — (A2 + EQ)(Al + El)

The perturbations in the eigenvalue 2 and the error bounds for the formal
matrix product A and the matrices By, Bo are listed in Table 3.3 for different
values of 9.

In this example, the errors and corresponding bounds of the eigenvalues com-
puted using the formal product A are as good as those for the best of the
corresponding explicit products and much better than for the worst.

Our next example will illustrate the bounds (2.18) for generalized deflating
subspaces, using some randomly generated matrix tuples. To simplify computa-
tions we replace § by dr as in Remark 2.3.

EXAMPLE 3.4. Consider a 10 x 10 randomly generated matrix tuple A =
(Ay,...,Ay) with s = ... = s4 = 1. We test the perturbations of the deflating
subspace with respect to the eigenvalues with negative real parts. The chosen
tuple has 5 stable eigenvalues and it is estimated that 6 = 0.1167. The pertur-
bation is done with 107*D where D is a unit norm randomly generated tuple.
The test results are listed in Table 3.4. The second and third columns show
the maximal value (out of 40 examples) of the maximal principal angle, Oyax,
between the stable subspace and the perturbed stable subspace and its bound
from Theorem 2.4.
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A By B,

1) K1 eig.-err. | bound eig.-err. | bound eig.-err. ‘ bound
10° 1 04x107T [94x107 T [ 80x1072 [80x10" 2 [ 7.0x 10~ [ 7.0 x 10~
102 1 9.6x 10711 [ 96x107 || 82x 1072 [82x%x 10712 | 70x 10~ | 7.0x 10~ !¢
10 1 11x1070 [ 1.1x107° [ 1.0x 107 | 1.0x 107 || 7.0 x 10~ | 7.0 x 10~ 1T

1 071 | 28 x 10710 | 28 x 10710 [[ 6.2x 1071 [ 6.2x 10711 || 1.4 x 10719 | 1.4 x 10~
10T 010 24x107% | 24x107° || 48%x1079 | 48x 1079 || 1.4x107% | 1.4 x 107°
1072 ] 0.01 || 23x108 | 23x10°% || 46x10"7 | 46x10"7 || 1.4x108 | 1.4x 108
103103 23x1077 | 23x107 || 46x107° | 46x107° || 1.4x 1077 | 1.4x 10~7
100°%][107%] 23x10°6 | 23x10°% || 46x103 | 46x103 || 1.4x10% | 1.4 x 1076
10510 23x107° | 23x10°5 [[ 39x10°T | 46x107T || 1.4x107° | 1.4 x 1075

Table 3.3: Eigenvalue errors and bounds for Example 3.3

k Omax arctan(2 |E| /o)
—4 | 7.05 x 107 2.03x 1073
—6 ] 1.12x10°° 1.84 x 107°
—8 [ 1.84 x10°8 1.73x 1077

—10 || 1.73 x 10710 1.85 x 1079
—12 || 1.48 x 10712 1.82 x 10~ 1

Table 3.4: Errors and bounds for the stable deflating subspace in Example 3.4

It seems difficult to compare the separation parameter ¢ and the correponding
separations for the matrix products Bi,...,B,. In the following we give an
example for the special case that p =2 and s; = s = 1. Let

|G R | Gy F
Al_[o Dl]’ Az_[o DQ]

CiCy Ci1Fy+ F1Dy B, — CyCy CyFy + FyDy
0 DD, 20 DyDy '

Then
B - [

The associated matrix related to § as given in (2.2) is

—I® D,
Cfer

[ cTer

Z= [ —1® Dy

The matrices related to the separations for By and By are
Z1 = (C1C)T' @I — I ® D1Dy,  Zy = (CoC)T @ I — I ® DyDy.

The relations among these matrices is given by

- [z
2z % L.
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Clel I®D
I®Dy, Clfel |’

But even if the separations are estimated by the smallest singular values of Z,
Z1 and Zs, respectively, the precise relation between the separations is an open

problem, see also Example 3.6.
EXAMPLE 3.5. Let A = (Ay, A2) and s = (1,1) with

where Z =

1 1
Ci=a1, Di=ay; Co=—, Dy=-——.
aq (%)

Here A has the two eigenvalues 1 and —1. In this case the separations of B

and By are both dp, = dp, = 2, and Z = { 0411 _LOQ } By definition, in this

a2 [e5]
special case,

1 1
5=1/]Z" Yo =2 1nax{—+a,—+a}<1.
/” ” / ‘a1| ‘ 2| |042| | 1|

In this example ¢ is always smaller than dp,,dp,. When a; and «ay are suf-
ficiently large or small, then § will be very small, whereas dp,,dp, remain the
same. On the other hand, however, the norm of at least one of the matrices in
A will be large. This will introduce large roundoff errors when forming B; and

Bs explicitly.
EXAMPLE 3.6. Consider A = (A4, Az) and s = (1,1) with
0
E

|11 « 10 8. | a1 10
01_[0 1]’ Dl_{o 1}’ 02_[—1 0}’ Dz‘{o

The blocks of By are
_ 0 1 10 8.
0102—{_1 0], DlDQ_{O 1},

and the blocks of By are
0
E

The tuple A has the four eigenvalues i, —i from C1C5 and 0,1 from Dy D5. Let

a a?+1
-1 -

o o

02012[ }, D2D1=[

531 = min ”DlDQX - X0102”F7 (552 = HHIIII N HDngX - XCQC]_"F

1X|r=1 min
and
dp = min VID1Xs — X1 Ciff + D2 X1 — X6Gs3
x70 [X10% + [ X2[%

Note that dp, is independent of « and dp, is independent of 3. Estimates for
these parameters are given in Table 3.5.
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a. Estimated values of 6

AB [ 1072 [ 1070 ] 1 | 10 102 103 10%
10~4 0.7653 0.7608 0.5700 0.0988 1.0x10°2]1.0x103 [ 1.0x 10°*
10-3 0.7650 0.7605 0.5699 0.0988 1.0x1072 [ 1.0x103 | 1.0x 10~*
102 0.7618 0.7575 0.5687 0.0985 1.0x10°2[1.0x103 [ 1.0x 107°*
101 0.7302 0.7268 0.5561 0.0963 1.0x1072 [ 1.0x 103 [ 1.0x 10~*
1 0.4535 0.4526 0.3839 0.0733 74x1073 | 74x107% | 74 x 1077
10 [19x102[19x102 [ 19x10 2 [11x10 2 [14x10 3 | 14x10 %] 14x10°7°
102 | 20x107T [ 20x1072 [ 20x107T [ 20x107T[1.2%x107% [ 14x107° | 1.4 x 1076
102 [20x10%[20%x10 % [20x10 %[ 20x10°%[20x10° [1.2x10°% | 1.4x 10"
102 || 20x1078 [ 2.0x 1078 [ 20x108 [ 20x1078 [ 2.0x 1078 [ 20x 1078 | 1.1 x 10°8
b. Estimated values of dp,
g w21t ] 1 [ 10 ] 10° | 10° | 10f
6p, || 1.0000 | 0.9951 [ 0.7654 | 0.1394 | 1.41 x 10 [ 1.41 x 1077 [ 1.41 x 10~*
c. Estimated values of dp,
o 100t [0 102100 [ 1 | 10 [ 10* [ 100 | 107

dp, || 1.000 [ 0.999 | 0.990 [ 0.905 | 0.382 | 1.0x 107 [ 1.0x10"* [ 1.0x 107 ° [ 1.0 x 10°®

Table 3.5: Test results for Example 3.6

4 Perturbation Theory for Hamiltonian/Skew-Hamiltonian Matrix
Pencils.

In the previous sections we have discussed the perturbation theory for formal
matrix products without further assumptions on the factors A;. These results
can be used in the perturbation analysis for the periodic QR and QZ algorithms
which are used heavily in the computation of (invariant) deflating subspaces
of Hamiltonian matrices [4, 5, 6] or Hamiltonian/skew-Hamiltonian pencils [2,
3]. These invariant and deflating subspace problems have many applications
in linear-quadratic optimal control [26, 31, 32] and H., optimization [16, 36]
and also in other areas such as gyroscopic systems [19], numerical simulation of
elastic deformation [27], and linear response theory [29].

With J = {f} Ig} we define the following classes of matrices. A matrix

H € C**2" is called Hamiltonian if (JH)? = JH and analogously, a matrix
N € C?*2n s called skew-Hamiltonian if (JN)H = —JN. A matrix S €
C?2*2n g called symplectic if STJS = J and unitary symplectic if it is both
unitary and symplectic. A matrix pencil H — AN with H Hamiltonian and A
skew-Hamiltonian is called a Hamiltonian/skew-Hamiltonian pencil.

We see that Hamiltonian and skew-Hamiltonian matrices have a specific sym-
metry structure, and thus if we allow only structured perturbations that retain
this symmetry structure, then we may expect a different perturbation analysis.
For Hamiltonian matrices this analysis has recently been carried out in [18].
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Using similar ideas as before for formal products of structured matrices, we can
also derive the perturbation theory for Hamiltonian/skew-Hamiltonian pencils.

If a Hamiltonian/skew-Hamiltonian pencil is regular and has no purely imag-
inary or infinite eigenvalues, then it has been shown in [24, 25] that there exists
a unitary matrix Q such that

A1(TQHITY(H — M)Q = Tog — M = [ A H }—/\[ B G ]

0 —Af 0 BH
where H = H? G = —GH. In many cases [3], the skew-Hamiltonian N is,
furthermore, given in product form and the pencil is
(4.2) H— ANJMPJTY)M,

with H Hamiltonian. Similarly, if the pencil has no purely imaginary or infinite
eigenvalues, then there exists a Hamiltonian Schur form (see [20, 30]) for the
Hamiltonian matrix (JMH?JT)"THM™1. (M is nonsingular, since there is no
infinite eigenvalue.) Using (4.1) we can determine a unitary matrix Q and a
unitary symplectic matrix U/ such that

A H
. 7OH T _

Ty :=JQ " J HQO = { 0 —AH
(4.3)

The last identity implies that

_ pgH o yH _|C F
}, H=HY  Ty:=U MQ—[O D}.

H H
(JQHITY(IMHE TN = JTE T = { pe - }

o CH

Combining this with (4.3) we get that JQH JT(H—AJMH JT M)Q has the same
block triangular form as (4.1).

In applications from control (see [2, 3]), one is particularly interested in the per-
turbation theory for the eigenvalues and also for the deflating subspaces spanned
by the first half columns of the matrices & and Q if the perturbations are re-
stricted to retain the matrix structure. In the following two subsections we
will discuss this problem for the Hamiltonian/skew-Hamiltonian pencils and the
pencils as in (4.2) separately.

4.1 Hamiltonian/skew-Hamiltonian pencils

The eigenvalue problem for Hamiltonian/skew-Hamiltonian pencils is a special
case of the eigenvalue problem for formal products of structured matrices, with
p=2,s=(1,-1), where Ay = H and As = N. In the following we derive the
structured perturbation theory for this problem.

Let H— N = (H+AH) — AN + AN) be a perturbed pencil with structured
perturbations AH Hamiltonian and AN skew-Hamiltonian. Suppose, further-
more, that the original pencil H — AN has the block triangular form (4.1). Then
we set

&d) = (JQIIT)AHQ = [ (A ] AH = (AH)" B, = EY,

o) = (JOHJT)ANQ —: { %f (AABC;H } . AG=—(AG)H By = —EN.
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Using the special transformation as in (4.4) and (4.5) the Hamiltonian and skew-
Hamiltonian structures are preserved and £ and € can be partitioned with the
appropriate block structures. Partitioning Q@ = [Q1, Q2] with Q1,Q, € C?"*™,
we then study the perturbations in range ()1, the right deflating subspace corre-
sponding to the eigenvalues of A — AB. By the definition of deflating subspaces
of matrix products, the deflating subspace has the form (range J7 Qs, range Q1).
As we have shown, the perturbed unitary matrix will be Q) with ) as in (2.6),
and hence both subspaces have the same perturbation behavior. We have to
determine ); and ), as in (2.6) to simultaneously eliminate the (2,1)-blocks
of Ty + Ex and Ty + Enr. To preserve the matrix structures we require that
YV = JYoJT. If we set

v [ XH[ (I, +XHX)"3 0
R G 0 (I, + XXH)=3 |
then the matrix X has to satisfy the quadratic equations
(46) (A+AAN X+ XH(A+AA)+E - XTI (H+AHX = 0,
(4.7 (B+AB)Y X - XH(B+AB) - E,+ X (G+AG)X = o.

Thus, the linear transformations ®c p in (2.1) and ®¢ p in (2.8) are replaced
by the linear operators

Py(X) = (APX+X"A BEX - X"B),
Py (X) = (A+AA)"X+ X" (A+AA), (B+AB)"X - X"(B+AB)),

respectively. We have the following Lemma.
LEMMA 4.1. The following are equivalent.

i) The linear operator @14 is nonsingular.
ii) The matriz pencils A — AB and A" + A\B¥ have no common eigenvalues.

iii) The spectrum of the pencil A — AB does not contain purely imaginary or
infinite eigenvalues and, furthermore, if A\ with Re A # 0 is in the spectrum,
then —\ is not.

PRrooF. To show the equivalence of ii) and iii) observe that if A is an eigenvalue
of A—\B, then —\ is an eigenvalue of A? +-A\B*. Hence A—\B and A" +\BH
have no common eigenvalues if and only if A — AB has no purely imaginary or
infinite eigenvalues, and no eigenvalue pair A, —\ for Re A # 0.

For the equivalence of i) and ii), by Lemma 2.1 it suffices to prove that ®,(X)
is nonsingular if and only if the linear transformation

d(X,Y)=(A"X +YA, BYX -YB)

is nonsingular.

If ®3(X) = 0 has a nonzero solution X then ®(X, X*) = 0. Hence if ® is
nonsingular then ®4, is also nonsingular. If there is a nonzero (X,Y’) such that

<i>(X, Y') =0, then the symmetry implies that @(YH, XHY = 0. Hence, we either
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have @5 (iX) =0 (if Y = —X*), or &3 (X+YH) = d(X+YH (X +YH)H) =0
(Y # —XH). In both cases ®4; is singular. Hence if ® is nonsingular, so is
®. O

We can rewrite the system (4.6), (4.7) as

D (X)+H(Er, —E2)+Uy(X) =0, Uy(X)=(—X"(H+AH)X,X"(G+AG)X)

(48)

and then similar to Theorem 2.3 we have the following perturbation result.
THEOREM 4.2. If

4.9 Oy = g >0
(19 e i [05,(0)]
and FEi, E H+ AH, G+ AG 1
o) 1B BT + ARG +AG)] _ 1

52 <3
then (4.8) has a solution X which satisfies

2||(Ey, B FEq, E.
"XH < - A |||( 1, 2)||| < 2|||( lA’ 2)”'
03 + \/5721 — 4By, E)I(H + AH,G + AG)| or

PrOOF. The proof is analogous to that of Theorem 2.3. 0O
Relaxing conditions (4.9) and (4.10) slightly, we obtain the following corollary.
COROLLARY 4.3. Let

03 := min || (X)].

Ix(=1
If
(1.11) pr = by — 2/(AA, AB)] >0,
and
o) I ED NG + LALAG)) _ 1
pH 4
then (4.8) has a solution X which satisfies
1X] < 20|(Ey, Bl NI E2)|
pr+ /3 — AI(EL E)I(I(H, Gl + 1(AH, AG)]) PH

Using these results we obtain the following perturbation bounds for the deflating
subspaces.

THEOREM 4.4. Let H — AN be a Hamiltonian/skew-Hamiltonian pencil that
has a block upper trzangular form (4.1). Partition Q = [Q1,Q2] with Q1,Q2 €

C2*n . Let H — AN be a perturbed Hamiltonian/skew-Hamiltonian pencil and
let the perturbed matrices be partztwned as in (4.4) and (4.5). If conditions

(4.9) and (4.10) hold, then H — AN has a deflating subspace range Qq with
Q, = [_X] (I, + XH X))~z , where the matriz X solves (4.8).

Furthermore, the mazimum principal angle between range Q1 and range Ql is
less than arctan (2‘”(]5:;#2‘") If conditions (4.9), (4.10) are replaced by (4.11)
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and (4.12), respectively, then the upper bound for the principal angle is arctan (2‘"(%%2)"') .

PROOF. The proof is analogous to the proof for Theorem 2.4. O

For the perturbation of the eigenvalues we need fewer assumptions, we only
assume that the pencil H — AN is regular. Let X be an eigenvalue with algebraic
multiplicity m and suppose that there exists a complete set of eigenvectors as-
sociated with \. Since p = 2, let (Uy, Us) be a corresponding orthonormal basis
of the right deflating subspace with

(4.13) HUs = U1Cy, NUy =UiCl,
where
Cy = diag(aq, ..., am), Cn =diag(f,...,0m)-
Then we have A\ = % =...= % The symmetry structure implies that

(JU)HH = —CcHU), (JU)EN = R (JUu)H,

and hence (JUsy, JU;) represents the left eigenspace corresponding to the eigen-
value —\. Thus, if A is purely imaginary or infinite then (JUs, JU;) and (Uy, Us)
are just orthonormal bases of the left and right generalized deflating subspaces.
If X is finite with Re A # 0, then let (V4, V2) be an orthonormal basis of the right

generalized deflating subspace corresponding to —\ with
(4.14) HVe =ViCy, NVa=ViCyn, A(Cx,Cn)={-)}.
Then (JVa, JV7) forms the left generalized deflating subspace corresponding to

A. Note that —\ has also multiplicity m and there again exists a complete set
of eigenvectors [25].

Using these properties and applying the results of Subsection 2.2 we obtain
eigenvalue perturbation results for both simple and multiple eigenvalues.

THEOREM 4.5. Consider a regular Hamiltonian/skew-Hamiltonian pencil H —
MV, et A be a simple eigenvalue and let (uy,uz) be the unit norm right eigen-
vector satisfying

Hus = cqug, Nug = awuy, A= %.
2

Consider the perturbed Hamiltonian/skew-Hamiltonian pencil H—IN = (H+
AH) — AN + AN) with € := ||(AH, AN)|| sufficiently small.

a) If X is purely imaginary or infinite then H — M has unit norm etgenvectors
(Q1,12) satisfying Hig = &101 and Nig = Gatiy, such that

ul (g JAH — ay JAN Yuy

ull Juy

+ O(€%).

drog — Goay =

b) IfReX # 0 and (vi,vz) is the unit norm right eigenvector corresponding to
—X then H — AN has etgenvalues X and —\ such that

A=A R | 1 )
AL - —AH - —A :
N o J(&1 H- N)ug + O(€?)
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PROOF. The proof follows directly from Theorem 2.6, Corollary 2.7, and from
the symmetry property of the eigenvectors. Note that by symmetry (J vy, JTvy)
is the unit norm left eigenvector corresponding to A. O

THEOREM 4.6. Consider a reqular Hamiltonian/skew-Hamiltonian pencil H —
M. Let X be an eigenvalue of algebraic multiplicity m associated with a complete
set of eigenvectors and let (U, Us) be unitary matrices satisfying (4.13).

Consider the perturbed Hamiltonian/skew-Hamiltonian pencil H— AN = (H+
AH) — AN + AN) and assume that € := ||(AH, AN)| is sufficiently small.

If X\ is purely imaginary or infinite, then for the associated eigenvalues \ of
H — M the following bounds hold.

a) If X is finite, then

A=Al < min{|(U3" JU,Cn) " US' J(AH — AAN)Ua|,
[(U3"JU) T U T(AH = AAN)UCH |} + O(é2).

b) If A = oo then

—_

< min{|(Us' JUCy) 1 U TANUs |, [(US JUL) U TANURCy [ }+0(€%).

A

IfRe XA # 0 and (V1,V2) is unitary satisfying (4.14), then the associated eigen-
values A of H — AN satisfy

A=A

1
3 < min{||(V2HJUlCN)_1V2HJ(XAH — AN)Us|,

1
\|(V2HJU1)*1V2HJ(XAH — ANUCH |} + O(€%)

1 1 1
| —AH —

- - A 2
Umin(‘/QHJUI) (67 ™ ﬁko N”+O(€ )’

where the integer ko is chosen such that |Br,| = min{|Bk|, k= 1,...,p}.
PROOF. The assertions follow from Theorem 2.11 and the symmetry properties
of the left and right eigenvectors. O
It should be noted that if A is purely imaginary or infinite, then the smallest
singular value of the matrices U1 JTU; or U JT U, represents the reciprocal of
the condition number of the eigenvalue. Moreover, U JU,C is Hermitian and
U1 JU,Cyy is skew-Hermitian.

4.2 The matriz pencils in (4.2)

We now study the matrix pencil from (4.2) which we may consider as a formal
matrix product with p =3, s = (—1,1,—1) and A = (JMZJT H, M). Suppose
that the pencil has the form (4.3) and partition U = [Uy, Us] and Q = [Q1, Q2]
such that U, Qp € C?>**™ for k = 1,2. We will analyze the perturbations
in range U; and range (Q1, the generalized deflating subspace corresponding to
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the eigenvalues of A — ADHC. Let ‘H, M be perturbed to H = H + AH and
M =M + AM, where AH is Hamiltonian. Set

AA AH
H T _
(4.15) (JQTJ )AHQ = { B —(AA)T }
and A A
H . C F

(4.16) UTAMQ = { B, AD |-
We determine a unitary symplectic matrix

In Xl (In =+ X%)ié 0

- 1 5 X - X 3
O I RS A A

and a unitary matrix

y,_ [ In xH (I, + XHX,)"2 0
A A CR 0 (I, + Xo X11)~%

to eliminate the (2,1) block of H, M and JMHJT simultaneously. For this
purpose the matrices X7, Xo must satisfy the quadratic matrix equations

(417) (A+ANIX, + XH(A+AA)+ B, — XP(H+AH)X, = 0,
(4.18)  (D+AD)Xy — X1(C+AC) — Ex + X1(F + AF)X, = 0.

Defining the linear operators

Du(X1,X2) = (A¥Xyo+ XFA DX, - X,0),
Do (X1, X2) = (A+AA)TXs+ X (A+ AA), (D+ AD)X, — X1 (C + AC)),
(X1, X2) = (X3 (H +AH) Xz, X1(F + AF)X>),

we can rewrite the system (4.17), (4.18) as
(4.19) O (X1, Xo) + (E1, —E2) + Y aq (X1, Xo) = 0.

We have the following lemma.
LEMMA 4.7. The following are equivalent.

a) The linear operator ® nq is nonsingular.

b) The pencils A — AD2C and A" + A\CH D have no common eigenvalue.

c) The spectrum of the pencil A— XD C does not contain purely imaginary and
infinite eigenvalues. Furthermore, if A with Re X # 0 is contained in the
spectrum, then —\ is not.

PrROOF. By Lemma 4.1 it suffices to show that ® 4 is nonsingular if and only
if
Py (X)=(AFX + xHA CcPDX - XHDH(C)
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is nonsingular. If ®;; is nonsingular, then the matrices C and D must be non-
singular, since otherwise A — ADH C has an infinite eigenvalue.

If ® 4 is singular, then there exist X (= X#) and X, which are not both zero,
such that

(4.20) ARX, + XFA=0
and
(4.21) DX, — X,C =0.

Since X; = X{I, (4.21) implies that C¥ X; = X DH. Multiplying C¥ from
the left to (4.21) we then have CH DXy — X DH(C = 0. Combining this with
(4.20) we get ®2¢(X2) = 0. But since X; = DX2C ™1, it follows that X5 # 0 and
hence ®4; is singular, which is a contradiction. Therefore if ®4; is nonsingular
then ® 4 is nonsingular.

Now suppose that there exists X # 0 such that ®»(X) = 0. If C is non-
singular, then setting X; = DXC~! and X, = X, we have X; = X and

D (X1, X2) = 0. If C is singular, then let C = U [F 0} VH (with U,V uni-

tary and T' nonsingular) be the singular value decomposition of C. Then with
X =U [8 % UH and X3 = 0, we have ® (X1, X2) = 0. Hence, ®3; singular
implies that ® ¢ is singular. 0O

We obtain the following perturbation bounds.

THEOREM 4.8. If

1.22 Goy e X X > 0
) M K - 195 (X3, X2)]
" ELE|(H + AH,F + AF)| 1
(423) (B, BN + AR, F + AR)] _ 1
0%, <1

then (4.19) has a solution (X1, X2) which satisfies

201, B2 15, Bl
10X, Xl < - oMELE

S+ /8% — (B E)II(H + AH,F + AF)| M

PROOF. The proof is analogous to the proof of Theorem 2.3. O
Under slightly stronger assumptions we have the following corollary.
COROLLARY 4.9. Let

opm 1= min D (X, X0).
M= iy 122X X2
If
(4.24) P = a1 — max{2[AA], | (AC, AD)[} > 0,
o By E H,F AH,AF 1
(4.25) I(E1, E2) I IC )Hl + I b _ L
PM 4
then (4.19) has a solution (X1, X2) which satisfies
2 (E17E2)| ElaE2
I3, Xo)l < ”' | MEL B

pa+ /03 — AN(EL E)I(I(H, B + 1(AH, AF)]) pM
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We then finally have the perturbation result for the generalized deflating sub-
space.
pTHEOREM 4.10. Let H— A(JMHEITYM be a Hamiltonian/skew-Hamiltonian
pencil in the block upper triangular form (4.8) and let Q = [Q1, Q2], U = [Uy, Us]
with Q1,Q2,U1,Us € C2nxn,
Let the perturbed matrices ’}:t, M be partitioned as in (4.15) and (4.16). If
conditions (4.22) and (4.23) hold, then H — N(JMPJTYM has a generalized

deflating subspace given by range Uy and range Q1 with

A I, _1 A I, _1
U1:u|:X1:|(In+X12> 2, Q1:Q|:X2:|<In+X§IX2) 2,

where the matriz pair (X1, Xs) solves (4.19).
An upper bound for the largest principal angle between range Uy and range Uy

or between range Q1 and range Ql, respectively, is given by arctan (2@)

M
If conditions (4.22) and (4.23) are replaced by (4.24) and (4.25), then the

upper bound for the largest principal angle is arctan (QM#EQ)‘")

PROOF. The proof is analogous to the proof for Theorem 2.4. O

For the perturbations in the eigenvalues there are still further special properties
that follow from the matrix structures. Let H — A(JMH JT)M be regular and
let A be an eigenvalue with multiplicity m having a complete set of eigenvectors.
Let U = (Uy, Uz, Us) be unitary such that

(4.26) JMPJTU, = U,Cy, HU3 = UyCo, MUz = U, Cs,

and

CrlC05 = Co05 POyt = C5 1O Oy = M.

Using the matrix structure, if A is purely imaginary or infinite, then (JUy, JUs, JUs)
is an orthonormal basis of the left generalized deflating subspace corresponding
to A. Moreover, from (4.26) we have

cl Uyt Jus) = (U JUL)Cs,
(4.27) ciwliu) = wWiivy)o,,
cilwiius) = —(UfJU,)C,.

If ReA # 0 and (V3, Vo, V3) represents an orthonormal basis of the right gen-

eralized deflating subspace corresponding to —\, i.e.,
(4.28) JMIJTV, = Vo0, HVs = VaCa, MVy = ViCs,

and

CrlCy 05 = CoCy IOy = C5 1O Cy = — A,
then (JV7, JV3, JV3) represents an orthonormal basis of the left generalized de-
flating subspace corresponding to A. Similarly,

Ci' (Vi1 aus) = (WJU)GCs,
(4.29) cEwH U = (ViJuy)oy,
C' (V1 IUs) = —(V1JUR)C.
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Using these properties we have the following perturbation results for simple and
multiple eigenvalues.

THEOREM 4.11. Let H — N(JMHEJT)M be a regular Hamiltonian/skew-
Hamiltonian pencil and let X\ be a simple eigenvalue. Let (uy,us,us) be the
unit norm right eigenvector satisfying

a2
(JMEJTYuy = ajug,  Hus = agug, Mus = asu,

= )\’
a1a3
and let H=H + AH, M = M + AM with AH Hamiltonian. Furthermore, let

e == [|(AH, AM)|| be sufficiently small. Then H — N(JMHPJITYM has the unit
norm eigenvectors iy, Ug, U3 satisfying

~ N N A~ n N A o~ N (0%
JMHJTul = (X1U2, HU3 = (X2U2, MU3 = (xsuy, A=

041(543 ’
a) If X is purely imaginary, then
. H H H H
5o U JAHus N <u3 (AM)TJur  uy JAMu3> L0,

OélUé_IJUQ agquJul

041053U3HJUQ

b) If A = oo, then

c) If ReX # 0 and (vi,v2,v3) is a unit norm right eigenvector corresponding
to —X, then H — A\(JMHITYM has eigenvalues A and —X, such that
A=A o JAHus o (AM)P Juy  off TAMus

= — — O(é?).
A azvil Jug avil Jug azvil Juy +0(<)

Proor. Consider the formal product with p = 3, 51 = s3 = —1, s = 1,
and factors Ay = JMHPJT Ay = H and A3 = M. Consider perturbations
AA; = JAMPJT AAy = AH and AAs = AM. If ) is finite, then the result
follows from Corollary 2.7.

If A\ = oo, then by (4.27) we have ajull Juz = azull Ju;. Since ayaz = 0,
ul Juz # 0 and uff Ju; # 0, we have a; = a3 = 0. Hence from Corollary 2.7
and Remark 2.5 we get 1/A = O(e?). O

For multiple eigenvalues the result is as follows.

THEOREM 4.12. Let H — N(JMHEJTYM be a reqular Hamiltonian/skew-
Hamiltonian pencil and let X be an eigenvalue of algebraic multiplicity m with
a complete set of eigenvectors. Let (Uy,Us,Us) be unitary satisfying (4.26) and
consider perturbed matrices H = H+ AH with M = M+ AM with AH Hamil-
tonian and € ;= |(AH, AM)|| sufficiently small. Then for the associated eigen-

values \ of the perturbed problem we obtain the following bounds.
a) If A is purely imaginary then
A=Al < min{| (U7 J0) T OB,
[(Us" TU2) ™! B O, |(U51 T Us) T O O T B} + O(€),
where E, = AU (AM)H JU,C3 + CHUP JAMU;) — UH JAHUS;.
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b) If A = o, then

1 . _ _ _ - _
A < min{|(U{"JUN) ™' Buc| [(U5T JU2) T B, C L G H(UST JU2) T B [[340(e%),

where
Eo = CHOHUAAMY JU,—UF JAMU3Cy C —CEOy U JARUsC Oy
and E, = U;I(AM)HJUlcg + C:g{UlHJAMUg

c) If ReA # 0 and (V1,Va,V3) represents an orthonormal basis of the right
generalized deflating subspace corresponding to —\ satisfying (4.28), then
there are m eigenvalues A of H — N(JMHJTYM that satisfy

A=A : H —1A—H —1

—| = min{|(Vi"JU) TG ECs T,

[V IU) T ECy Ot (VT TUs) T Cr T Cy |} + O(),
where B, = Vi (AM)! JULC; + CHUP JAMU; — LV JANHUS;.

PROOF. If X is purely imaginary the result follows from (2.54) of Theorem 2.9
and the properties of (4.27) and (4.26). If A = oo then the bound follows from
(2.58), (4.27) and the fact that C3C;'Cy = C1C3Cy ! = C;'C1C5 = 0. If
Re A # 0 the bound again follows from (2.54), (4.29) and (4.28). O

Note that in Theorem 4.12 the matrix F, has skew-Hermitian and Hermitian
parts which are composed by AM and AH, respectively. Furthermore E., is
Hermitian and FEj is skew-Hermitian.

REMARK 4.1. The parameters 3, oo introduced in this section are difficult
to estimate. One possible way is again to replace them by the smallest singular
value of the matrix representations of ® q, Py as in (2.2); see Remark 2.3.

5 Conclusion.

We have analyzed the perturbation theory for generalized deflating subspaces
and eigenvalues of a formal matrix product. The perturbation bounds can be
used to estimate the errors of the generalized deflating subspaces and eigenvalues
when they are computed by the periodic QR or QZ algorithms. As an application
we have studied the perturbation theory for Hamiltonian/skew-Hamiltonian pen-
cils. The symmetry structure of the matrices then leads to a symmetry structure
in the perturbation results and hence sharper perturbation bounds. Although we
have presented all results for complex matrices, it should be noted that similar
results hold for real pencils.
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The perturbation theory for periodic deflating subspaces of periodic matrix
pairs that is closely related to the perturbation theory for formal products has
recently and independently been studied in [21, 22].
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