
A CS decomposition for orthogonal matrices

with application to eigenvalue computation

D. Calvetti∗ L. Reichel† H. Xu‡

Abstract

We show that a Schur form of a real orthogonal matrix can be obtained from a full CS
decomposition. Based on this fact a CS decomposition-based orthogonal eigenvalue method
is developed. We also describe an algorithm for orthogonal similarity transformation of an
orthogonal matrix to a condensed product form, and an algorithm for full CS decomposition.
The latter uses mixed shifted and zero-shift iterations for high accuracy. Numerical examples
are presented.

Keywords. Orthogonal matrix, Eigenvalue problem, Full CS decomposition, High accuracy
AMS subject classification. 65F15, 15A23, 15A18, 15B10, 65G50, 65F35

1 Introduction

The eigenvalue problem for unitary and orthogonal matrices has many applications, including time
series analysis, signal processing, and numerical quadrature; see, e.g., [2, 7, 13, 14] for discussions.
These applications, as well as the elegant theory, have spurred the development of numerical
methods for these eigenvalue problems. Both QR algorithms and divide-and-conquer methods
have been developed; see [1, 3, 8, 9, 10, 11, 12, 15, 18, 19]. Both types of methods require initial
unitary similarity transformation of a given unitary matrix Q ∈ C2n×2n to an upper Hessenberg
matrix H represented in product form,

H = H1H2 . . . H2n−1H2n,

where

Hk = diag

[
Ik−1,

[
−γk σk
σk γk

]
, I2n−k

]
, |γk|2 + σ2

k = 1, γk ∈ C, σk > 0, (1)

is a complex Householder matrix for 1 ≤ k ≤ 2n − 1, and H2n = diag [I2n−1,−γ2n] , with γ2n ∈
C unimodular, is a truncated complex Householder matrix. The Hessenberg matrix H can be
transformed further by unitary similarity transformation into the product form HoHe, where

Ho = H1H3 . . . H2n−1, He = H2H4 . . . H2n. (2)

The latter transformation was first described by Ammar et al. in [1] for orthogonal matrices
of even order Q ∈ R2n×2n, and they applied it to determine the eigenvalues and, if so desired,
eigenvectors of Q. Orthogonal matrices of odd order can be reduced to orthogonal matrices of
even order by deflation; see below. Subsequently, Bunse–Gerstner and Elsner [4] developed a

∗Department of Mathematics, Case Western Reserve University, Cleveland, OH 44106, USA. E-mail:
dxc57@case.edu.
†Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA. E-mail:

reichel@math.kent.edu. Research supported in part by NSF grant DMS-1115385.
‡Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA. E-mail: feng@ku.edu. Research

supported in part by Fudan University Key Laboratory Senior Visiting Scholar Project.

1

QZ-type algorithm for the matrix pencil {H∗o , He} by exploiting the quasi-diagonal structure of
the matrices Ho and He. Here and below the superscript ∗ denotes transposition and complex
conjugation. A superscript T will denote transposition only.

This paper describes how an orthogonal matrix Q can be brought into the form HoHe directly
by an orthogonal similarity transformation. This transformation is related to the transformation
used by Bunse–Gerstner and Elsner [4], but with different reduction targets and reduction order.
In this way, we obtain a new approach for computing the spectral factorization of an orthogonal
matrix based on the product form HoHe.

Real eigenvalues, i.e., eigenvalues ±1, of an orthogonal matrix Q can be removed by deflations;
see [1, 8] for discussions. Therefore throughout this paper we assume that the orthogonal matrix
Q is of even order, 2n× 2n, and does not have real eigenvalues. Then we can apply an orthogonal
similarity transformation to the expression HoHe to obtain a matrix of the form

ΣZΣZT , Σ = diag[In,−In], Z =

[
Z11 Z12

Z21 Z22

]
,

where the blocks Z11, Z21, Z
T
12, Z

T
22 are n× n and upper bidiagonal.

Suppose that

Z =

[
U1 0
0 U2

] [
Φ Ψ
Ψ −Φ

] [
V1 0
0 V2

]T
is a full CS decomposition, where U1, U2, V1, V2 are orthogonal,

Φ = diag[φ1, . . . , φn], Ψ = diag[ψ1, . . . , ψn],

and the diagonal entries satisfy φ2i + ψ2
i = 1 and φi, ψi > 0 for i = 1, . . . , n. Then

ΣZΣZT =

[
U1 0
0 U2

] [
Φ2 −Ψ2 2ΦΨ
−2ΦΨ Φ2 −Ψ2

] [
U1 0
0 U2

]T
,

from which we obtain a real Schur form of Q after a simple permutation. We develop an algorithm
to compute a full CS decomposition of the matrix Z and determine a real Schur form of Q from
this decomposition. Sutton [16] describes an algorithm for computing a full CS decomposition of a
unitary matrix in a 2× 2 block form. His algorithm is more reliable than other CS decomposition
methods. Our algorithm follows the approach described in [17] for SVD iterations.

An orthogonal matrix is perfectly well-conditioned and all its eigenvalues are unimodular.
Therefore, any backward stable method will compute all eigenvalues with high accuracy. However,
this does not mean that small real and imaginary parts of the eigenvalues always are computed
with high relative accuracy. For this reason, we apply the Demmel–Kahan zero-shift SVD iteration
technique [5] to accurately compute small singular values of blocks of Z.

When an orthogonal similarity transformation needs to be generated for the orthogonal eigen-
problem, a CS decomposition-based eigenvalue method only requires a pair of orthogonal matrices
{U1, U2} or {V1, V2} to be determined. This results in an efficient algorithm. Moreover, differently
from QR-type algorithms, which normally use unimodular shifts, the CS decomposition-based
method uses standard shifts.

We remark that the initial reduction method can be applied to complex unitary matrices as
well. The factorization ΣZΣZT provides a new condensed form for real orthogonal matrices and
therefore is of independent interest. The full CS decomposition algorithm can be applied to solve
real orthogonal eigenvalue problems, as well as to compute a CS decomposition of a unitary matrix.

This paper is organized as follows. Section 2 describes the initial orthogonal transformation
that determines the representation HoHe of the given matrix Q. We explain in Section 3 how a
real orthogonal matrix is orthogonally similar to ΣZΣZT and why a full CS decomposition of Z
gives a Schur form of ΣZΣZT . Section 4 contains a full CS decomposition algorithm and some
implementation details, and Section 5 presents a new algorithm for the orthogonal eigenvalue
problem based on the full CS decomposition. This section also contains a few computed examples.
Section 6 contains concluding remarks.

2

In the remainder of this paper, I denotes an identity matrix, ej is the jth column of I, and
|| · ||2 stands for the Euclidean vector norm or associated induced matrix norm. We use MATLAB
inspired notation to define a submatrix. For instance for a matrix A = [aij], we let

A(i : j, k) := [aik, . . . , ajk]T

denote the submatrix that consists of the vector made up of the entries of column k of A in rows
i through j. Similarly,

A(k, i : j) := [aki, . . . , akj]

stands for the vector consisting of the entries of row k and columns i through j.

2 Initial reduction to condensed form

This section describes a process for reducing a 2n × 2n unitary matrix Q by unitary similarity
transformation to the form HoHe, where both Ho and He are in product form; see (2). Details of
the process are shown in the algorithm below, which uses the following elementary matrices:

(a) Hk(γ, σ) or simply Hk (1 ≤ k ≤ p− 1) denotes a p× p Householder matrix analogous to (1).
Note that for a vector x = [x1, x2]T 6= 0 with x2 ≥ 0, we have

γ = − x1√
|x1|2 + x22

, σ =
x2√

|x1|2 + x22
≥ 0.

Then [
−γ σ
σ γ̄

]∗
x =

[
||x||2

0

]
.

For k = p, we let Hp(γ) = diag[Ip−1,−γ]. When σ is real, [Hk(γ, σ)]∗ = Hk(γ, σ).

(b) H≥i(x) is a modified p × p Householder matrix associated with a vector x ∈ Cp−i+1. It is
defined by

H≥i(x) = diag[Ii−1, H̃] diag[Ii−1, β, Ip−i],

where H̃ is a Householder matrix such that H̃x = β||x||2e1 and |β| = 1. Therefore,

[H≥i(x)]∗
[

0
x

]
= ||x||2ei.

When i = p, x is a scalar and H≥p(x) = diag[Ip−1, β], where β = 1 if x = 0; otherwise
β = x/|x|.

For a given vector x = [yT , xi, z
T]T with y ∈ Ci−1, z ∈ Cp−i, and [xi, z

T]T 6= 0, we can
determine a Householder matrix Hi(γ, σ) with σ ≥ 0 and a matrix H≥i+1(z) such that

[Hi(γ, σ)]∗[H≥i+1(z)]∗x = [y, α, 0]T , α =
√
|xi|2 + ||z||22 > 0.

Algorithm 1. Given a 2n × 2n unitary matrix Q, the algorithm computes a unitary matrix Θ0

such that Θ∗0QΘ0 = HoHe.

0. Set Θ0 = I2n.

1. For k = 1, 2, . . . , n− 1

(a) Determine H≥2k := H≥2k(Q(2k : 2n, 2k − 1))

(b) Update Q← H∗≥2kQH≥2k, Θ0 ← Θ0H≥2k

3

(c) Determine H2k−1 := H2k−1(γ2k−1, σ2k−1) with γ2k−1 and σ2k−1 ≥ 0 satisfying[
−γ2k−1 σ2k−1
σ2k−1 γ̄2k−1

]∗ [
q2k−1,2k−1
q2k,2k−1

]
= e1

(d) Update Q← H∗2k−1Q

(e) Determine H≥2k+1 := H≥2k+1(Q(2k, 2k + 1 : 2n)∗)

(f) Update Q← H∗≥2k+1QH≥2k+1, Θ0 ← Θ0H≥2k+1

(g) Determine H2k := H2k(γ2k, σ2k) with γ2k and σ2k ≥ 0 satisfying[
−γ2k σ2k
σ2k γ̄2k

]∗ [
q2k,2k
q2k,2k+1

]
= e1

(h) Update Q← QH∗2k

End For

2. (a) Determine H≥2n := H≥2n(Q(2n, 2n− 1))

(b) Update Q← H∗≥2nQH≥2n, Θ0 ← Θ0H≥2n

(c) Determine H2n−1 := H2n−1(γ2n−1, σ2n−1) with γ2n−1 and σ2n−1 ≥ 0 satisfying[
−γ2n−1 σ2n−1
σ2n−1 γ̄2n−1

]∗ [
q2n−1,2n−1
q2n,2n−1

]
= e1

(d) Update Q← H∗2n−1Q

(e) Determine H2n := H2n(γ2n) with γ2n = −q2n,2n
We illustrate the process with a 6×6 unitary matrix. For k = 1, we determineH≥2, H1, H≥3, H2

such that

Q =


x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x


H∗≥2QH≥2
−→


x x x x x x
+ x x x x x
0 x x x x x
0 x x x x x
0 x x x x x
0 x x x x x



H∗1H
∗
≥2QH≥2
−→


1 ⊗ ⊗ ⊗ ⊗ ⊗
0 x x x x x
0 x x x x x
0 x x x x x
0 x x x x x
0 x x x x x


H∗≥3H

∗
1H
∗
≥2QH≥2H≥3
−→


1 ⊗ ⊗ ⊗ ⊗ ⊗
0 x + 0 0 0
0 x x x x x
0 x x x x x
0 x x x x x
0 x x x x x



H∗≥3H
∗
1H
∗
≥2QH≥2H≥3H

∗
2

−→


1 ⊗ ⊗ ⊗ ⊗ ⊗
0 1 0 0 0 0
0 ⊗ x x x x
0 ⊗ x x x x
0 ⊗ x x x x
0 ⊗ x x x x

 ,

where “0” denotes a zero introduced by transformation, “+” stands for a nonnegative entry, the
entries “1” are due the fact that the matrices Hi and Q are unitary, and “⊗” is a zero entry that
arises because we work with unitary matrices.

For k = 2, we repeat the procedure with the trailing 4× 4 submatrix to obtain

H∗≥5H
∗
3H
∗
≥4H

∗
≥3H

∗
1H
∗
≥2QH≥2H≥3H

∗
2H≥4H≥5H

∗
4 =


1 ⊗ ⊗ ⊗ ⊗ ⊗
0 1 0 0 0 0
0 ⊗ 1 ⊗ ⊗ ⊗
0 ⊗ 0 1 0 0
0 ⊗ 0 ⊗ x x
0 ⊗ 0 ⊗ x x

 .

4

Finally, application of H≥6, H5, and H6 yields

H∗5H
∗
≥6H

∗
≥5H

∗
3H
∗
≥4H

∗
≥3H

∗
1H
∗
≥2QH≥2H≥3H

∗
2H≥4H≥5H

∗
4H≥6H

∗
6 = I6.

In general, we have

H∗2n−1H
∗
≥2nH

∗
≥2n−1 . . . H

∗
≥3H

∗
1H
∗
≥2QH≥2H≥3H

∗
2 . . . H≥2n−1H

∗
2n−2H≥2nH

∗
2n = I.

Using the fact that H∗k commutes with H≥j and H∗≥j for any j > k + 1, and letting

Θ0 = H≥2H≥3 . . . H≥2n−1H≥2n,

the above equation can be written as

(H∗2n−1H
∗
2n−3 . . . H

∗
3H
∗
1)Θ∗0QΘ0(H∗2H

∗
4 . . . H

∗
2n−2H

∗
2n) = I,

which gives

Θ∗0QΘ0 = HoHe, Ho = H1H3 . . . H2n−1, He = H2n . . . H4H2 = H2H4 . . . H2n. (3)

Several comments are in order:

1. Algorithm 1 is similar to the algorithm described in [4] for unitary matrices. The main
difference is that the latter takes Ho as the reduction target. Our algorithm computes the
matrices H1, . . . ,H2n−1 explicitly in the elimination process. With H2k−1 being involved
explicitly, Algorithm 1 avoids the decision-making step for determining the matrices H≥2k+1,
and is more straightforward to implement and potentially more reliable.

2. Algorithm 1 follows the same approach used in [17] for the initial reduction of a full CS
decomposition. The procedure in [17] differs in that it applies two-sided non-similar block
diagonal unitary transformations.

3. If Hk is diagonal for some k during the computations, the unitary matrix HoHe decouples
and yields two or more submatrices.

4. If Q is real orthogonal, because detHk = −1 for all k = 1, . . . , 2n − 1, it follows that
detQ = −detH2n(γ) = γ. In this case, if γ = −1, then 1 and −1 must be eigenvalues of Q.
These eigenvalues can be deflated; see [1, 8].

5. Algorithm 1 requires about 64n3/3 flops for computing Ho, He. If the unitary matrix Θ0

has to be stored, additional 32n3/3 flops are needed. Here, one flop stands for one of the
arithmetic floating-point operations +,−,×,÷,√.

We briefly turn to the stability of Algorithm 1. Let Θ̂0, Ĥk (k = 1, . . . , 2n) be the computed
matrices determined by the reduction process. It follows from standard error analysis [6, Chapter
5] that there are unitary matrices Θ̃0 and H̃k (k = 1, . . . , 2n) such that

I + ∆ = (H̃1H̃3 . . . H̃2n−1)∗Θ̃∗0(Q+ E1)Θ̃0(H̃2H̃4 . . . H̃2n−2H̃2n)∗

with
||E1||2, ||Θ̃0 − Θ̂0||2, ||H̃1 − Ĥ1||, . . . , ||H̃2n − Ĥ2n||2 = O(µ),

where I + ∆ is the computed matrix obtained without enforcing the diagonal entries to be 1 and
the entries with ⊗ in the illustration to be zero; µ denotes machine precision. From

||(I + ∆)∗(I + ∆)− I2n||2 = ||(Q+ E1)∗(Q+ E1)− I2n||2 = O(µ)

and the zero pattern of ∆ as shown in the illustration, one can show similarly as in [17] that

||∆||2 = O(µ).

5

It is easily seen that

Ĥ1Ĥ3 . . . Ĥ2n−1 = H̃1H̃3 . . . H̃2n−1(I + Fo), Ĥ2Ĥ4 . . . Ĥ2n = H̃2H̃4 . . . H̃2n(I + Fe)

with ||Fo||2, ||Fe||2 = O(µ). Then for the computed matrices

Ĥo := Ĥ1Ĥ3 . . . Ĥ2n−1, Ĥe := Ĥ2Ĥ4 . . . Ĥ2n,

one has
ĤoĤe = Θ̃∗0(Q+ E)Θ̃0, ||E||2 = O(µ).

This shows backward stability of Algorithm 1.

3 Transformation of HoHe to ΣZΣZT

From now on, we assume that Q ∈ R2n×2n is orthogonal and that there is a real orthogonal matrix
Θ0 such that

ΘT
0QΘ0 = HoHe,

where

Ho = H1H3 . . . H2n−1 = diag

[[
−γ1 σ1
σ1 γ1

]
,

[
−γ3 σ3
σ3 γ3

]
, . . . ,

[
−γ2n−1 σ2n−1
σ2n−1 γ2n−1

]]
,

He = H2H4 . . . H2n = diag

[
1,

[
−γ2 σ2
σ2 γ2

]
, . . . ,

[
−γ2n−2 σ2n−2
σ2n−2 γ2n−2

]
,−1

]
,

and σk > 0 for k = 1, . . . , 2n− 1. Note that all γ1, . . . , γ2n−1 are real.
Define for any γ, σ ∈ R with σ2 + γ2 = 1 and σ > 0, the numbers a, b ∈ R with a, b > 0 by

(a, b) =



(
σ√

2(1+γ)
,

√
2(1+γ)

2

)
, γ ≥ 0,

(√
2(1−γ)
2 , σ√

2(1−γ)

)
, γ < 0.

Then one obtains the spectral decompositions[
a b
b −a

]T [−γ σ
σ γ

] [
a b
b −a

]
=

[
1 0
0 −1

]
(4)

and [
b a
−a b

]T [−γ σ
σ γ

] [
b a
−a b

]
=

[
−1 0
0 1

]
. (5)

In fact, if σ = sin θ and γ = cos θ for some θ ∈ (0, π), then a = cos(θ/2) and b = sin(θ/2).
Application of (4) to each block of Ho yields an orthogonal matrix

Θo = diag

[[
a1 b1
b1 −a1

]
,

[
a2 b2
b2 −a2

]
, . . . ,

[
an bn
bn −an

]]
with ak, bk > 0 and a2k + b2k = 1 for k = 1, . . . , n, such that

ΘT
oHoΘo = diag[1,−1, 1,−1, . . . , 1,−1].

Similarly, by applying (5) to each 2× 2 block in He we can determine an orthogonal matrix

Θe = diag

[
1,

[
f1 g1
−g1 f1

]
, . . . ,

[
fn−1 gn−1
−gn−1 fn−1

]
, 1

]

6

with fk, gk > 0 and f2k + g2k = 1 for k = 1, . . . , n− 1, such that

ΘT
e HeΘe = diag[1,−1, 1,−1, . . . , 1,−1].

Introduce

P = [e1, e3, . . . , e2n−1, e2, e4, . . . , e2n], Σ =

[
In 0
0 −In

]
.

Then
(ΘoP)THo(ΘoP) = (ΘeP)THe(ΘeP) = Σ.

Now define
Z := (ΘoP)T (ΘeP) = (PTΘoP)T (PTΘeP) =: ZoZe,

where

Zo =



a1 b1
a2 b2

. . .
. . .

an bn
b1 −a1

b2 −a2
. . .

. . .

bn −an


,

(6)

Ze =



1 0
f1 −g1 0

. . .
. . .

. . .

fn−1 −gn−1 0
0 g1 f1

. . .
. . .

. . .

0 gn−1 fn−1
0 1


.

Then it follows from

ΘT
0QΘ0 = HoHe = ΘoPΣ(ΘoP)T (ΘeP)Σ(ΘeP)T

that
(Θ0ΘoP)TQ(Θ0ΘoP) = ΣZΣZT . (7)

Because Z is an orthogonal matrix, it has a CS decomposition, see, e.g., [6],[
U1 0
0 U2

]T
Z

[
V1 0
0 V2

]
=

[
Φ Ψ
Ψ −Φ

]
, (8)

where U1, U2, V1, V2 ∈ Rn×n are orthogonal and

Φ = diag[φ1, φ2, . . . , φn], Ψ = diag[ψ1, ψ2, . . . , ψn]

with φ2k + ψ2
k = 1 and φk, ψk > 0 for k = 1, . . . , n. Finally, let

Θ := Θ0ΘoP

[
U1 0
0 U2

]
P. (9)

7

Then we have the real Schur decomposition

ΘTQΘ = diag

[[
φ21 − ψ2

1 2φ1ψ1

−2φ1ψ1 φ21 − ψ2
1

]
, . . . ,

[
φ2n − ψ2

n 2φnψn
−2φnψn φ2n − ψ2

n

]]
. (10)

Note that for

Θ̃ = Θ0ΘeP

[
V1 0
0 V2

]
P,

we have another real Schur decomposition

Θ̃TQΘ̃ = ΘTQTΘ = diag

[[
φ21 − ψ2

1 −2φ1ψ1

2φ1ψ1 φ21 − ψ2
1

]
, . . . ,

[
φ2n − ψ2

n −2φnψn
2φnψn φ2n − ψ2

n

]]
.

In order to generate the orthogonal matrices Θ or Θ̃, one has to compute either the matrix pairs
{U1, U2} or {V1, V2}, but not necessarily both of them.

We remark that in [1] an SVD-based method was proposed for solving the eigenvalue problem
for Q. However, the approach there is different from ours. We finally note that the factorizations
of this section do not apply to complex unitary matrices, because their eigenvalues might not
appear in complex conjugate pairs.

4 Computation of a full CS decomposition of Z

We turn to the problem of computing a full CS decomposition of Z. The product form Z = ZoZe
with Zo, Ze given by (6) yields

Z =



a1 b1g1 b1f1

a2f1
. . . −a2g1

. . .

. . . bn−1gn−1
. . . bn−1fn−1

anfn−1 −angn−1 bn
b1 −a1g1 −a1f1

b2f1
. . . −b2g1

. . .

. . . −an−1gn−1
. . . −an−1fn−1

bnfn−1 −bngn−1 −an



=



α11 β11 α13

α21
. . . −β13

. . .

. . . βn−1,1
. . . αn−1,3

αn1 −βn−1,3 αn3
α12 −β12 −α14

α22
. . . −β14

. . .

. . . −βn−1,2
. . . −αn−1,4

αn2 −βn−1,4 −αn4


=:

[
Z11 Z12

Z21 Z22

]
. (11)

The further discussion requires the following elementary orthogonal matrices:

(a) For x = [x1, x2]T 6= 0, we define Householder matrices Hij(x) ∈ R2n×2n and Givens matrices
Gij(x) ∈ Rn×n by

Hij(x) = I2n + (γ − 1)eie
T
i − (γ + 1)eje

T
j + σ(eie

T
j + eje

T
i), 1 ≤ i < j ≤ 2n,

Gij(x) = In + (γ − 1)(eie
T
i + eje

T
j) + σ(eje

T
i − eieTj), 1 ≤ i < j ≤ n,

8

where
γ =

x1√
x21 + x22

, σ =
x2√
x21 + x22

satisfy [
γ σ
σ −γ

]
x =

[
γ −σ
σ γ

]T
x =

[
||x||2

0

]
.

Note that γ, σ ≥ 0 when x1, x2 ≥ 0. For clarity, we sometimes will write Hij(x) and Gij(x)
as Hij(γ, σ) and Gij(γ, σ), respectively.

(b) For x = [x1, x2]T 6= 0 and 1 ≤ i ≤ n < j ≤ 2n, we define 2n× 2n Givens matrices

Gij(x) = I2n + (γ − 1)(eie
T
i + eje

T
j) + σ(eje

T
i − eieTj),

where
γ =

x2√
x21 + x22

, σ =
x1√
x21 + x22

are such that [
γ −σ
σ γ

]
x =

[
0
||x||2

]
.

Again, γ, σ ≥ 0 when x1, x2 ≥ 0.

In [16], Sutton proposed a full SVD iteration process that applies the bidiagonal iteration
to all four bidiagonal blocks of Z simultaneously. For one simultaneous bidiagonal iteration, it
determines real orthogonal matrices U1, U2, V1, V2 ∈ Rn×n such that[

U1

U2

]T
Z

[
V1

V2

]
= Z̃

with Z̃ of the same form as Z. The iteration is based on the fact that for any pair of real numbers
µ1, µ2 satisfying µ2

1 + µ2
2 = 1, we have

ZT11Z11 − µ2
1I = µ2

2I − ZT21Z21,

Z11Z
T
11 − µ2

1I = µ2
2I − Z12Z

T
12,

ZT22Z22 − µ2
1I = µ2

2I − ZT12Z12,

Z22Z
T
22 − µ2

1I = µ2
2I − Z21Z

T
21.

In exact arithmetic the simultaneous bidiagonal iteration is equivalent to one bidiagonal iteration
on Z11 (or Z22) with a shift µ2

1, or on Z12 (or Z21) with a shift µ2
2. Note that one bidiagonal

iteration on a block, say Z11 with a shift µ2
1, is equivalent to one QR iteration on ZT11Z11 with the

same shift µ2
1 [6, Sec. 8.6]: if Z̃11 = UT1 Z11V1 is upper bidiagonal with U1, V1 real orthogonal and

V1e1 parallel to (ZT11Z11−µ2
1I)e1, then Z̃T11Z̃11 = V T1 (ZT11Z11)V1 is symmetric tridiagonal generated

from ZT11Z11 using a similarity transformation with V1. Here we describe a related simultaneous
iteration procedure that is based on the alternative initial reduction procedure considered in [17].
The main difference is that in Algorithm 2 below one does not need to decide which row or column
will be used for generating a Givens matrix in each step of the bulge-chasing process. Another
difference is that Algorithm 2 computes Z̃o, Z̃e of the same forms as Zo, Ze defined in (6) by
reducing Z to I, and then determines Z̃ = Z̃oZ̃e after the reduction process.

Algorithm 2 [Full CS bidiagonal iteration]. Given a 2n× 2n real orthogonal matrix Z of the
form (11), the algorithm computes orthogonal matrices U1, U2, V1, V2 ∈ Rn×n such that[

U1

U2

]T
Z

[
V1

V2

]
= Z̃

by applying one QR iteration step to ZT11Z11 with shift µ2
1. The orthogonal matrices U1, U2, V1, V2

are determined by updating available matrices.

9

0. Compute x = (ZT11Z11 − µ2
1I)(1 : 2, 1) and F12 := G12(x)

Update Z11 ← Z11F12, Z21 ← Z21F12

Update V1 ← V1F12

1. For k = 1, 2, . . . , n− 1

(a) Determine Gk,k+1 := Gk,k+1(Z11(k : k + 1, k)) and G̃k,k+1 := Gk,k+1(Z21(k : k + 1, k))

(b) Update Z11 ← GTk,k+1Z11, Z12 ← GTk,k+1Z12, U1 ← U1Gk,k+1,

Z21 ← G̃Tk,k+1Z21, Z22 ← G̃Tk,k+1Z22, U2 ← U2G̃k,k+1

(c) Determine Hk,n+k := Hk,n+k([Z11(k, k), Z21(k, k)]T)

(d) Update Z ← Hk,n+kZ

(e) Determine Fk+1,k+2 := Gk+1,k+2(Z21(k, k + 1 : k + 2)T) (and Fn := Fn,n+1

:= diag[In−1, sign(Z21(n− 1, n))]) and F̃k,k+1 := Gk,k+1(Z22(k, k : k + 1)T)

(f) Update Z11 ← Z11Fk+1,k+2, Z21 ← Z21Fk+1,k+2, V1 ← V1Fk+1,k+2,

Z12 ← Z12F̃k,k+1, Z22 ← Z22F̃k,k+1, V2 ← V2F̃k,k+1

(g) Determine Gk+1,n+k := Gk+1,n+k([Z21(k, k + 1), Z22(k, k)]T)

(h) Update Z ← ZGTk+1,n+k

End For

2. (a) Determine Gn := diag[In−1, sign(Z11(n, n))] and G̃n := diag[In−1, sign(Z21(n, n))]

(b) Update Z11 ← GTnZ11, Z12 ← GTnZ12, U1 ← U1Gn,
Z21 ← G̃TnZ21, Z22 ← G̃TnZ22, U2 ← U2G̃n

(c) Determine Hn,2n := Hn,2n([Z11(n, n), Z21(n, n)]T)

(d) Update Z ← Hn,2nZ

(e) Determine F̃n := diag[In−1, sign(Z22(n, n))]

(f) Update Z12 ← Z12F̃n, Z22 ← Z22F̃n, V2 ← V2F̃n

3. Form Z̃ = H1,n+1H2,n+2 . . . Hn,2nG2,n+1G3,n+2 . . . Gn,2n−1

The sign function used in the algorithm is defined for real x by

sign(x) =

{
x/|x|, if x 6= 0,

1, otherwise.

We illustrate the computations of Algorithm 2 with a 6× 6 matrix Z:

Z =


x x 0 x 0 0
0 x x x x 0
0 0 x 0 x x
x x 0 x 0 0
0 x x x x 0
0 0 x 0 x x


F12

−→


x x 0 x 0 0
f x x x x 0
0 0 x 0 x x
x x 0 x 0 0
f x x x x 0
0 0 x 0 x x



G12, G̃12

−→


+ x f x f 0
0 x x x x 0
0 0 x 0 x x
+ x f x f 0
0 x x x x 0
0 0 x 0 x x


H14

−→


1 ⊗ ⊗ ⊗ ⊗ 0
0 x x x x 0
0 0 x 0 x x
0 x x x x 0
0 x x x x 0
0 0 x 0 x x



10

F23, F̃12

−→


1 ⊗ ⊗ ⊗ ⊗ 0
0 x x x x 0
0 f x f x x
0 + 0 + 0 0
0 x x x x 0
0 f x f x x


GT24
−→


1 ⊗ ⊗ ⊗ ⊗ 0
0 x x ⊗ x 0
0 x x ⊗ x x
0 0 0 1 0 0
0 x x ⊗ x 0
0 x x ⊗ x x



G23, G̃23

−→


1 ⊗ ⊗ ⊗ ⊗ 0
0 + x ⊗ x f
0 0 x ⊗ x x
0 0 0 1 0 0
0 + x ⊗ x f
0 0 x ⊗ x x


H25

−→


1 ⊗ ⊗ ⊗ ⊗ 0
0 1 ⊗ ⊗ ⊗ ⊗
0 0 x ⊗ x x
0 0 0 1 0 0
0 0 x ⊗ x x
0 0 x ⊗ x x



F3, F̃23

−→


1 ⊗ ⊗ ⊗ ⊗ ⊗
0 1 ⊗ ⊗ ⊗ ⊗
0 0 x ⊗ x x
0 0 0 1 0 0
0 0 + ⊗ + 0
0 0 x ⊗ x x


GT35
−→


1 ⊗ ⊗ ⊗ ⊗ ⊗
0 1 ⊗ ⊗ ⊗ ⊗
0 0 x ⊗ ⊗ x
0 0 0 1 0 0
0 0 0 ⊗ 1 0
0 0 x ⊗ ⊗ x



G3, G̃3

−→


1 ⊗ ⊗ ⊗ ⊗ ⊗
0 1 ⊗ ⊗ ⊗ ⊗
0 0 + ⊗ ⊗ x
0 0 0 1 0 0
0 0 0 ⊗ 1 0
0 0 + ⊗ ⊗ x


H36

−→


1 ⊗ ⊗ ⊗ ⊗ ⊗
0 1 ⊗ ⊗ ⊗ ⊗
0 0 1 ⊗ ⊗ ⊗
0 0 0 1 0 0
0 0 0 ⊗ 1 0
0 0 0 ⊗ ⊗ x



F̃3

−→


1 ⊗ ⊗ ⊗ ⊗ ⊗
0 1 ⊗ ⊗ ⊗ ⊗
0 0 1 ⊗ ⊗ ⊗
0 0 0 1 0 0
0 0 0 ⊗ 1 0
0 0 0 ⊗ ⊗ 1

 = I6,

where “0” denotes zero, “+” stands for a nonnegative entry, “1” is one, “⊗” is a zero obtained
because Z is orthogonal, and elements marked by “f” are obtained by fill-in. They are generically
nonvanishing.

Because Hk,n+k commutes with the block diagonal matrix diag[Gj,j+1, G̃j,j+1] and GTk+1,n+k

commutes with diag[Fj+1,j+2, F̃j,j+1] for any j > k, we obtain

H36H25H14

[
U1 0
0 U2

]T
Z

[
V1 0
0 V2

]
GT24G

T
35 = I6.

In general, one has

Hn,2n . . . H2,n+2H1,n+1

[
U1 0
0 U2

]T
Z

[
V1 0
0 V2

]
GT2,n+1 . . . G

T
n,2n−1 = I2n.

Therefore [
U1 0
0 U2

]T
Z

[
V1 0
0 V2

]
= Z̃oZ̃e = Z̃,

where
Z̃o = H1,n+1H2,n+2 . . . Hn,2n, Z̃e = G2,n+1G3,n+2 . . . Gn,2n−1.

11

Algorithm 2 requires about 130n flops. If the matrices U1, U2, V1, V2 have to be updated, then
additional 24n2 flops are needed during the whole iteration process. One has to determine a shift
µ2
1 for the rotation F12. For instance, one may choose the Wilkinson shift, i.e., an eigenvalue of

the trailing 2× 2 submatrix of Z11Z
T
11 that is closest to the last diagonal entry of Z11Z

T
11; see [16]

for details on the choice of shift. One can show that Algorithm 2 is backward stable similarly as
we did for Algorithm 1. Alternatively, one can proceed in the same manner as in [17].

For the eigenvalue problem of an orthogonal matrix, any backward stable algorithm is also
forward stable. Hence, the eigenvalues can be computed accurately with a backward stable method.
This, however, does not guarantee that small real and imaginary parts of the eigenvalues will
be computed accurately. In our case, this is equivalent to the fact that small singular values
of the blocks of Z might not be computed accurately. We therefore describe another full CS
decomposition iteration based on the Demmel–Kahan zero-shift SVD iteration [5] to achieve high
accuracy of small singular values. The iteration procedure from Z to Z̃ is the standard bulge-
chasing process. Since µ1 = 0, the iteration formulas can be explicitly derived.

Theorem 1 Let Z̃ be the matrix generated from Z in (11) with the zero-shift full CS iteration.
Then

α̃k1 = rk, α̃k2 =
αk3sk
pk

, α̃k3 =
α̃k2qk
rk

, α̃k4 = qk,

β̃k1 = sk,1pk+1, β̃k2 =
βk3pk+1

sk
, β̃k3 =

β̃k2rk+1

qk
, β̃k4 = zk,2sk+1,

(12)

where, for k = 1, 2, . . . , n,

p2k = (tk−1,1αk1)2 + β2
k1, tk,1 =

tk−1,1αk1
pk

, zk,1 =
βk1
pk

,

r2k = (ck−1,1pk)
2

+ (αk+1,1zk,1)
2
, ck,1 =

ck−1,1pk
rk

, sk,1 =
αk+1,1zk,1

rk
,

s2k = (ck−1,2αk4)
2

+ β2
k4, ck,2 =

ck−1,2αk4
sk

, sk,2 =
βk4
sk

,

q2k = (tk−1,2sk)
2

+ (sk,2αk+1,4)
2
, tk,2 =

tk−1,2sk
qk

, zk,2 =
sk,2αk+1,4

qk
,

(13)

with t0,1 = c0,1 = c0,2 = t0,2 = 1 and βnj = 0 for j = 1, 2, 3, 4.

Proof. A proof is provided in Appendix A.
We note that the block Z21 is not involved in the iteration. The four sets of parameters in (13)

stem from four Givens matrices, each of which can be computed with the following algorithm [6].

Algorithm 3 [Givens matrix] Given a real vector x = [x1, x2]T 6= 0, the algorithm computes

γ, σ and r = ||x||2 such that

[
γ σ
−σ γ

]
x = r

[
1
0

]
.

If |x1| > |x2|

Compute t = x2/x1, s =
√

1 + t2

Compute γ = 1/s, σ = t/s, r = |x1|s

else

Compute t = x1/x2, s =
√

1 + t2

Compute γ = t/s, σ = 1/s, r = |x2|s

end

Theorem 1 suggests the following iterative method.

12

Algorithm 4 [Zero-shift CS bidiagonal iteration]. Given a 2n × 2n real orthogonal matrix
Z of the form (11), the algorithm computes orthogonal matrices U1, U2, V1, V2 ∈ Rn×n such that[

U1

U2

]T
Z

[
V1

V2

]
= Z̃

based on one QR iteration step applied to ZT11Z11 with zero shift. The orthogonal matrices
U1, U2, V1, V2 are determined by updating the available matrices.

0. Set t0,1 = t0,2 = c0,1 = c0,2 = 1 and βnj = 0 for j = 1, 2, 3, 4.

1. For k = 1, . . . , n− 1

(a) Compute pk and Gk,k+1(tk,1, zk,1) with x = [tk−1,1αk1, βk1]T

(b) Compute rk and Gk,k+1(ck,1, sk,1) with x = [ck−1,1pk, αk+1,1zk,1]T

(c) Compute sk and Gk,k+1(ck,2, sk,2) with x = [ck−1,2αk4, βk4]T

(d) Compute qk and Gk,k+1(tk,2, zk,2) with x = [tk−1,2sk, αk+1,4sk,2]T

(e) If k > 1

Compute β̃k−1,1 = sk−1,1pk, β̃k−1,2 = βk−1,3pk/sk−1,

β̃k−1,3 = β̃k−1,2rk/qk−1, β̃k−1,4 = zk−1,2sk

End if

(f) Compute α̃k1 = rk, α̃k2 = αk3sk/pk, α̃k3 = α̃k2qk/rk, α̃k4 = qk

(g) Update U1 ← U1Gk,k+1(ck,1, sk,1), U2 ← U2Gk,k+1(ck,2, sk,2)
and V1 ← V1Gk,k+1(tk,1, zk,1), V2 ← V2Gk,k+1(tk,2, zk,2)

2. (a) Compute pn = αn1tn−1,1, rn = cn−1,1pn, sn = αn4cn−1,2, qn = tn−1,2sn

(b) Compute β̃n−1,1 = sn−1,1pn, β̃n−1,2 = βn−1,3pn/sn−1,

β̃n−1,3 = β̃n−1,2rn/qn−1, β̃n−1,4 = zn−1,2sn

(c) Compute α̃n1 = rn, α̃n2 = αn3sn/pn, α̃n3 = α̃n2qn/rn, α̃n4 = qn

This algorithm requires 44(n− 1) + 4 flops. Additional 24n(n− 1) flops are needed to update
U1, U2, V1, V2.

The factored form Z̃oZ̃e is easily derived from Z̃ if it is required. One may simply use the
entries of Z̃11 and Z̃21 and apply the following code:

0. ã1 = α̃11, b̃1 = α̃12

1. For k = 1, . . . , n− 1

(a) Determine f̃k, ãk+1, b̃k+1 by applying Algorithm 3 to x := [α̃k+1,1, α̃k+1,2]T

(b) Determine g̃k by applying Algorithm 3 to x := [β̃k1, β̃k2]T

End for

This code demands 12n− 12 flops. We remark that it follows from (11) that one may also use the
formulas g̃k = β̃k1/b̃k or g̃k = β̃k2/ãk to compute g̃k. The reason for using the formula in the code
is to enforce the relation f̃2k + g̃2k = 1 explicitly.

The following first order error analysis, which is based on the results in [5], shows that highly
accurate singular values can be computed with Algorithm 4. The floating-point arithmetic is
assumed to satisfy

fl(α ◦ β) = (α ◦ β)(1 + δ1) = (α ◦ β)/(1 + δ2), |δ1|, |δ2| ≤ µ,

where ◦ ∈ {+,−,×,÷,√} and µ is the machine precision.

13

Theorem 2 Suppose that Algorithm 4 is applied to the data {αkj} and {βkj} to compute {α̃kj}
and {β̃kj} on a computer with machine precision µ. Let {α̂kj} and {β̂kj} be the computed data.
Then

α̂kj = α̃kj(1 + εαkj
), β̂kj = β̃kj(1 + εβkj

)

and

|εαk1
| ≤ 69k − 48

2
µ, |εαk2

| ≤ 25k − 8

2
µ, |εαk3

| ≤ 163k − 75

2
µ, |εαk4

| ≤ 69k − 48

2
µ,

|εβk1
| ≤ 50k + 13

4
µ, |εβk2

| ≤ 50k + 9

4
µ, |εβk3

| ≤ 326k − 75

4
µ, |εβk4

| ≤ 188k − 83

4
µ. (14)

Furthermore, if during the iterations s2k,1, s
2
k,2, z

2
k,1, z

2
k,2 ≤ τ < 1 for all k, then

|εαk1
| ≤ 88− 38τ

4(1− τ)2
µ, |εβk1

| ≤ 44− 19τ

2(1− τ)
µ,

|εαk2
| ≤ 42− 17τ

2(1− τ)
µ, |εβk2

| ≤ 42− 17τ

2(1− τ)
µ,

|εαk3
| ≤ 134− 105τ + 21τ2

2(1− τ)2
µ, |εβk3

| ≤ 134− 105τ + 21τ2

2(1− τ)2
µ,

|εαk4
| ≤ 88− 38τ

4(1− τ)2
µ, |εβk4

| ≤ 65− 36τ − 4τ2

2(1− τ)2
µ.

(15)

Proof. A proof is given in Appendix B.
It is pointed out in [5] that typically the βkj ’s decease during the iterations. Therefore, the

bounds in (15) will be more realistic in practice.
We may use Algorithms 3 and 4 together to compute a full CS decomposition of Z, where

we apply the latter algorithm to compute small singular values and use the former algorithm to
compute the other ones. Slight modifications of the deflation and stopping criteria proposed in
[5] can be used. For an n× n bidiagonal matrix B with diagonal entries {αj}nj=1 and super(sub)-

diagonal entries {βj}n−1j=1 , we apply the following algorithms, cf. [5]:

Algorithm A

λn = |αn|

For j = n− 1 to 1

Compute λj = |αj |/(1 + |βj |/λj+1)

End

Algorithm B

ν1 = |α1|

For j = 1 to n− 1

Compute νj+1 = |αj+1|/(1 + |βj |/νj)

End

Then ||B−1||−1∞ = minj λj and ||B−1||−11 = minj νj .
For each of the blocks of Z, we can apply the above algorithms to compute a lower bound for

the smallest singular value:

σ11 = min{||Z−111 ||
−1
1 , ||Z−111 ||−1∞ }, σ21 = min{||Z−121 ||

−1
1 , ||Z−121 ||−1∞ },

σ12 = min{||Z−112 ||
−1
1 , ||Z−112 ||−1∞ }, σ22 = min{||Z−122 ||

−1
1 , ||Z−122 ||−1∞ }.

Let tol be a selected tolerance. We use the following criterion to switch from zero-shift iteration
to shifted iteration:

14

If nmin{σ11, σ22}tol ≤ µ

run zero-shift iteration with Z

elseif nmin{σ21, σ12}tol ≤ µ

run zero-shift iteration with a permuted Z

else

run shifted iteration

end

The permuted matrix Z is given by

[
P̂ 0

0 −P̂

]T
Z

[
0 P̂

P̂ 0

]
=



αn3 βn−1,3 αn1

αn−1,3
. . . −βn−1,1

. . .

. . . β13
. . . α21

α13 −β11 α11

αn4 −βn−1,4 −αn2

αn−1,4
. . . −βn−1,2

. . .

. . . −β14
. . . −α22

α14 −β12 −α12


,

where P̂ = [en,−en−1, . . . , (−1)n−1e1]. This matrix has the same pattern as Z. In the situation
that nmin{σ11, σ22}tol > µ and nmin{σ21, σ12}tol ≤ µ, the blocks Z11, Z22 have no small singular
values, while Z12, Z21 do. In this case we apply the zero-shift iteration to the permuted Z to
compute these small singular values. The orthogonal matrices have to be changed accordingly:

U1 ← U1P̂ , U2 ← −U2P̂ , V1 ← V2P̂ , V2 ← V1P̂ .

For pre-iteration deflation, we use the following deflation criterion when applying Algorithms
A and B to blocks of Z:

if for some j, |βj/νj | or |βj/λj+1| ≤ tol for all four blocks, set βjk = 0 for k = 1, 2, 3, 4.

For the shifted iteration we use the deflation criterion:

if max
1≤k≤4

βn−1,k/αn,k ≤ tol, set βn−1,k = 0, for k = 1, 2, 3, 4. (16)

Algorithm 5 [Overall CS decomposition] Given a 2n × 2n matrix Z defined in (11), the
algorithm computes a full CS decomposition (8).

Initial Step. Choose tol and M , where M is the maximum number of full CS iterations.
Set U1 = U2 = V1 = V2 = In, or the already existing ones.

Iteration Step.
(a) Apply Algorithms A and B to each of the four blocks of Z

If for some j, |βj |/νj < tol or βj/λj+1 < tol for all four blocks
Set βj1 = βj2 = βj3 = βj4 = 0
Decouple Z to form submatrices of the same form as Z

end if
(b) For each submatrix (still denoted by Z) of size 2p× 2p, goto (c)
(c) Apply Algorithms A and B to compute σ11, σ12, σ21, σ22

If pmax{σ11, σ22}tol < µ

15

(d) While max
{
βp−1,1

σ11
,
βp−1,2

σ21
,
βp−1,3

σ12
,
βp−1,4

σ22

}
≥ tol and # of iterations ≤M

Apply Algorithm 4 to Z
End while
If # of iterations is larger than M , then report divergence
otherwise, set βp−1,k = 0 for k = 1, 2, 3, 4
and repeat (c) with the reduced matrix Z

Elseif pmax{σ12, σ21}tol < µ
Repeat (d) with the permuted Z

Else
(e) While max1≤k≤4 βp−1,k/αpk ≥ tol and # of iterations ≤M

Apply Algorithm 3 to Z
End while
If # of iterations is larger than M , then report divergence
otherwise, set βp−1,k = 0 for k = 1, 2, 3, 4
and repeat (e) with the reduced matrix Z

End if

We let tol = nµ and M = 3n2/4 in the algorithm.

Underflow may occur during the iteration process. Vanishing elements σ11, σ12, σ21, or σ22,
is a good indication. Since Z is orthogonal, we may scale up the matrix if underflow takes place.
The graded structure of Z may cause loss of accuracy. This difficulty can be reduced by chasing
the bulge in suitable direction (up or down) as described in [5].

5 The Schur form and numerical examples

The computations for determining the Schur form of a real orthogonal matrix Q are summarized
by the following algorithm:

Algorithm 6 [Orthogonal Schur form] Given a 2n× 2n real orthogonal matrix Q without real
eigenvalues, the algorithm computes the real Schur form (10).

Step 1. Apply Algorithm 1 to Q to compute the factorization (3)

Step 2. Compute the factorization (7)

Step 3. Apply Algorithm 5 to Z to compute the full CS decomposition (8) (without computing
V1, V2)

Step 4 Form the matrix Θ using (9) and determine (10)

With proper choices of the tolerances, the algorithm is backward stable. The main cost is the
initial reduction step when fewer than O(n2) zero-shift CS decomposition iterations are carried
out. This is the typical situation. We tested the eigenvalue algorithm with several examples.
The main purpose of the numerical experiments is to illustrate the accuracy achieved with the
algorithm. We remark that when computing the eigenvalues of a general orthogonal matrix, zero-
shift full CS iteration typically will not improve the accuracy. This is because the matrix Z is
generated after the initial reduction process, and rounding errors from this process pollute Z. All
the experiments were carried out with MATLAB version 7.10.0 on an iMac 8.1 computer with an
Intel Core 2 Duo 2.4 GHz processor.

Example 1. We generated 40 real orthogonal matrices Q of size 30 × 30 using the MATLAB
command [Q,R]=qr(randn(30)). For each Q we computed the eigenvalues by using Algorithm
6 in two ways. Method I is simply Algorithm 6. Method II is essentially the same as Algorithm

16

6, but in Step 3, we use the shifted CS iterations only. Also, for Method II the deflation criterion
(16) is changed to

max
1≤k≤4

2βn−1,k/(αn−1,k + αnk) ≤ tol.

For each method, we report the maximum and minimum eigenvalue errors for each matrix. The
results are shown in Figure 1, where the matrices (labeled in horizontal direction) are sorted
according to the magnitude of the maximum errors from Method I. The “exact” eigenvalues are
computed by using eig from the MATLAB Symbolic Toolbox. For comparison we also display the
extreme errors of the eigenvalues computed by the standard MATLAB function eig. The broken
lines in Figure 1 indicate that the minimum errors are numerically zero.

Figure 1: Maximum and minimum eigenvalue errors for 40 random orthogonal matrices of Exam-
ple 1.

0 5 10 15 20 25 30 35 40
10 17

10 16

10 15

10 14

10 13

Max err Method I
Max err Method II
Max err eig
Min err Method I
Min err Method II
Min err eig

Figure 1 shows that Method II computes the eigenvalues at least as accurately as eig, while
Method I may give less accurate eigenvalues. A closer look reveals that the less accurately com-
puted eigenvalues are the ones with small imaginary part, and the large errors are caused by the
zero-shift CS iterations. This is because slow convergence demands many more iterations, and
this increases the error in the real part, while accuracy of the imaginary part cannot be improved.

Example 2. In this example, we tested thirty 20× 20 orthogonal matrices of the form

Q = UDUT ,

where D is quasi-diagonal containing 10 complex conjugate eigenvalue pairs, among which are two
pairs −

√
1− 10−8±i10−4 and

√
1− 10−14±i10−7. The other pairs are of the form ±

√
1− d2i±idi,

where di is a positive random number generated with the MATLAB function rand, and the sign for
the real part also is randomly generated. The 30 orthogonal matrices are determined by the (fixed)
matrix D and 30 randomly generated orthogonal matrices U . For each matrix Q the eigenvalues

17

are computed by Methods I and II, as well as by eig, similarly as in Example 1. For each Q
the zero-shift CS iterations for both the regular and permuted versions are used with Method I.
The eigenvalue errors are reported in Figure 2. We observe that similarly as in Example 1, the
zero-shift CS iteration yields the largest errors.

Figure 2: Maximum and minimum eigenvalue errors for orthogonal matrices of Example 2.

0 5 10 15 20 25 30
10 17

10 16

10 15

10 14

10 13

Max err Method I
Max err Method II
Max err eig
Min err Method I
Min err Method II
Min err eig

Example 3. In this example we tested the zero-shift CS decomposition iterations to see if
the small imaginary parts of orthogonal eigenvalues can be computed accurately. To this end,
we constructed orthogonal matrices of the form HoHe, and for each Hk defined in (1), we let
γk = cos θk and σk = sin θk with a random θk ∈ (0, π). We tested ten such randomly generated
orthogonal matrices of size 50 × 50 and observed that the relative errors of the small imaginary
parts of the eigenvalues computed with Method I are smaller than for eigenvalues computed with
the other methods, although the corresponding eigenvalue errors are slightly larger. The results
of a typical orthogonal matrix are shown in Figure 3, where the errors are arranged according to
the magnitude of the imaginary parts (in horizontal direction).

6 Conclusions and open problems

We have shown that the eigenvalue problem for a real orthogonal matrix can be formulated as
a full CS decomposition problem with a simple transformation, and based on this fact we have
developed a backward stable eigenvalue method. It is interesting that for real orthogonal matrices,
the eigenvalue problem and the CS decomposition merge in such a way.

There are still many open problems. For instance, HoHe is orthogonally similar to the matrix
ΣZΣZT , which is actually a 2 × 2 block matrix with all four tridiagonal blocks. Is it possible
to develop an algorithm that uses this structure directly? Also, there are several implementation
options that can be explored. For instance, in the CS decomposition iterations one could keep Z

18

Figure 3: Eigenvalue errors for a typical orthogonal matrix in Example 3.

10 8 10 6 10 4 10 2 100

10 20

10 15

10 10
Absolute errors of eigenvalues

Abs err Method I
Abs err Method II
Abs err eig

10 8 10 6 10 4 10 2 100

10 15

10 10

10 5
Relative errors of the imaginary part

Rel err imag Method I
Rel err imag Method II
Rel err imag eig

in product form ZoZe, which might improve speed and accuracy somewhat because the product
form is determined by only 4n− 2 parameters while Z requires 8n− 4 parameters.

Appendix A. Proof of Theorem 1

We would like to use the form of Z in (11) with {ak}, {bk}, {fk}, {gk}. Note that (13) is equivalent
to

p2k =

(
a1→kf1→k−1
p1→k−1

)2

+ (bkgk)2, ck,1 =
a1→kf1→k−1

p1→k
,

bkgk
pk

,

r2k =

(
p1→k
r1→k−1

)2

+

(
ak+1bkfkgk

pk

)2

, ck,1 =
p1→k
r1→k

, sk,1 =
ak+1bkfkgk

pkrk
,

s2k =

(
a1→kf1→k
s1→k−1

)2

+ (bk+1gk)2, ck,2 =
a1→kf1→k
s1→k

, sk,2 =
bk+1gk
sk

,

q2k =

(
s1→k
q1→k−1

)2

+

(
ak+1bk+1fk+1gk

sk

)2

, tk,2 =
s1→k
q1→k

, sk,2 =
ak+1bk+1fk+1gk

skqk
(17)

with f1→0 = p1→0 = r1→0 = s1→0 = q1→0 = 1 and fn = 1, gn = 0. Here, for a number set
{x1, . . . , xn} and 1 ≤ k ≤ n,

x1→k := x1x2 . . . xk.

We first need the following result.

19

Lemma 3

s21→k = (a1→k+1f1→k)2 + (bk+1p1→k)2, (18)

p21→k = (a1→kf1→k)2 + (gks1→k−1)2 = s21→k + (ak+1gks1→k−1)2, (19)

for k = 1, . . . , n

Proof. We show (18) by induction. When k = 1, using f21 + g21 = 1 and p21 = a21 + (b1g1)2 =
(a1f1)2 + g21 gives

(a1a2f1)2 + (b2p1)2 = (a1a2f1)2 + b22((a1f1)2 + g21) = (a1f1)2 + (b2g1)2 = s21.

Assume that (18) holds for k − 1. Since

p21→k = (a1→kf1→k−1)2 + (bkgkp1→k−1)2,

and from the assumption s21→k−1 = (a1→kf1→k−1)2 + (bkp1→k−1)2, one has

s21→k = (a1→kf1→k)2 + (bk+1gks1→k−1)2

= (a1→kf1→k)2 + (bk+1gk)2((a1→kf1→k−1)2 + (bkp1→k−1)2)

= (a1→kf1→k)2(a2k+1 + b2k+1) + (a1→kbk+1f1→k−1gk)2 + (bkbk+1gkp1→k−1)2

= (a1→k+1f1→k)2 + (a1→kbk+1f1→k−1)2 + (bkbk+1gkp1→k−1)2

= (a1→k+1f1→k)2 + b2k+1((a1→kf1→k−1)2 + (bkgkp1→k−1)2)

= (a1→k+1f1→k)2 + (bk+1p1→k)2.

The relation (18) now follows by induction.
From (18), for any k, one has

(bk+1p1→k)2 = s21→k − (a1→k+1f1→k)2 = (a1→kf1→k)2 + (bk+1gks1→k−1)2 − (a1→k+1f1→k)2

= b2k+1((a1→kf1→k)2 + (gks1→k−1)2).

Hence, by dividing b2k+1 on both sides and using

s21→k = (a1→kf1→k)2 + (bk+1gks1→k−1)2,

we obtain (19).
Proof of Theorem 1. We show (12) and (13) by induction, following the bulge-chasing process.
The properties a2k + b2k = 1 and f2k + g2k = 1 are used throughout the bulge-chasing process.

Since µ1 = 0, from (11) the first column of ZT11Z11 is parallel to x = [a1, b1g1]T . From this x we
determine a Givens rotation G12(t1,1, z1,1) with p1, t1,1, z1,1 defined in (17). By post-multiplying
this rotation to Z11, Z21, we create a bulge in the (2, 1) entry for each of these two blocks. Since
the first round of bulge-chasing only involves the first three rows and columns of four blocks of Z,
we focus on the window

Z1 :=



p1 b1f1
a2b1f1g1p

−1
1 a1a2f1p

−1
1 b2g2 −a2g1 b2f2

a3f2 −a3g2 b3f3
a1b1f

2
1 p
−1
1 −g1p−11 −a1f1

b1b2f1g1p
−1
1 a1b2f1p

−1
1 −a2g2 −b2g1 −a2f2

b3f2 −b3g2 −a3f3

 .

Let G12(c1,1, s1,1) and G12(c1,2, s1,2) be the Givens rotations with r1, c1,1, c1,1 and s1, c1,2, s1,2
defined in (17). By pre-multiplying GT12(c1,1, s1,1) to Z11 and Z12, and GT12(c1,2, s1,2) to Z21 and

20

Z22, simple calculations yield

Z1 ←



r1
a1→2a2b1f

2
1 g1

r1p21

a2b1→2f1g1→2

r1p1

b1f1s
2
1

r1p1

a2b1→2f1→2g1
r1p1

a1→2f1
r1

b2g2p1
r1

−a2g1r1p1

b2f2p1
r1

a3f2 −a3g2 b3f3
b1f1s1
p1

−a1→2a2f1g1
s1p1

−a2b2g1→2

s1
−s1 a2b2f2g1

s1
b2p1
s1

−a1→2f1g2
s1

−a1→2f1→2

s1
b3f2 −b3g2 −a3f3


.

Let G12(t1,2, z1,2) and G23(t2,1, z2,1) be the Givens rotations with q1, t1,2, z1,2 and p2, t2,1, z2,1
defined in (17). By post-multiplying G12(t1,2, z1,2) to Z12, Z22, and G23(t2,1, z2,1) to Z11, Z21, one
obtains

Z1 ←



r1
a2b1f1g1p2

r1p1

b1f1q1s1
r1p1

p1→2

r1
−a2g1p1→2p2

r1q1s1

b2f2r1p1
q1s1

a3b2f2g2
p2

a1→3f1→2

p1→2
−a2a3b2f2g1→2

q1s1
−a3g2s1q1

b3f3
b1f1s1
p1

−a2g1p2s1
−q1

a1→2b2f1→2f2
s1p2

− g2p1(p
2
2+(b2f2)

2)
s1p2

−a1→2a2b2f1→2f2g1
q1s21

−a1→2f1→2

q1
b2b3f2g2

p2

a1→2b3f1→2

p1→2
−a2b2b3f2g1→2

q1s1
− b3g2s1q1

−a3f3


.

Now the initial bulge is chased from the (2, 1) to the (3, 2) position in Z11 and Z21, and we are
ready for the next bulge-chasing step.

Assume that k steps of bulge-chasing have been carried out. Now the zoom-in window is

formed by the columns and rows k+ 1, k+ 2, k+ 3 of Z11, Z21, denoted by Z
(1)
k+1, and the columns

of k, k + 1, k + 2 and rows k + 1, k + 2, k + 3 of Z12 and Z22, denoted by Z
(2)
k+1:

Z
(1)
k+1 =



p1→k+1

r1→k
ak+2bk+1fk+1gk+1

pk+1

a1→k+2f1→k+1

p1→k+1
bk+2gk+2

ak+3fk+2

a1→k+1bk+1f1→k+1fk+1

s1→kpk+1
− gk+1p1→k(p

2
k+1+(bk+1fk+1)

2)

s1→kpk+1
bk+1bk+2fk+1gk+1

pk+1

a1→k+1bk+2f1→k+1

p1→k+1
−ak+2gk+2

bk+3fk+2


,

Z
(2)
k+1 =



−ak+1gkp1→k+1pk+1

qkskr1→k

bk+1fk+1r1→kp1→k

q1→ks1→k

−ak+1ak+2bk+1fk+1gkgk+1

qksk
−ak+2gk+1s1→k

q1→k
bk+2fk+2

−ak+3gk+2

−a1→k+1ak+1bk+1f1→k+1fk+1gk
qksks1→k

−a1→k+1f1→k+1

q1→k

−ak+1bk+1bk+2fk+1gkgk+1

qksk
− bk+2gk+1s1→k

q1→k
−ak+2fk+2

−bk+3gk+2


.

At step k+1, in order to annihilate the (k+2, k+1) entry of Z11 and Z21 as well as the (k+2, k) entry
of Z12 and Z22, we use the Givens rotations Gk+1,k+2(ck+1,1, sk+1,1) and Gk+1,k+2(ck+1,2, sk+1,2)
with rk+1, ck+1,1, sk+1,1 and sk+1, ck+1,2, sk+1,2 defined in (17). After the transformations, it is

21

straightforward to show that the zoom-in windows are given by

Z
(1)
k+1 ←



rk+1
a1→k+2ak+2bk+1f1→k+1fk+1gk+1

rk+1pk+1p1→k+1

ak+2bk+1bk+2fk+1gk+1gk+2

rk+1pk+1
a1→k+2f1→k+1

r1→k+1

bk+2gk+2p1→k+1

r1→k+1

ak+3fk+2
bk+1fk+1sk+1

pk+1
−a1→k+2ak+2f1→k+1gk+1

sk+1p1→k+1
−ak+2bk+2gk+1gk+2

sk+1
bk+2p1→k+1

s1→k+1
−a1→k+2f1→k+1gk+2

s1→k+1

bk+3fk+2


,

Z
(2)
k+1 ←



−ak+1gkrk+1pk+1

qksk

bk+1fk+1s1→k+1sk+1

rk+1pk+1q1→k

ak+2bk+1bk+2fk+1fk+2gk+1

rk+1pk+1

−ak+2gk+1p1→k((bk+1fk+1r1→k)
2+(s1→kpk+1)

2)
r1→k+1pk+1q1→ks1→k

bk+2fk+2p1→k+1

r1→k+1

−ak+3gk+2

−ak+1bk+1fk+1gksk+1

qksk
− s1→k+1

q1→k
−ak+2bk+2fk+2gk+1

sk+1

−a1→k+2f1→k+2

s1→k+1

−bk+3gk+2


,

where we used the identity (18) to simplify the (k + 1, k + 2) entry of Z21.
Next, we annihilate simultaneously the (k + 1, k + 3) entry in both Z11 and Z21, and the

(k + 1, k + 2) entry in both Z12 and Z22 with the Givens rotations Gk+2,k+3(tk+2,1, zk+2,1) and
Gk+1,k+2(tk+1,2, zk+1,2), respectively, with pk+2, tk+2,1, zk+2,1 and qk+1, tk+1,2, zk+1,2 defined in
(17). After these transformations, one has

Z
(1)
k+1 ←



rk+1
ak+2bk+1fk+1gk+1pk+2

rk+1pk+1
p1→k+2

r1→k+1
ak+3bk+2fk+2gk+2

pk+2

a1→k+3f1→k+2

p1→k+2
bk+1fk+1sk+1

pk+1
−ak+2gk+1pk+2

sk+1

a1→k+2bk+2f1→k+2fk+2

s1→k+1pk+2
− gk+2p1→k+1(p

2
k+2+(bk+2fk+2)

2)

s1→k+1pk+2
bk+2bk+3fk+2gk+2

pk+2

a1→k+2bk+3f1→k+2

p1→k+2


,

Z
(2)
k+1 ←



−ak+1gkrk+1pk+1

qksk

bk+1fk+1qk+1sk+1

rk+1pk+1

−ak+2gk+1p1→k+1p
2
k+2

qk+1sk+1r1→k+1

bk+2fk+2r1→k+1p1→k+1

q1→k+1s1→k+1

−ak+2ak+3bk+2fk+2gk+1gk+2

qk+1sk+1
−ak+3gk+2s1→k+1

q1→k+1

−ak+1bk+1fk+1gksk+1

qksk
−qk+1

−a1→k+2ak+2bk+2f1→k+2fk+2gk+1

s1→k+1qk+1sk+1
−a1→k+2f1→k+2

q1→k+1

−ak+2bk+2bk+3fk+2gk+1gk+2

qk+1sk+1
− bk+3gk+2s1→k+1

q1→k+1


,

where, in order to get the expressions of the (k+ 1, k+ 1), (k+ 1, k+ 2), and (k+ 2, k+ 2) entries
of Z12 we have used (19).

After n− 2 steps, the zoom-in window of Z is the submatrix formed by the last two rows and

columns of Z11 and Z21, denoted by Z
(1)
n−1, and the submatrix formed by the last two rows and

22

three columns of Z12 and Z22, denoted by Z
(2)
n−1:

Z
(1)
n−1 =


p1→n−1

r1→n−2
anbn−1fn−1gn−1

pn−1

a1→nf1→n−1

p1→n−1

a1→n−1bn−1f1→n−1fn−1

s1→n−2pn−1
− gn−1p1→n−2(p

2
n−1+(bn−1fn−1)

2)

s1→n−2pn−1
bn−1bnfn−1gn−1

pn−1

a1→n−1bnf1→n−1

p1→n−1

 ,

Z
(2)
n−1 =


−an−1gn−2p1→n−2p

2
n−1

qn−2sn−2r1→n−2

bn−1fn−1r1→n−2p1→n−2

q1→n−2sn−2

−an−1anbn−1fn−1gn−2gn−1

qn−2sn−2
−angn−1s1→n−2

q1→n−2
bn

−a1→n−2a
2
n−1bn−1f1→n−2f

2
n−1gn−2

s1→n−2qn−2sn−2
−a1→n−1f1→n−1

q1→n−2

−an−1bn−1bnfn−1gn−2gn−1

qn−2sn−2
− bngn−1s1→n−2

q1→n−2
−an

 .

Similarly, using the Givens rotations Gn−1,n(cn−1,1, sn−1,1) and Gn−1,n(cn−1,2, sn−1,2) with
rn−1, cn−1,1, sn−1,1 and with sn−1, cn−1,2, sn−1,2 defined in (17), we annihilate the (n, n− 1) entry
of Z11, Z21 as well as the (n, n− 2) entry of Z12, Z22. These transformations yield

Z
(1)
n−1 ←


rn−1

anbn−1fn−1gn−1pn
rn−1pn−1

rn
bn−1fn−1sn−1

pn−1
−angn−1pn

sn−1
bnp1→n

pns1→n−1

 ,
where

pn :=
a1→nf1→n−1
p1→n−1

, rn :=
p1→n
r1→n−1

,

and

Z
(2)
n−1 ←


−an−1gn−2rn−1pn−1

qn−2sn−2

bn−1fn−1s1→n−2s
2
n−1

rn−1pn−1q1→n−2

anbn−1bnfn−1gn−1

rn−1pn−1

−angn−1p1→n−2((bn−1fn−1r1→n−2)
2+(s1→n−2pn−1)

2)
r1→n−1pn−1q1→n−2s1→n−2

bnp1→n−1

r1→n−1

−an−1bn−1fn−1gn−2sn−1

qn−2sn−2
− s1→n−1

q1→n−2
−anbngn−1

sn−1

−a1→nf1→n−1

s1→n−1

 .

Finally, in order to annihilate the (n − 1, n) entry in both Z12, Z22, we need the Givens rotation

Gn−1,n(tn−1,2, zn−1,2) with qn−1, tn−1,2, zn−1,2 defined in (17). After the transformation, Z
(2)
n−1

becomes

Z
(2)
n−1 ←


−an−1gn−2rn−1pn−1

qn−2sn−2

bn−1fn−1qn−1sn−1

rn−1pn−1

−angn−1p1→n−1p
2
n

qn−1sn−1r1→n−1

bnr1→n−1p1→n−1

q1→n−1s1→n−1

−an−1bn−1fn−1gn−2sn−1

qn−2sn−2
−qn−1

− anbngn−1p1→n

s1→n−1qn−1sn−1
− p1→n

q1→n−1

 .
With gn = 0, one has

p1→n = r1→n = s1→n = q1→n = a1→nf1→n−1.

23

Eventually, Z → Z̃ with

[
Z̃11

Z̃21

]
←



r1
a2b1f1g1p2

r1p1

r2
. . .

. . . an−1bn−2fn−2gn−2pn−1

rn−2pn−2

rn−1
anbn−1fn−1gn−1pn

rn−1pn−1

rn
b1f1s1
p1

−a2g1p2s1

b2f2s2
p2

. . .

. . . −an−1gn−2pn−1

sn−2
bn−1fn−1sn−1

pn−1
−angn−1pn

sn−1
bnfnsn
pn



,

[
Z̃12

Z̃22

]
←



b1f1q1s1
r1p1

−a2g1r2p2q1s1

b2f2q2s2
r2p2
. . .

. . .

−an−1gn−2rn−1pn−1

qn−2sn−2

bn−1fn−1qn−1sn−1

rn−1pn−1

−angn−1rnpn
qn−1sn−1

bnqnsn
rnpn

−q1
−a2b2f2g1s2q1s1

−q2
. . .

. . .

−an−1bn−1fn−1gn−2sn−1

qn−2sn−2
−qn−1

−anbngn−1sn
qn−1sn−1

−qn



.

It is easily shown that the matrix Z̃ can be expressed as

Z̃ =



r1
α21β11p2
r1p1

α13q1s1
r1p1

r2
. . . −β13r2p2

q1s1

. . .

. . . αn1βn−1,1pn
rn−1pn−1

. . . αn−1,3qn−1sn−1

rn−1pn−1

rn −βn−1,3rnpn
qn−1sn−1

αn3qnsn
rnpn

α13s1
p1

−β13p2
s1

−q1
α23s2
p2

. . . −α24β14s2
q1s1

. . .

. . . −βn−1,3pn
sn−1

. . . −qn−1
αn3sn
pn

−αn4βn−1,4sn
qn−1sn−1

−qn



.

The formulas in (12) can be derived using this matrix expression and (13).
The sets {pk}, {rk}, {sk}, {qk} have the following properties.

Lemma 4 (a) For all 1 ≤ k ≤ n,

0 < pk, rk, sk, qk < 1.

(b) For k = 1, 2, . . . , n,

1 > r1→k > p1→k > s1→k ≥ a1→nf1→n−1, 1 > r1→k > q1→k > s1→k ≥ a1→nf1→n−1.

24

Proof. (a) Using the fact that r1, . . . , rn are the diagonal entries of Z̃11, that −q1, . . . ,−qn are
the diagonal entries of Z̃22, and that Z̃ is orthogonal, one has 0 < rk, qk < 1. From the formulas
in (13),

0 < pk ≤
√
α2
k1 + β2

k1 < 1, 0 < sk ≤
√
α2
k4 + β2

k4 < 1.

(b) Using the product form Z̃ = Z̃oZ̃e, one obtains

f̃k =
q1→k
r1→k

.

Because f̃k < 1, we have q1→k < r1→k. The inequalities r1→k > p1→k and q1→k > s1→k follow
from the formulas in (17). The inequality p1→k > s1→k is from (19). Finally, because 0 < sk < 1
for any k, one has s1→k ≥ s1→n = a1→nf1→n−1.

Appendix B. Error analysis for Algorithm 4

In the following, δ with a subscript is a tiny number of size O(µ). Let α̂ be the computed value of
α (or α̃). We use the notation α̂ = α(1 + εα) (or α̂ = α̃(1 + εα)) and consider first order errors.
The following error analysis for the computations of a Givens rotation is from [5, Lemma 5].

Lemma 5 Suppose that γ, σ and ρ = ||x||2 are the values computed by Algorithm 3 with x =
[x1, x2]T in exact arithmetic, and let γ̂, σ̂, ρ̂ be the computed values from a slight perturbed x with
[x1(1 + εx1), x2(1 + εx2)]T . Then

γ̂ = γ(1 + εγ), σ̂ = σ(1 + εσ), ρ̂ = ρ(1 + ερ),

where

ερ = εx1
γ2 + εx2

σ2 + δρ, |δρ| ≤
13

4
µ,

εγ = (εx1
− εx2

)σ2 + δγ , |δγ | ≤
21

4
µ,

εσ = (εx2 − εx1)γ2 + δσ, |δσ| ≤
21

4
µ.

Proof of Theorem 2. Consider the computed values at the kth iteration of Algorithm 4. We
have

β̂kj = β̃kj(1 + εβkj
), α̂kj = α̃kj(1 + εαkj

), j = 1, 2, 3, 4,

where
εαk1

= εrk , εβk1
= εsk,1

+ εpk+1
+ δβk1

,
εαk2

= εsk − εpk + δαk2
, εβk2

= εpk+1
− εsk + δβk2

,
εαk3

= εαk2
+ εqk − εrk + δαk3

, εβk3
= εβk2

+ εrk+1
− εqk + δβk3

,
εαk4

= εqk , εβk4
= εzk,2

+ εsk+1
+ δβk4

,

(20)

and
|δβk1

|, |δβk4
| ≤ µ, |δβk2

|, |δβk3
|, |δαk2

|, |δαk3
| ≤ 2µ.

Define xk−1,1 := αk1tk−1,1. Then

x̂k−1,1 = xk−1,1(1 + εxk−1,1
).

By Lemma 5, we have

p̂k = pk(1 + εpk), t̂k,1 = tk,1(1 + εtk,1
), ẑk,1 = zk,1(1 + εzk,1

),

25

where

εpk = εxk−1,1
t2k,1 + δpk , |δpk | ≤

13

4
µ, (21)

εtk,1
= εxk−1,1

z2k,1 + δtk,1
, |δtk,1

| ≤ 21

4
µ, (22)

εzk,1
= −εxk−1,1

t2k,1 + δzk,1
, |δzk,1

| ≤ 21

4
µ. (23)

Since
x̂k,1 = xk,1(1 + εxk,1

),

by (22),

εxk,1
= εtk,1

+ δ1 = εxk−1,1
z2k,1 + δ2, |δ2| ≤

25

4
µ. (24)

Similarly,
r̂k = rk(1 + εrk), ĉk,1 = ck,1(1 + εck,1

), ŝk,1 = sk,1(1 + εsk,1
),

where, by (21), (23), and using c2k,1 + s2k,1 = 1,

εrk = εxk−1,1
t2k,1(c2k,1 − s2k,1) + εck−1,1

c2k,1 + δrk , |δrk | ≤
21

2
µ,

εck,1
= (2εxk−1,1

t2k,1 + εck−1,1
+ δ4)s2k,1 + δck,1

, |δ4| ≤
21

2
µ, |δck,1

| ≤ 21

4
µ, (25)

εsk,1
= −(2εxk−1,1

t2k,1 + εck−1,1
+ δ4)c2k,1 + δsk,1

, |δsk,1
| ≤ 21

4
µ.

Combining (24) with (25), one has[
|εxk,1

|
|εck,1

|

]
≤
[

z2k,1 0

2t2k,1s
2
k,1 s2k,1

] [
|εxk−1,1

|
|εck−1,1

|

]
+

[
25
4

21+42s2k,1

4

]
µ. (26)

Using the same trick as in [5, Lemma 7], we get[
|εxk,1

|
|εck,1

|

]
≤

(
k∑
i=1

[∏k
j=i z

2
j,1 0

2s2i,1

(
1−

∏k
j=i z

2
j,1

) ∏k
j=i s

2
j,1

])[
25
4
63
4

]
µ.

Hence,

|εxk,1
| ≤ 25k

4
µ, |εck,1

| ≤ 113k

4
µ,

and, therefore,

|εpk | ≤
25k − 12

4
µ, |εtk,1

|, |εzk,1
| ≤ 25k − 4

4
µ, |εrk | ≤

138k − 96

4
µ, |εsk,1

| ≤ 163k − 100

4
µ.

In the same way, for the errors in sk, ck,2, sk,2, qk, tk,2, zk,2, with xk−1,2 = ck−1,2αk4, we obtain[
|εxk,2

|
|εtk,2

|

]
≤
[

s2k,2 0

2c2k,2z
2
k,2 z2k,2

] [
|εxk−1,2

|
|εtk−1,2

|

]
+

[
25
4

21+42z2k,2

4

]
. (27)

Similarly, one has |εxk,2
| ≤ 25k

4 µ, and for

ŝk = sk(1 + εsk), ĉk,2 = ck,2(1 + εck,2
), ŝk,2 = sk,2(1 + εsk,2

);

q̂k = qk(1 + εqk), t̂k,2 = tk,2(1 + εtk,2
), ẑk,2 = zk,2(1 + εzk,2

),

26

we have

|εsk | ≤
25k − 12

4
µ, |εck,2

|, |εsk,2
| ≤ 25k − 4

4
µ,

|εqk | ≤
138k − 96

4
µ, |εtk,2

| ≤ 113k

4
µ, |εzk,2

| ≤ 163k − 100

4
µ.

Substituting these bounds into (20) yields (14).
If z2k,1, z

2
k,2, s

2
k,1, s

2
k,2 ≤ τ < 1 for all k, then from (26) and (27), we obtain that[

|εxk,1
|

|εck,1
|

]
≤
[
τ 0
2τ τ

] [
|εxk−1,1

|
|εck−1,1

|

]
+

[
25
4

21+42τ
4

]
µ,[

|εxk,2
|

|εtk,2
|

]
≤
[
τ 0
2τ τ

] [
|εxk−1,2

|
|εtk−1,2

|

]
+

[
25
4

21+42τ
4

]
µ.

Following [5, Lemma 8],

|εxk,1
|, |εxk,2

| ≤ 25

4(1− τ)
µ, |εck,1

|, |εtk,2
| ≤

(
50τ

4(1− τ)2
+

21(2τ + 1)

4(1− τ)

)
µ.

Using the same derivations now yields (15).

References

[1] G. S. Ammar, W. B. Gragg, and L. Reichel, On the eigenproblem for orthogonal matrices,
in Proceedings of the 25th Conference on Decision and Control, IEEE, Piscataway, pp. 1963–
1966, 1986.

[2] G. S. Ammar, W. B. Gragg, and L. Reichel, Determination of Pisarenko frequency estimates
as eigenvalues of an orthogonal matrix, in Advanced Algorithms and Architectures for Signal
Processing II, ed. F. T. Luk, Proceedings of the Society of Photo-Optical Instrumentation
Engineers (SPIE), vol. 826, The International Society for Optical Engineering, Bellingham,
WA, pp. 143–145, 1987.

[3] G. S. Ammar, L. Reichel, and D. C. Sorensen, Algorithm 730: An implementation of a
divide and conquer algorithm for the unitary eigenproblem, ACM Trans. Math. Software,
18:292–307, 1992, and 20:161, 1994.

[4] A. Bunse–Gerstner and L. Elsner, Schur parameter pencils for the solution of the unitary
eigenproblem, Linear Algebra Appl., 154/156:741–778, 1991.

[5] J. Demmel and W. Kahan, Accurate singular values of bidiagonal matrices, SIAM J. Sci.
Stat. Comput., 11:873–912, 1990.

[6] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, 1996.

[7] W. B. Gragg, Positive definite Toeplitz matrices, the Arnoldi process for isometric operators,
and Gaussian quadrature on the unit circle, J. Comput. Appl. Math., 46:183-198, 1993. This
is a slightly edited version of a paper published in Russian in Numerical Methods in Linear
Algebra, Moscow University Press, ed. E. S. Nikolaev, Moscow University Press, Moscow, pp.
16–32, 1982.

[8] W. B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math.,
16:1–8, 1986.

27

[9] W. B. Gragg, Stabilization of the UHQR-algorithm, in Advances in Computational Math-
ematics, eds. Z. Chen, Y. Li, C. A. Micchelli, and Y. Xu, Marcel Dekker, New York, pp.
139–154, 1999.

[10] W. B. Gragg and L. Reichel, A divide and conquer method for unitary eigenproblems, in
Hypercube Multiprocessors 1987, ed. M. T. Heath, SIAM, Philadelphia, pp. 639–647, 1987.

[11] W. B. Gragg and L. Reichel, A divide and conquer method for unitary and orthogonal
eigenproblems, Numer. Math., 57:695–718, 1990.

[12] M. Gu, R. Guzzo, X.-B. Chi, and X.-Q. Cao, A stable divide and conquer algorithm for the
unitary eigenproblem, SIAM J. Matrix Anal. Appl., 25:385–404, 2003.

[13] W. B. Jones, O Nj̊astad, and W. J. Thron, Moment theory, orthogonal polynomials, quadra-
ture and continued fractions associated with the unit circle, Bull. London Math. Soc., 21:113–
152, 1989.

[14] L. Reichel and G. S. Ammar, Fast approximation of dominant harmonics by solving an
orthogonal eigenvalue problem, in Mathematics in Signal Processing II, ed. J. G. McWhirter,
Oxford University Press, Oxford, pp. 575–591, 1990.

[15] M. Stewart, An error analysis of a unitary Hessenberg QR algorithm, SIAM J. Matrix. Anal.
Appl., 28:40–67, 2006.

[16] B. D. Sutton, Computing the complete CS decomposition, Numer. Algorithms 50:33–65,
2009.

[17] B. D. Sutton, Stable computation of the CS decomposition: simultaneous bidiagonalization,
SIAM J. Matrix Anal. Appl., 33:1–21, 2012.

[18] T.-L. Wang and W. B. Gragg, Convergence of the shifted QR algorithm for unitary Hessenberg
matrices, Math. Comp., 71:1473–1476, 2001.

[19] T.-L. Wang and W. B. Gragg, Convergence of the unitary QR algorithm with a unimodular
Wilkinson shift, Math. Comp., 72:375–385, 2002.

28

