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Summary. A new method is presented for the numerical computation of the
generalized eigenvalues of real Hamiltonian or symplectic pencils and matrices.
The method is numerically backward stable and preserves the structure (i.e.,
Hamiltonian or symplectic). In the case of a Hamiltonian matrix the method is
closely related to the square reduced method of Van Loan, but in contrast to that
method which may suffer from a loss of accuracy of orgér, wheree is the
machine precision, the new method computes the eigenvalues to full possible
accuracy.
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1. Introduction

The eigenproblem for Hamiltonian and symplectic matrices has received a lot
of attention in the last 25 years, since the landmark papers of Laub [13] and
Paige/Van Loan [20]. The reason for this is the importance of this problem in
many applications in control theory and signal processing, [17, 12] and also
due to the fact that the construction of a completely satisfactory method is still
an open problem. Such a method should be numerically backward stable, have
a complexity ofO(n®) or less and at the same time preserve the Hamiltonian
or symplectic structure. Many attempts have been made to tackle this problem,
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see [8, 15, 17] and the references therein, but it has been shown in [1] that
a modification of standard QR-like methods to solve this problem is in general
hopeless, due to the missing reduction to a Hessenberg-like form. For this reason
other methods like the multishift-method of [2] were developed that do not follow
the direct line of a standard QR-like method. The structure of the multishift
method is at first a computation of the eigenvalues followed by a sequence of
exact-shift steps of a QR method that is based on the non-Hessenberg reduction of
Paige and Van Loan [20]. The method is backward stable and structure preserving
but it may suffer from loss of convergence, in particular for large problems and
furthermore it needs good approximations for the eigenvalues first. These can
for example be obtained via the square-reduced method of Van Loan [25]. In the
symplectic case a similar method has been proposed by Lin [16] and improved
by Patel [21]. Both methods are structure preserving and backward stable for a
modified problem which involves the square of the original matrix. But squaring

a matrix, computing the eigenvalues of the square, and taking square roots to
obtain the eigenvalues of the original matrix can lead to a loss of half of the
possible accuracy. This was shown by the worst-case error analysis in [25].

In this paper we will present a new method which does not suffer from this
loss of accuracy and it is constructed in such a way that the same method can
be used for Hamiltonian matrices, symplectic matrices, Hamiltonian pencils, or
symplectic pencils. The method is structure preserving, backward stable, and
needsO(n®) floating point operations. There are three main ingredients for this
new method, a new matrix decomposition, which can be viewed as a symplectic
URV decomposition, a periodic Schur decomposition for a product of two or four
matrices [6, 10, 11] and the generalized Cayley transformation which allows a
unified treatment of Hamiltonian and symplectic problems, [14, 18].

The paper is organized as follows: In Sect. 2 we introduce the notation and
review some basic results. In Sect. 3 we develop the theoretical basis for the new
algorithm and in Sect. 4 we then describe the new procedure. An error analysis
is given in Sect. 5 and numerical examples are presented in Sect. 6.

2. Notation and preliminaries

In this section we introduce some notation, important definitions and also some
preliminary results.

We will be concerned with the computation of eigenvalues of special matrices
and matrix pencils. To simplify the notation we use in the following the expres-
sion eigenvaluefor eigenvalues of matrices and also for pairs £) # (0, 0) for
which the determinant of a matrix peneaiE — SA vanishes. These pairs are not
unique, since they can be scaled by a nonzero factor and still the determinant
vanishes. So if3 # 0 then we identify ¢, 8) with (3.1) or A= 5. Pairs ,0)
with e # 0 are callednfinite eigenvalues

We now introduce the classes of matrices and matrix pencils that are discussed
in this paper.
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Eigenvalues of real Hamiltonian or symplectic pencils 331

Definition 2.1 LetJ := _?n IS } wherel, is then x n identity matrix.

a) A pencilaEy — BAy € R?X2 js calledHamiltonianiff EqJA] = —ARJE!.

The set of Hamiltonian pencils iR2"*2" is denoted byH5,..

b) A matrix H € R?"*?" js calledHamiltonianiff (HJ)™ = HJ. The Lie Algebra
of Hamiltonian matrices ifR?"*?" is denoted byHo,.

c) A matrix T € R?"*?" is calledskew-Hamiltoniariff (TJ)T = —TJ. The set of
skew-Hamiltonian matrices iR?"*2" is denoted bySHyy.

d) A pencil aEs — BAs € R?"2 is calledsymplectidff EsJE! = AsJAL. The set
of symplectic pencils ifR2"2" is denoted bys,..

e) A matrix S € R?*?" s called symplecticiff SJS = J. The Lie group of
symplectic matrices ifR2"*?" is denoted byS,,.

f) A matrix U € R?*2" js called orthogonal symplectiéff UJUT = J and
UU T = I,,. The Lie group of orthogonal symplectic matricesRiff *?" is denoted

by US;,.

In this paper we will mainly discuss regular Hamiltonian and symplectic
pencils, (a pencikE — A is calledregular if det(oE — BA) does not vanish
identically for all complex pairsd, 3).) The main reasons for this are first that we
do not know of any application for singular Hamiltonian or symplectic pencils
and second that for singular pencils no eigenvalue computation is necessary,
since every complex number is an eigenvalue. We will, however, point out in
our algorithm when we detect singularity or near singularity of the pencil.

We have the following well-known properties of Hamiltonian and symplectic
pencils:

Proposition 2.2 a) LetaEy — SAy be a real Hamiltonian pencil. If: = g is a
finite eigenvalue oftEy — GAG, then also—u, i, —u are eigenvalues ohEy —
BAH.

b) Let aEs — SAs be a real symplectic pencil. It = 7 is an eigenvalue of
aEs — OAs, then alsol/pu, i, 1/ are eigenvalues akEs — GAs. This includes
the eigenvalu® corresponding tda, ) = (0, 1) with infinite eigenvaluéa, 5) =
(1,0) as counterpart.

F G

Q —FT

c) Any matrix H € .7%,, can be written as H= {
QecR™Mand G=G",Q=Q".

d) Any matrix U e US,, can be written as U= {
Rnxn_

}, where F, G,

U U

U, Uy } where U, U, €

Proof. See, e.g., [15, 17]. O

There is a well-known relationship between Hamiltonian and symplectic pen-
cils, which is given via the generalized Cayley transformation, e.g., [14, 18]
and there is also an interesting relationship between Hamiltonian and skew-
Hamiltonian matrices, which, however, does not extend to pencils.
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Lemma 2.3 a) Let aEs — BAs be a real symplectic pencil and le = 1 or
A1 =—1. Then

1) aEx — BAH = a(Es — MAs) — B(M\Es + Ag)

is a real Hamiltonian pencil.
b) LetaEy — BAH be a real Hamiltonian pencil and let; =1 or A\; = —1. Then

(2 aEs — fAs := a(MAn + En) — B(A4 — MER)

is a real symplectic pencil.
c) Let H be a Hamiltonian matrix, then His skew Hamiltonian.

Proof. For a) and b) see [14, 18], for c) see [25].

Further properties of symplectic and Hamiltonian pencils are discussed in
[14, 15, 17, 18].

Remark 2.4For Hamiltonian pencil&xEyq — 5Ay with Ey invertible, Part ¢) of
Lemma 2.3 suggests that the pencil

©) aERJE] — BARITA]
might be a skew-Hamiltonian pencil, i.e.,
(4) ELJELIAIA], = ALJALJELJIE.

However, in general this is not the case, since to show this we would also need
that E]JJAy = —A],JE, for the Hamiltonian pencil. But this holds only in some
special cases. If, for example, one of the matriegsor Ay is symplectic or if

EH‘l and Ay commute, then (3) is a skew-Hamiltonian pencil. In general this is
not true as the following example shows.

Example 2.5Let

2 0 2 1 0 0 2 1

| 2 41 4 | -2 -2 1 4
Bi=1 1 1 2 2| ™| 1 102
-1 -2 0 4 1 20 2

The pencilaEy — BA4 is Hamiltonian according to Definition 2.1 as can easily
be checked by computing,JE] + E4JA,, but

0 4 0 0

; |40 0o o
AVBAHBIAZ L 0 g o 12
0 0 -12 0

and
0 —-48 —-32 -32

48 -96 -8 32
EnIELIAAL — AWAJEWE = | o5 o o5 16

-32 32 -16 0
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Eigenvalues of real Hamiltonian or symplectic pencils 333

On the other hand, as we will show below, this does not harm the spectral
properties, i.e., we can still use (3) to compute the eigenvaluedkgf— GA4.

3. Theoretical background

When performing eigenvalue computations one is usually restricted to similarity
transformations for matrices and equivalence transformations for pencils, since
only these preserve all the spectral properties.

The basis for our new algorithm, however, is a non-equivalence transforma-
tion for the original Hamiltonian pencil, which leads to an equivalence transfor-
mation for the pencil (3). From the eigenvalues of (3) we can then easily compute
the eigenvalues ofEy — BAG.

Lemma 3.1 a) LetaEy — Ay be a regular real Hamiltonian pencil. The pair
(1, v) is an eigenvalue of the penciEnJE] — BALJTA], if and only if the pairs
(V15 V), (—y/1t, \/v) are eigenvalues aiEy — SA.

b) If X\ # 0is a simple eigenvalue of a Hamiltonian matrix H thehis a nonde-
fective eigenvalue of Hof multiplicity 2.

Proof. The eigenvalues ofiEy — SAy are the pairs,v) # (0,0) for which
det(wEn — vAy) = 0. Now det(.Eq — vAy) = 0 if and only if

det{(uEn — vA)I (uEn — vAR)T] =
= det(*EqJE] — puv(EnIA] + AWJE]) — PAWdTA])
= det@’EqJEN — AR TAL) =0,

and hence a) follows.

For b) observe that if\ # 0 is a simple finite eigenvalue &f, then also—X
is a simple eigenvalue. Le&t, x, be the corresponding right eigenvectors, which
are clearly independent X # 0. Any linear combination ok; andx; then is a
right eigenvector oH 2, and hence the dimension of the eigenspace is two and
)2 is a nondefective double eigenvalue]

Remark 3.2From the proof of Lemma 3.1 b), we see that the eigenvalue condi-
tion number ¥s()\) is not uniquely defined for the eigenvalu®% of H?. Since

s(\) = yHx, wherey andx are the left and right eigenvectorsdf corresponding

to A, 1/s(\) can also be considered as a condition numbehi%fvith respect

to H2. But since any linear combination af andx, from the proof of Part b)
defines a right eigenvector 6f2 corresponding ta? and any linear combination

of the left eigenvectorg; andy, of H corresponding toa\ and —\, respectively,
defines a left eigenvector &f2 corresponding td?, many other values fas()\?)

with respect toH? are possible.

Lemma 3.1 indicates a way to compute the eigenvalues of a Hamiltonian
pencil via the square roots of the eigenvalues of another pencil. This is the direct
generalization of the square reduced method of Van Loan [25] to Hamiltonian
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pencils. If we apply this idea explicitly or implicitly as in the square reduced
method, we will suffer from the samg’e perturbation in the computed eigen-
values as in Van Loan’s method.

But in this situation we can apply a trick which is based on a non-equivalence
transformation applied to the Hamiltonian pencil. This transformation can be
viewed as a symplectic version of the URV-decomposition. URV-decompositions
of a matrix into a product of two unitary matricés, V and an upper triangular
matrix R, were first introduced by Stewart in order to achieve a compromise
between accuracy and computational cost between the QR decomposition and the
singular value decomposition for rank and nullspace computations, see [22, 24].

In general such decompositions are not useful for the computation of eigen-
values, but as we will see, in the case of Hamiltonian and symplectic pencils or
matrices the situation is different.

Lemma 3.3 LetaE — SA be a real2n x 2n pencil. Then there exist orthogonal
transformation matrices Q< R2"*?" and Q, Q, € US;,, (which can be obtained
via a finite elimination procedure), such that

® ofear = | Bt 2.
© oine: = | fat g,

where g, Aj € R™", By, A, E2T2 are upper triangular, and }2 is upper Hes-
senberg.

Proof. The proof is given in a constructive way by Algorithm 4.3 in the next
section. O

Lemma 3.3 describes a finite step non-equivalence transformation to a con-
densed form. This form is a mixture between the Hessenberg and the triangular
form for real 2 x 2n pencils. The second result that we need is that the Hessen-
berg matrixAy, in Lemma 3.3 can also be transformed to quasi-upper triangular
form with the same type of transformations.

Theorem 3.4 LetaE — A be a real2n x 2n pencil. Then there exist orthogonal
transformation matrices Q< R>"*?" and Q, Q, € US;,, such that

) ofea=| T £ | ofae= | A R |,

where ,A; € R™", B4, A1, EJ, are upper triangular and 4, is quasi-upper
triangular, i.e., block upper triangular with diagonal blocks of size< 1 and
2x 2.

Proof. By Lemma 3.3 we may assume, w.l.0.g., that the bloEkg Ai1, EZT2
are upper triangular andll, is upper Hessenberg. We then apply the generalized
real Schur decomposition, [9, p. 396] to the peadd;E]), — 3A11AL,. It follows
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that there exist real orthogonal matriddsV € R"*" such thatU TEj;E),V is
upper triangular antd TA;; ALV is quasi-upper triangular. Lét;, U € R™ " be
orthogonal matrices such that'EJ,V andU TA;,U, are upper triangular (these
always exist from the QR factorization). Then it follows thatE;;U; is upper
triangular andJ, ALV is quasi-upper triangular. Thus,

ut™ o U o0 ul o U, 0
0‘[0 VT]E[O Ul]_ﬁ[o VT}A[O Us
yields the required decomposition.[]

For real 21 x 2n matrices we have the following obvious corollary:
Corollary 3.5 Let Ac R>*2" Then there exist matrices;@Q, € US,,, such

that
T _| A A
(8) lAQZ - |: O A22 :| )

where 4 € R"™", Ay, is upper triangular and 4, is quasi-upper triangular.
Proof. The proof follows directly from Theorem 3.4 by inverti@ AQ,. O

At first sight it is not clear how the above non-equivalence transformation can
be used for eigenvalue computation, but when we apply the transformation to a
Hamiltonian pencihkEy—3Ay and then consider the impact of this transformation
on the pencil
9) aEnJE] — BARITA,
then we obtain the following result.

Theorem 3.6 Let aEy — SAy be a real Hamiltonian pencil. Then there exists an
orthogonal matrix @ such that

T T~ 1~ | E1n E12 -E, EJ
(10) QIEWIEQsd = { w ge || ge Bk,
and T T

TA 1TAT _ | A A Ay A
(11) Q3 AH‘J AH Q3‘] - |: 0 A22 :| |: 0 A]_—]_ bl

where ,A; € R™", B4, A1, EJ, are upper triangular and 4, is quasi-upper
triangular.

Proof. Applying the transformation from Theorem 3.4 we obtain

QIERJIE]QsJ QI EnQ1IQ{ E[QsJ

T
_ Euu Epn Euu Ep
(12) . [ . EZJJ[ . EZZ} 3

- { —Eufj, EuFj, — EnE] }
0 —(EuEp)’
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QI AHQ2 TQIAQsJ
.
[ A1 A :|JT [ A1 A ] 3

QIALITALQsJ

(13) 0 Ax 0 Ax»

_ [ AuAY,  —AuA], + ARAT } 0
0 (AAL)T '

An obvious corollary is obtained for Hamiltonian matrices.
Corollary 3.7 Let H € Hj, then there exist Q Q, € US;, such that

—HpH), HiHL — HipH ]

T2 - 1122 1112 120711

(15) QTH ZQ - _H2TZH11 H]T2H22 - H2T2H12
20 e 0 —H[{Hz ’

with Hj € R"™", Hy; is upper triangular and H, is quasi-upper triangular.

Proof. Using the Hamiltonian structure ag@}, Q. from Corollary 3.5 we obtain
that
QIH?Q:1 = Q/HQQ; IHTIQ: = (QHQ2)JI(QTHQ)'J,

which has the required form. The proof for (15) follows analogouslyl

From these two results we see that in order to compute the eigenvalues of
aEy — Ay it suffices to compute the eigenvalues of the pencil

(16) OéEllEérz + 6A11A-2|—2

as it arises from (10) and (11), and to compute the eigenvalues of a Hamiltonian
matrix it suffices to compute the eigenvalues of

(17) —HyH), or —HyHp;

as in (14), (15).

Now fortunately we can compute the eigenvalues of (16), (17) from the
condensed form of Lemma 3.1 without forming the products. To do this we
can directly employ the periodic Schur decomposition for products of matrices
or pencils of products of matrices [6, 10, 11] without forming the products.
The periodic QR algorithm applied to (17) yields real orthogonal transformation
matricesU,V € R"*" such that

(18) H:=UTHLWTHLU,  HJ = (UTHzV)T
are quasi-upper triangular, while
(19) Hi1:= UTHyV

is upper triangular. Analogously the periodic QZ-algorithm applied to (16) yields
real orthogonal transformation matricéls V,Y,Z € R"*" such that
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E
(20) EJ,

UTELWTE),Z, Enn = UTEQLV,
(ZTEV)T, Aur:=UTA;LY

are upper triangular and
(21) A=UTALYYTALZ, AL = (ZTAnY)T

are quasi-upper triangular. After these forms have been computed, we can com-
pute the eigenvalues ¢ or aE — 3A, respectively by solving k 1 or 2x 2
eigenvalue problems. We present here the formulas for the pencil situation, the
matrix case is obtained by settitg=I,. Let

En = UTELV = [g],
(22) Ex = ZTEnV =[fj],
A = UTAQRY =[],
Ay = ZTAnY = [by].

In the case of a k 1 diagonal block inAy, the corresponding eigenvalue is a
solution of the equation
(23) w(eifi) +v(aibi) =0
ie., (u,v) = (—2:2?,1) if gfi # 0 or (u,v) = (1,0) ~ oo if gifj = 0 and
aib; # 0. If both products are 0 then the pencil is singular, and thus clearly
if both products are close to 0, then the pencil is near to a singular pencil, see
[23]. The eigenvalues of the original Hamiltonian pencil are then obtained via
Lemma 3.1.

In the case of an unreduced-22 diagonal block inA, the corresponding
eigenvalue is an eigenvalue of the pencil

M[ 8 6 } { fi  fiin }
0 &4+ 0 fisgi+a

ai A+ bii bi i+ ]
24 + ) ,
(24) V[ 0 a1+ } { Divi  Bisgisr |7
which has the characteristic polynomial
(25) p?a+ puvb + e

where the coefficients are given by

a = i6+yj+fiifisris,

b = eifig+yi+abivgive + @ibi + & j+10i41i)8 41 42fivgie1
—a+1i+1biai (8 fiiva + € jrafivivg),

C = @a+1i+1(0i bi+rivr — Biva by iea).

We obtain that the pencil is singular& =b = ¢ = 0 and it is near to a
singular pencil if all three coefficients are close to 0. If this is not the case, then
we have the following cases:
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There exists one eigenvalue infinity & = 0 andb # 0 and two infinite
eigenvalues ik =b = 0 andc # 0. If a = 0 andb # O then the other eigenvalue
is (u,v) = (§,1). If a # 0 then the eigenvalues are both finite, of the form

(1, v) = (N, 1), where);, i =1, 2, are the solutions of the quadratic equation
NP4 Cog
a a

The eigenvalues of the original Hamiltonian pencil are again obtained via
Lemma 3.1.

In this section we have described a new method to compute the eigenvalues
of Hamiltonian pencils. We can apply the same idea to symplectic pencils by
using the generalized Cayley transformation of Lemma 2.3 b) to transform the
symplectic pencil to a Hamiltonian pencil, applying the described procedure and
computing the eigenvalues via the inverse Cayley transformation applied to the
eigenvalues.

If («, ) is an eigenvalue of the Hamiltonian pencil obtained via the Cay-
ley transformation with shiftpoindy, then 15 + «, 5 — A\1a) is the associated
eigenvalue of the original symplectic pencil.

Remark 3.8The method described above can in principle also be applied to a
pencil oE — BA whereE, A € R2"™*2" are skew-symmetric, since every skew-
symmetric matrixB € R?"*?" can be factored aB = CJCT.

Remark 3.9Note that the described procedure cannot be applied to complex
symplectic or Hamiltonian pencils. The reason for this is that the reduction to
condensed form via unitary symplectic matrices cannot be carried out in the same
way, since with unitary symplectic matrices less eliminations are possible. The
same problem already occurs in the square reduced method of Van Loan [25].

Remark 3.10If we apply Lemma 3.3 to a symplectic matrg, i.e., we set
E =1,, and choos&); = Qg3, then

(26) 1TSQz=[Sl S }

0 s’
where S is an upper triangular matrix an&S, — S5/ = 0, i.e.,, Q] SQ is

symplectic triangulaf17]. In addition,Q, = I, and (26) is equivalent to the
symplectic QR decomposition of a symplectic matrix (see [7]).

4. The numerical algorithm

We have already described the main features of the new algorithm in Sect. 3.

Algorithm 4.1 A structure preserving method for the computation of the eigen-
values of Hamiltonian and symplectic pencils.

Input: Hamiltonian pencilkEy — BAy or symplectic pencikEs — [As.
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Output: Eigenvalues of the pencil.

Step 0: If the pencil is symplectic, chooskg € {1, -1} and form
aBy — BAy = a(BEs — MAs) — B(MEs + Ag).

Step 1:Determine orthogonal transformation matri€@sc R?"*2" andQy, Q; €
US;,, such that

T _| Ein Exn T _ | A A
Q3 EHQl - |: 0 E22 5 Q3 AHQ2 - 0 A22 )

whereE; , Aj € R™", Eq1, Aq1, E2T2 are upper triangular anzél{2 is upper Hes-
senberg (see Algorithm 4.3).

Step 2: Apply the periodic QZ algorithm of [11] to the product pencil
(27) aEnEjy + BALAS,,

i.e., compute orthogonal transformation matridés U,, Uz, Us € R"*" such
that

(28) U/EnUs,  (U3ExUp)",  UfAUs

are upper triangular and

(29) (U AgoUs)T

is quasi-upper triangular.

Step 3: Solve the 1x 1 or 2x 2 eigenvalue problems arising from explicitly
multiplying out the diagonal blocks in (27), i.e., determine paijtsg, &) for

i =1,...,nvia (24) or (25), respectively.

Step 4: Compute the finite eigenvalues;( 5;) of aEy — SA4 as

(/i /1), o
(=i s \/V), } !

Step 5: If the original pencil was symplectic, then compute the eigenvalues of
aEs — fAs as

@ i

(31) (@, 85) = (M6 + i, F — i), i=1,....2n.

End

The main computational work lies in Steps 1. and 2. of this procedure. While
Step 2. is well analyzed, and different procedures for this problem have been
described [6, 11], Step 1 is new and we describe it in more detail below.

If we want to apply Algorithm 4.1 to a Hamiltonian matrix it simplifies
significantly. Note that for symplectic matrices we still need to use the pencil
formulation, since the associated Hamiltonian problem arising from the Cayley
transformation is in general a Hamiltonian pencil.
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Algorithm 4.2 A structure preserving method for the computation of the eigen-
values of a Hamiltonian matrix.

Input: Hamiltonian matrixH .
Output: The eigenvalue$~,...,v2n} of H.

Step 1: Determine orthogonal transformation matri€@s Q, € USy, such that

(32 Qfne= | 1.

whereH; € R"™", Hy, is upper triangular, an#i}, is upper Hessenberg.
Step 2: Apply the periodic QR algorithm of [10] to the product matrix

(33) — Hp,Ha,
i.e., compute orthogonal transformation matritBsU, € R"*" such that
(34) U H11Us,

is upper triangular and
(35) (U HzoUp)"

is quasi-upper triangular.

Step 3: Solve the 1x 1 or 2 x 2 eigenvalue problems arising from explicitly
multiplying out the diagonal blocks in (34), (35), i.e., determine eigenvakles
i =1,...,n, via the solution of the &k 1 or 2x 2 eigenvalue problems arising
in the block diagonal of this product.

Step 4: Compute the eigenvalues Bf by 7 = vAi, Y+ = —V\i, i=
1,...,n.

End

We now describe the reduction to the condensed form (5), (6). For this reduc-
tion we need five basic transformations. These are transformations with Givens
rotations and Householder reflections from the left and transformations with three
types of orthogonal symplectic matrices from the right. Standard Givens rotations
in R2"*2" operating in rowd ,j € {1,...,2n} are of the form

li—1

cosfp) sin(@)
(36) J(,j,0) = lj—i-1 ;

—sin(9) cosp)

I2n7j

while symplectic Givens rotations take the same form but operate iniraws ,
ie{l,...,n}, ie.,
(37) Js(i,0) :=J3(@,n+i,0).
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The third type of transformations consists of the direct sum ofriwon Givens
rotations. Such matrices operate in rowp, n+i,n+j, wherei,j € {1,...,n}
and have the form

30,5, 0) 0

Besides the transformations that carry out rotations, we need two types of House-
holder reflection matrices. A standard Householder reflectioR"f" is given

by
(39) Pk,v)=1,—2

’UUT

vt
wherev; =0 fori =1,...,k — 1. A symplectic Householder matrix is defined
in [20] as the direct sum of two Householder reflection®RIh", i.e.,

Pk,v) O

(40) Petk )= 6" by |-

Numerical procedures that implement these transformations and their numerical
properties are well studied and need not be repeated here, [20, 9, 17]. The con-
densed form of Lemma 3.3 is obtained via a sequence of transformations and
described in the following algorithm.

Algorithm 4.3 Reduction of a general re@h x 2n pencil to the condensed form
of Lemma 3.3.

Input: Real 2 x 2n pencil oE — A= « [ Eir B } — [ A Ao ]

E21 E22 A21 A22
Output: Orthogonal matrice®s € R?"*?" andQy, Q, € US,,, and transformed
pencil
A . En E A A
_ = ATEA _ 2ATAQ. = 11 B2 | 11 Ar
of - A = aQJEQ - iQJAQ=a | 3t 52 | | ft B2,
whereE;, Aj € R™", By, Aqy, EJ, are upper triangular and}, is upper Hes-
senberg.
Step 1: .
Compute a QR factorizatiorﬁ E” } = Qo { =t
21

0 } whereE;; € R™" is upper

E11 ElZ :|

triangular andQ, € U, and sefE = QJE =: [ 0 E
22

Compute a QL factorizatiok,, = QL and setQ, := [ l(’)‘ (% }
o o Ey E N O
o ATE _ 11 Eno | _

== QE = { 0 Ezzj [ B]'

A Ain A
- ATOTA = | A1 A
A= QoA = | 7 Re
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Q3 = QOQO7 Ql = |2n7 QZ = lon.
Step 2:
Fork=1,....,n—-1
%  Annihilate Ayscon k.

Forj=k,...,n—1
UseJ(n +1 n+j+1,6%1) to ehmmatean+J k from the left. Set

E = J(n+j, n+J+10"711)T
A= J(n+j,n+j+1 6% 1)TA,
Q3 = Qa(n+j,n+j+1,6%Y
Use Gs(j, j +1,6%1:2) to eliminate€sj n++1 from the right. Set
= EG(j,j +1,042),

QuGs(j,j + 1 0412)
+1,6%1:3) to ellmlnateq“ﬂ,j from the left. Set

(J J + 1 ek,] 3)TE
= 3(,] +1,69TA,
Q3 = Qd(j,j +1,643).

Endfor |
UseJS(n g1y to eliminatea, . from the left. Set

E J (n ek,n,l)TE
A J (n ek n, 1)TA
Qs = Qaly(n, 6" Y).

User(n 62y to eliminatee, n from the right. Set
= EX(n,6%"2),
Ql = Qus(n, 6"2).

% AnnihilateAk+1n K.

Forj =n,n— Jk+1
UseJ(J — 1 ] qﬁkl Hto eliminategj i from the left. Set

E = 3(G —1j,¢"YE,
A= 3G —1,j,YH)TA
Qs = Qad( —1,j, ¢,
USEGS(J —1,j, ¢*12), to eliminate€’;_; from the right. Set
::E&@—lij%
Q= QG — 1,j, 1)

UseJ(n +j —1,n+j,¢43) to eliminate€; 10+ from the left. Set
E := J(n+j —1Ln+j,¢%3)TE,
A= 3(n+] — L+ gk 9TA,
Q3 = Q3J(n +j - 17 n +j7¢k7j’3)'
Endfor |

% Anmh'lateAmk k+1n and An+k k2
Use Ps(k +1, u") to ellmlnateAn+k k+2n from the right. Set

A = APy(k +1,u),
Q2 = QaPs(k +1,u¥).
User(k +1,9X) to eliminatea;.k x+1 from the right. Set

Akw+1ww

Q

Use (J_
E::
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Q = Qul(k+10k).
UsePs(k + 1,0¥) to eliminateAq neks2n from the right. Set
A = APy(k +1,0%),
Q2 = QoPs(k +1,0%).
Endfork
% Annihilate &, p.
Use Js(n, 6""1) to eliminateaz, n from the left. Set
E = Js(n’gn,n,l)T!\E’
A = Jy(n, 0" HTA
Qs = Qgs(n,o™"™1h).
Use Js(n, §™"?) to eliminatees, » from the right. Set
E = EX(n,o""?),
Q1 = Qul(n,6™"2).
End

If only the condensed form is required (i.e., the orthogonal transformations
are not accumulated) then the algorithm requires abont 84ps which is less
than the initial Hessenberg—triangular reduction in the standard QZ algorithm
which requires 9§n3 flops. Although Algorithm 4.3 generates more zeros than
the Hessenberg-triangular reduction, it is cheaper as far as the computational cost
is concerned. This is due to the fact that we can apply Householder matrices to
A from the right during the reduction process whereas the Hessenberg-triangular
reduction relies on X 2 rotations (or reflections).

We demonstrate how the algorithm works usinga@®example (i.e.n = 3).
Suppose we have reducédto triangular form and updated as in Step 1 of
Algorithm 4.3, i.e.,

m

1
OO O0OO0OOoOX
OO0 O0o0o X X
O oo X X X
X X X X X x
X X O X X x
X O O X x %

,>)

1
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X

The first Givens rotatiod; := J(n +1,n + 2,6Y11) = J(4,5,6%11) is then used
to eliminatean+11 = 4,1 from the left, resulting in

E:=JE= A:=J3TA=

>

[eNeNeNalPs
O 000X X
O 0o X X X
X X X X X x
X X @ X x x
X O O X %X x
X X O X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X

o

We have introduced a nonzero elemefi; h+2 = €15 (denoted byx) which is
now annihilated byG; := Gs(1, 2, #%12) from the right,
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>
1

E=EG, =

>
cooco® X
OO0 0o X X
O OO X X X
X X X X X x
X X O X X x
X O O X x %
X X O X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X

resulting in a nonzero elemeat;. This is eliminated applying, := J(1, 2, 6+13)
from the left,

E:=JJE= A:=3JA=

OO OO OoX
OO0 OO0 X X
O 0o X X X
X X X X X x
X X O X X x
X O O X x x
X X O X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X

Thus, we have annihilated the<1, 1) = (4, 1) entry ofA, while keeping the zero
structure ofE. Analogously, the entriegnsj 1, j = 1,...,n — 1, are eliminated
while at the same time restoring the destroyed zerds such that

m>

1
O O O O o X
OO0 OO0 X X
O 0o X X X
X X X X X X
X X O X x %
X O O X x x

v>>

1
X OO X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X

Next, the (2, 1) = (6, 1) entry ofA is eliminated employing a Givens symplectic
matrix Jz := Js(n, 0™1) = J¢(3,6™>1) which introduces a nonzero element in
position (2, n) = (6, 3) of E,

X X X X X X X X X X X X

0 X X X X X X X X X X X

~ ~ 0 0 x x x X ~ ~ X X X X X X
—1TE = — 1TA —

E=JE= 0 0 0Ox 0O  AS A= 0 X X X X X

0 0 0 x x O 0 X X X X X

0 0 ® X X X 0 X X X X X

Now éxn n = & 3 is annihilated by applyindy := Js(n, 2:"2) = J(3, 1:32) from
the right. Hence, we obtain

m»

1

m

&

1
OO OO OoOX
OO0 oo X X
O oo X X X
X X X X X X
X X O X X X
X O O X x %

>

1
O OO X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
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To eliminate the upper part of the first column Afwe use a similar sequence
of transformations as for the lower part, but this time we start from the bottom
elementap 1 = &z 1 which is eliminated by using a Givens rotatidg:= J(n —

1,n, ¢t = 3(2,3,¢4%).

X X X X X X X X X X X X
0 X X X X X X X X X X X
~ ~ 0 ® X X X X ~ ~ 0 X X X X X
—1TE = _1TA —
E=EE=10 0 0x 0 0["A7%52 0 x x x x x
0 0 0 x x O 0 X X X X X
0 0 0 x x X 0 X X X X X
To restore the triangular structure Bf we first employG, 1= G¢(2, 3, ¢132),
X X X X X X X X X X X X
0 X X X X X X X X X X X
~ =~ | 0 0 x x x X ~ [0 x x X X X
E=EG= 0 00 x 0 0} A= 0 X X X X X
0 0 0 X X ® 0 X X X X X
0 0 0 x x X 0 X X X X X
Thenés g can be eliminated usings := J(5, 6, ¢->3) such that
X X X X X X X X X X X X
0 X X X X X X X X X X X
~ ~ 0 0 x x X X ~ ~ 0 X X X X X
— 1T = — 1TA —
E=JE= 0 00x 00O P AS A= 0 X X X X X
0 0 0x x O 0 X X X X X
0 0 0 x x X 0 X X X X X

With the same sequence of rotations we can annihilate the errigsj =
n—1n-2...,2 (here, this is onlya; ;) and retain the triangular structure of

E. We then obtain

X X X X X X X X X X X X
0 x X X X X 0 X X X X X
EZOOXXXX A:Oxxxxx
0 0 0x O 0} 0 X X X X X
0 0 0x x O 0 X X X X X
0 0 0 x x X 0 X X X X X

The next step involves only the application of three symplectic transformations
from the right toA which do not affect. First, a symplectic Householder matrix
is used to annihilaté\n.13n = A4 33,

X X X X X X X X X X X X
0 x X X X X 0 X X X X X
~ [0 0 x x x X ~ A n_| 0 x x x x X
E=10 0 0x 0 o AFARRUYI=I o i 0 x x «x
0 0 0x x O 0 X X X X X
0 0 0 x x X 0 X X X X X
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Secondan:12 = 442 is eliminated by a symplectic Givens rotation,

X X X X X X X X X X X X
0 X X X X X 0 X X X X X
~ [0 0 x x x X ~ A Lh_| 0 xX x X X X
E= 0 00x 0O » A=AKR YY) = 0 0 0 x x X
0 0 0 x x O 0 X X X X X
L0 0 0 x x x| L0 x x x Xx x|
Last, another symplectic Householder reflection yields
X X X X X X] X X X X X X]
0 X X X X X 0 X X X X X
~ | 0 0 x x X X ~ n_| 0 x x x x X
E=1000x 0 o AFARRUYIZI 5 5 0 x x 0
0 0 0x x O 0 X X X X X
|10 0 0 x x X | | 0 X X X X X|

That is, we have generated the required structure in rows and columns 1 and
n+ 1 = 4. In the next execution of the outek) (loop, the same sequence of
transformations is used in rows and columns 2 and2 =5 and we obtain

X X X X X X X X X X X X
0 X X X X X 0 X X X X X
I§=00xxxx A:OOXXXX
0O 0 0x 0 0} 0O 0 0x x O
0 0 0x x O 0 0 0 x x X
0 0 0 x x x 0 0 x x Xx X

The final step consists of eliminating,,, = 83 using J; := Js(n, om0y =
Js(3, 6%31) such that

X X X X X X X X X X X X
0 x x X X X 0 x x X X X
A ~[ 0 0 x X X X ~ A 0 0 x x x X
— 1T — 1TA =
E=JE 0 0 0x 00O y A A= 0 00x x O
0 0 0 x x O 0 0 0 x x x
0 0 ® x x X 0 0 0 x x x
and then restoring the triangular structurefoby applyingJs := Jg(n, 6™™1) =
Js(3, 6%32) from the right toE which yields the desired form
X X X X X X X X X X X X
0 x x x X X 0 x x x X X
~ =~ [0 0 x x x X ~ |0 0 x x x X
E:=Ek= 0 0 0x 0 0}’ A= 0 00x x O
0 0 0x x O 0 0 0 x x X
0 0 0 x x X 0 0 0 x x X
Again the algorithm simplifies substantially if we have a matrix rather than

a pencil.
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Algorithm 4.4 Reduction of a general re&h x 2n matrix to the condensed form
analogous to (6).

Input: Real 21 x 2n matrix A.
Output: Orthogonal matrice®:, Q. € US;,, and transformed matrix

_ AT _| A A
- Q]_AQZ - |: 0 A22

whereA; € R™", Ay, is upper triangular ané/, is upper Hessenberg.

SetA = A7 Ql = |2n7 Q2 = lop.
Fork=1...,n—-1
%  Annihilate A1 k.
Use Ps(k, u*?) to eliminateAn.«:+1.n « from the left. Set
A = Py(k,uk 1)A
Ql = les(k» u l)-
Use Js(k, 6%) to eliminateaj. x from the left. Set
A = Js(K, ek)TA,
Q1 = Quly(k, 6").
UsePs(k, uk?) to ehmmateAkﬂn k from the left. Set
A = Ps(k, uk )A
Qi = QiPg(k, uk?).
% Annih”ateAer k+1n and An+k n+k+2:2n-
Use Ps(k +1, vk 1) to eliminateAn.« k+2n from the right. Set
A = APy(k +1,v%1),
Q2 = QPg(k + 1,0,
User(k +1,¢%) to eliminateap.y k+1 from the right. Set
= Ak(k +1,¢9),
Qz = Qus(k +1,¢%).
Use Ps(k +1,0%2) to eliminateAn:k n+k+2:2n from the right. Set
A = APy(K +1,v2),
Q2 = QoPs(k + 1,442,
Endfor k
% Annihilate &, p.
Use.Js(n M to ellmlnateazn n from the left. Set
A = Jy(n,0MTA,
Q1 = Quls(n, 0").
End

If only eigenvalues are required, the orthogonal transformations need not be

accumulated. In that case, Algorithm 4.4 requireea®@ + 2n? flops. This is

comparable to reducing the Hamiltonian matrix to Hessenberg form by House-

holder reflections which requires 883 — 10n? flops. That is, the initial reduc-

tions necessary for either Algorithm 4.2 or the standard Hessenberg QR algorithm
are equally expensive as far as floating point operations are concerned. Besides
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the O(n?) difference in the flop count, Algorithm 4.4 is more complicated than the
standard Householder Hessenberg reduction as far as indexing, subroutine calls,
and updating the transformations are concerned. This will in practise lead to a
slightly higher execution time than for the Householder Hessenberg reduction.
We will illustrate the reduction of ar2x 2n matrix to the condensed form
(6) using a 6x 6 example. First, we have to annihilate the first columnAof
Using a symplectic Householder reflection we can eliminate all entries below the
diagonal in the first column of the lower left block &f

A= Py(1,ubhHA=

O O X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X

The entry in positioni{ + 1,1) = (4,1) is then eliminated using a symplectic
Givens rotation such that

A=Jy1,600A=

O O O X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X

Now the elements below the diagonal of the upper left block afe annihilated
using again a symplectic Householder reflection.

A= Py(1,utd)A=

OO OO OoX
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X

The next three steps reduce the+1)st = 4th row ofA to the desired form.
Applying a symplectic Householder reflection form the right, we can annihilate

An+1,3n = Ag 33, resulting in

A= APy(2, oY) =

cNoNoNeNaRPS
X X X X X X
X X O X X X
X X X X X x
X X X X X x
X X X X X X

Then,dh+12 = 842 is eliminated by a symplectic Givens rotation,
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A:=Ak(2, 6" =

[cNoNeoNeoNaRPS
X X O X X X
X X O X X X
X X X X X x
X X X X X X
X X X X X x

Next, another symplectic Householder reflection yields

A= AP(2,v%?) =

cNeoNeNoNolFS
X X O X X X
X X O X X X
X X X X X x
X X X X X x
x X O x X x

That is, we have generated the required structure in rows and columns 1 and
n+1 = 4. In the next execution of the outer loop, the same sequence of trans-
formations is used in rows and columns 2 andl 2 = 5 and we obtain

>

11
O OO O o X
OO0 oo X X
X oo X X X
X X X X X X
X X X X X X
X X O X x x

The final step consists of eliminatirgn n = 863 usingJs(3, 62) such that

A:=3y3,63TA=

OO OO OoX
O OO0 X X
OO0 o X X X
X X X X X x
X X X X X x
><><O><><><

5. Error analysis

In this section, we will derive the error analysis for Algorithms 4.1 and 4.2.

Since in both methods all transformations are performed with orthogonal
and orthogonal symplectic matrices we can apply the standard backward error
analysis of Wilkinson, e.g. [27, 9]. To do this we need to analyse the backward
error. We begin with an analysis of the computation of the eigenvalues of a
Hamiltonian matrixH via Algorithm 4.2.

Using the usual arguments in the analysis of orthogonal transformations, e.g.,
[27, 9], we obtain that there exists a & 2n matrix E, with |E| < ¢ |H |, where
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¢ is a small number equivalent to the machine precision, énd@z e USy,
such that the computed factorization satisfies

~ _[Hu H A -
(@1) R Rl RIS

Note that if \ is a computed eigenvalue &f, we have that\? is an eigenvalue

of
—Hj, HE Hii Hi | _ oa71q0
{ 0 -H 0 Hx =JHJH,
and by (41)5\2 is also an eigenvalue ofi(+ JETJ)(H +E).
The condition numberf a simple eigenvalue. of a matrix A € R™*" as
defined in [27] is given by
1 1
42 = ,
“2 SO Iytx|
wherex andy with |x|, = |y[, = 1 are the right and left, respectively, eigen-
vectors ofA corresponding to\.

Theorem 5.1 Let A be a nonzero and simple eigenvalue of a real Hamiltonian
matrix H € Hj,, and let1/s(\) be its condition number as given in (42). Let
¢ be the machine precision. If the matrix E in (41) satisfie§ < ¢|H |, and

fJE(”;) < 1, then Algorithm 4.2 yields a computed eigenvaluguch that
IHle +O(2) < 2[H]e

(L— pesy)s) s(A)

(43) A=A < +0(2).

Proof. Since we have assumed thais simple, from Lemma 3.1 b) we obtain
that A\? is a nondefective eigenvalue bf? of multiplicity two. Furthermore, if
y, X with |x| = 1, |y| = 1 are the left and right eigenvectorsiéfto A then they
are also eigenvectors ¢f2 to the eigenvalue\?.

Now consider perturbations in the matrid ¢ JETJ)(H + E). Clearly

(44) (H +JETJ)(H +E) =H2+HE +JETJH + JE'JE,

which isH ? perturbed with a matrix of orded (). From the analytical properties

of simple eigenvalues and its eigenvectors and the discussions given above,
it follows that whene is sufficiently small, there exists an eigenvalﬁlé of

(H +JETJ)(H + E), such that its unit left and right eigenvectorsX can be
expanded ay =y +cy; + O(g?), X = X + exg + O(¢?). Multiplying by y" on the

left and byx on the right hand sides of (44), and usigigH = Ay, Hx = \x,

we obtain

yH(H +JETI)(H +E)x

y"(H2 +HE + JETJH + JETJE)x
NyHx + AyH(E + JETI)x + O(£?).

On the other hand,
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y"(H +JETI)(H +E)x
= (§" —eyf' + O(e?)) (H +JETI)(H +E) (X — exq + O(?))
= 22 (§H% — e(9™xq +y1'R)) + O(e?)
= \yMx + 0(£d).
Therefore

yfix

and with the reciprocal eigenvalue condition numbgY) = |y"x|, we obtain

+0(e?),

3 8 2|H] [ 2
45 A+ A A=A +0O(e9).
(45) A+ Al | < s\ ()
Using the inequality\+X| > 2|A| —|A— | together with the inequalit ,\”E(Hf) <

1 and omitting the second order perturbations, we obtain (43) by solving the
guadratic inequality

2[H[|Ale

N AR =20 N =N+
| | Al | sV

>0. O
As a consequence of Theorem 5.1 we have that Algorithm 4.2 is numerically
backward stable.

Remark 5.2From the error analysis in Theorem 5.1 we see the major differ-
ence between the new method and the square reduced method of Van Loan for
which the perturbation analysis yields that the computed eigenvalues are the ex-
act eigenvalues ofi2 +F, and the perturbation satisfi¢s | < < |H?|. In our

new approach we can avoid squaring the matrix, but as we have seen in Sect. 4,
the price is an increase in computational cost.

Now we give an error analysis for the eigenvalues of a Hamiltonian pencil.

Let (A, 1) be a nonzero finite simple eigenvalue of a real regular Hamiltonian
pencilaE — 8Aq, then by Proposition 2.2 a);-(\, 1) is also a simple eigenvalue
of aEy — SA4. Furthermore, ify, x with |y|, |x| = 1 are the left eigenvectors
corresponding toX, 1) and ), 1), respectively, then we have

(46) yH()\EH —Ay) =0, (AEy — AH)JEHT)?: 0;

(47) XN(—AEn — A1) =0,  (—AEq—AQ)JEy =0.

If we take thechordal distance(see [23, p.283]) as a metric for the complex
numbers, i.e.,

lod — ]
Vi +|82y/|v[2 + |52

then the condition numbers oh(1) and ), 1) are [9, 23]

x((a, B), (7, 6)) =
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_ |E3X]
o T VAEEIRZ + yrAETRE
(49) WY = 53]

V/IXHEWJELT? + [xHALIETY
SinceEnyJA, = —ALJE] = A4JTE], we have
o’EnJE] — BPARITA (@En — BAR)JI (aEn — BAW)T
(aBy + BAR)I (0B + BAW)T.
It is clear that §2, 1) is a double eigenvalue ofE4JE] — 3ALJTA] and
(50)  YyM(VERJIE] - ARITAL) =0, (VERJIEL — AL TA )X =0,

which means thag andx are left and right eigenvectors aE4JE! — BALITA,
corresponding to)?, 1).

Similar to the matrix case, the eigenvalui?,(l), where é\, 1) is computed
by Algorithm 4.1, can be considered as an eigenvalue of the matrix pencil

a(Eq +E)J(En +E)" — B(A4 +F)IT(Aq +F)T,
whereE andF are real small perturbation matrices satisfying

(51) IE, FII <el[En, AH]l
(see [9, 19]). We then get

Theorem 5.3 Let (), 1) be a nonzero simple eigenvalue of a real regular Hamil-
tonian pencilaEy — SAG. If

V1I+2 ([ERY] + [ESx])
Al YHELJETX

where y, x are defined in (46), (47), and if we 8€t, —\) 1= x(A\) +x(—A) where
k(A) and k(—X) are defined as in (48) and (49), then there is an eigenv@lu#)
computed by Algorithm 4.1 such that

(52) I[En, Anlle <1

(53) X((A, 1), (A, 1) < e |[En, Anl] £(\, =) +O(£?).

Proof. If (:\, 1) is the analogue of\; 1), computed by Algorithm 4.1, theri{, 1)
is an exact eigenvalue of the matrix pencil

a(En +E)I(En +E)" — B(Aq +F)IT(Ay +F)T

with E,F € R2"*2" satisfying (51), i.e.J[E, F]| < ¢|[En, Aul|. This matrix
pencil can be considered as the perdiyJE] — 3AnJTA], plus a perturbation
of ordere. Thus, from (50) and by using the result in [23, Theorem 2.2, p.293]

we obtain _
(3\2 1) — <yH(AH + F)‘]T(AH + F)TX

(54) yH(EH +E)J(E4 +E)TX’ 1) +0().
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From (46), (47), and (50) we get
yH(AL +F)IT(AG + F)'x = MyHELIETX — My"ERIF X — yHFIEIX) + O(c?)
and

yH(Ey + E)J(Eq + E)'X = yHERIEIX + y"ELIETX + yHEJIEIX + O(£2).
(Note that by assumption (52) and without considering@{e?) terms,
Y(En + E)I(En + E)'X] > [y"EWIEIX] — (|ELY] + [|EIX]) [[En, A1l >0

and hence, the right-hand side of (54) is well defined.)
Therefore

N2YH(En +E)I (B +E)'X — YA +F)IT(AL +F)'X =
(A2 — N)YMERIETX + A(yHERJIETX + yHEJETX)

+ Ay"EqIFTX — yHRIE'X) =

(A2 = N)(YMERIELX + YMELIETX + YPEJELX)

+ AN2(yHERIETX + yHEJETX) + AM(y"EqIF X — yHFIE!X)

O(£?)
Hence, by omitting the second order terms, we have
N(YHERIETX + yHEJIETX) + MYHERIFTX — YHFIEIX)
YyHERJIE X + yHELIETX + yHEJETX
A {AYMERIETX + yHEJEIX) + yHERIFTX — yHFIE] X}
yHEHJE;'r)Z

22 )2

Q

Thus,

A ('[)\yHEHJ7 yHERI] [ EI })?+yH[E7 F] { NEIX H)

“iEl%
YHEHIEX]

INVL+ARIE, FII(IETY] + |EXX])
o ‘yHEHJEJ{)?I

By using the condition

eV/L+ R En, Al (ETY] + [ETKD _
AllyMERIETR

and|\+ | > 2|A| — |A — |, we get

ev/1+ AR (IEn, Al (|ETY] + |ETX])
lYHERJEX] '

A= AR +A] ~

A=A <
From (46) we have

MWHERJIES X = yHALIEX,
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and thus
(1 +[AP)YPERIEIX) = [yMERIEIX] + [y ARIEIX]?

Finally we get

< A=A
W1, (A1) A=A
I+ PR+
A=A
= Lep

e [[En, Anll (|ELY] + |ERX])
1+ APYHELIETK]
= c|(En, Adll KO\ —),

which proves (53). O
Remark 5.4Clearly, the bound (53) also holds for the eigenvalue (1).

Remark 5.5Usually x()\) andx(—\) are different and thus, the eigenvalue con-
dition numberx(\, —\) < 2max{x(\), k(—A)} is a combination of<(\) and
k(—=A). This is the condition number of our method both far 1) and A, 1).

If we consider structured perturbations, i.E,,F with |[E F]| < ¢|[En, Aul|
such thatv(Ey +E) — B(A4 +F) is still a Hamiltonian pencil, ther(\) =~ «(—\).

In this case, X, 1) and (), 1) have equivalent perturbation properties. So we
can assume that in general)\) and x(—\) have the same magnitude. If this is
true, then the bound (53) is as good as the standard perturbation bound.

6. Numerical examples

Algorithm 4.2 was implemented in Fortran 77 and was tested for all examples
given in the benchmark collections for continuous-time algebraic Riccati equa-
tions [5], the examples given in [25], and some randomly generated examples.
Here, we present the most interesting results obtained by these experiments.

The numerical tests were performed using IEEE double precision arithmetic
with machine precisios ~ 2.2204x 10~1¢ on a HP Model 712/60 workstation
with operating system HP-UX 9.0. As compiler we used the HP-UX Fortran
77 compiler as invoked by77 . The programs were compiled using standard
optimization.

We compared the following methods:

— URVHOQR, the symplectic URV decomposition given in Algorithm 4.4 and
Hessenberg QR iteration using LAPACK subroutine DHSEQR, i.e., the prod-
uct —H,J,H1; was formed explicitly,

— URVPSD, the symplectic URV decomposition given in Algorithm 4.4 and
the periodic Schur decomposition [10] as implemented in [26],
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— SQRED, Van Loan’s square reduced method as implemented in [4],
— LAPACK , nonsymmetric eigenproblem solver DGEEVX from LAPACK [3].

All subroutines use the BLAS and LAPACK [3] as far as possible. But note that
the implementations of URVHQR, URVPSD, and SQRED are not block-oriented.

Example 6.1[25, Example 2] Let
F =diag(1 1072, 104, 10°%, 10°%)

Ju.

with U € US,, randomly generated by five symplectic rotations and five reflec-
tors. Thus,

then a Hamiltonian matrix! is obtained by

F 0

-7
H=U [o —FT

o(H)={£1,+1072 +104 +10°°,+10°8}.

Table 1 shows the absolute errors in the eigenvalue approximations computed by
the four methods.

Table 1. Example 6.1, absolute errofa — }|

A URVHQR URVPSD SQRED LAPACK
1 0 0 0 78 x 10716
1002 55x10°1% 55x10°1% 55x10°1% 50x10°17
104 77x10% 16x1018 16x101% 26x10°18
1006 41x1012 10x1018 15x1011 84x10°18
108 17x10°% 31x10°Y 22x109 47x10°Y

From Table 1 the loss of accuracy {ifl | /|A| for Van Loan’s method is
obvious. The same loss of accuracy is observed as was to be expected when
the symplectic URV decomposition is used but the produlet,H;; is formed
explicitly. Using the periodic Schur decomposition yields the exact eigenvalues
with respect to machine precision as does the QR algorithm implemented in
LAPACK.

Example 6.2[25, Example 3] The Frank matrik € R"*" is defined by

[ n n-1 n-2 ... ... 2 1 7
n-1 n-1 n-2 ... ... 2 1
0 n-2 n-2 ... ... 2 1
F = 0 0 n-—3
2 1
. O 0 0 1 1 |

Numerische Mathematik Electronic Edition
page 355 of Numer. Math. (1998) 78: 329-358



356 P. Benner et al.

All the eigenvalues are real and positive. For increasinghe eigenvalue con-
dition number becomes worse for the small eigenvalues. A Hamiltonian matrix
having the same eigenvalues as the Frank matrix together with their negative
counterparts is generated as in Example 6.1,

H:UT“—) _?:T]u,

with U € US,, randomly generated by symplectic rotations and reflectors.

We tested all four methods fan = 12. Since exact eigenvalues are not
known, we compare the values computed by URVHQR, URVPSD, and SQRED
with those obtained by DGEEVX (denoted byR). The results for the five
eigenvalues of smallest absolute value (and worst condition number) are shown
in Table 2. (Here5\ denotes the computed values by either of the three methods
other than LAPACK.)

Table 2. Example 6.2)X — AR

A~ s\ URVHQR URVPSD SQRED

0.2847 18x10% 18x10° 27x101 28x10°°
0.1436 18x10°® 27x108 99x1010 76x10°8
0.08122 Bx108 14x107 59x10° 56x107
0.0495 26x10°8 23x107 98x10° 14x10°°
0.03102 5 x108% 12x107 50x10° 11x10°°

Again, the symplectic URV decomposition yields eigenvalue approximations
according to the accuracy to be expectedspy) and Theorem 5.1 whereas both
SQRED and URVHQR again loose accuracy of orftét /|A|.

Example 6.3We tested the four methods for randomly generated Hamiltonian
matrices with entries distributed normally in the intervatq 1]. Since the
eigenvalue distribution for these examples usually behaves nicely, the eigenval-
ues computed by either of the four methods are computed to almost the same
accuracy. We give the CPU times fon X 2n examples for several sizes of

For each size of, we computed 100 examples. The values given in Table 3
are the mean values of the CPU times measured on a HP Model 712/60 work
station.

Table 3 shows that URVHQR, URVPSD, and SQRED are much faster than
the standard QR algorithm. The speed-ups are in relative accordance to the flop
counts. There is a little overhead which causes all three methods to be slightly
slower than to be expected from the flop counts, though. This is due to the fact
that these methods are more complex as far as index handling, memory access,
and subroutine calls are concerned.

Besides the faster computation of the eigenvalues, both URV based meth-
ods and Van Loan’s method return the right pairing of the eigenvalueish\as
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Table 3. Example 6.3, CPU times

n URVHQR URVPSD SQRED LAPACK

25 0.059 0.092 0.061 0.142
50 0.40 0.56 0.34 0.77
75 1.28 1.72 1.03 2.36
100 3.02 3.95 241 5.30
125 5.83 7.36 4.66 10.07
150 9.89 12.33 7.99 17.36
175 15.70 19.52 12.53 27.79
200 23.15 28.61 18.51 41.44

i =1,...,n. Since DGEEVX treats a Hamiltonian matrix like an arbitrary unsym-
metric matrix, small perturbations can cause computed eigenvalues with small
real parts to cross the imaginary axis. For instance, the number of stable eigen-
values in Example 6.3 returned by DGEEVX for= 100 varied between 95 and
103.

7. Conclusions

We have presented a new method for computing the eigenvalues of Hamilto-
nian matrices and pencils which can also be used for symplectic matrices and
pencils employing a Cayley transformation. The method preserves the underlying
Hamiltonian structure and uses only backward stable orthogonal transformations.
The algorithms save a significant amount of computational cost compared to the
standard QR and QZ algorithms. On the other hand, the new method is more
expensive in both computational cost and work space than Van Loan’s method
and its analogues for the symplectic case, but does not suffer from® ¢he)

loss of accuracy as these methods do.
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