A CS decomposition for orthogonal matrices
with application to eigenvalue computation
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Abstract

We show that a Schur form of a real orthogonal matrix can be obtained from a full CS
decomposition. Based on this fact a CS decomposition-based orthogonal eigenvalue method
is developed. We also describe an algorithm for orthogonal similarity transformation of an
orthogonal matrix to a condensed product form, and an algorithm for full CS decomposition.
The latter uses mixed shifted and zero-shift iterations for high accuracy. Numerical examples
are presented.
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1 Introduction

The eigenvalue problem for unitary and orthogonal matrices has many applications, including time
series analysis, signal processing, and numerical quadrature; see, e.g., [2, 7, 13, 14] for discussions.
These applications, as well as the elegant theory, have spurred the development of numerical
methods for these eigenvalue problems. Both QR algorithms and divide-and-conquer methods
have been developed; see [1, 3, 8, 9, 10, 11, 12, 15, 18, 19]. Both types of methods require initial
unitary similarity transformation of a given unitary matrix Q € C2"*2” to an upper Hessenberg
matrix H represented in product form,

H = H1H2 e H2n71H2n7

where

Hk: = dlag |:I]€1, |: _O"Zk %

:| 7I2nk:| 5 |A/k|2 + U}% = ]-7 Yk S (Cv oL > 07 (]—)

is a complex Householder matrix for 1 < k < 2n — 1, and Hs,, = diag[lon—1, —72n], with v2, €
C unimodular, is a truncated complex Householder matrix. The Hessenberg matrix H can be
transformed further by unitary similarity transformation into the product form H,H., where

H,=HH;s...Hyp_y, He=HyH,.. Hy, (2)

The latter transformation was first described by Ammar et al. in [1] for orthogonal matrices
of even order Q € R?"*2" and they applied it to determine the eigenvalues and, if so desired,
eigenvectors of (). Orthogonal matrices of odd order can be reduced to orthogonal matrices of
even order by deflation; see below. Subsequently, Bunse-Gerstner and Elsner [4] developed a
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QZ-type algorithm for the matrix pencil {H}, H.} by exploiting the quasi-diagonal structure of
the matrices H, and H.. Here and below the superscript * denotes transposition and complex
conjugation. A superscript 7 will denote transposition only.

This paper describes how an orthogonal matrix @) can be brought into the form H,H. directly
by an orthogonal similarity transformation. This transformation is related to the transformation
used by Bunse—Gerstner and Elsner [4], but with different reduction targets and reduction order.
In this way, we obtain a new approach for computing the spectral factorization of an orthogonal
matrix based on the product form H,H.,.

Real eigenvalues, i.e., eigenvalues 1, of an orthogonal matrix ) can be removed by deflations;
see [1, 8] for discussions. Therefore throughout this paper we assume that the orthogonal matrix
Q is of even order, 2n x 2n, and does not have real eigenvalues. Then we can apply an orthogonal
similarity transformation to the expression H,H, to obtain a matrix of the form

»zxz¥, ¥ =diagll,,~1I,], Z= i 2z ,
Zo1  Zoo

where the blocks Zy1, Za1, Z1y, Z1, are n x n and upper bidiagonal.

Suppose that
,_ [0 0o W vi 01"
0 U, v — 0o W

is a full CS decomposition, where Uy, Us, V1, V5 are orthogonal,

O = diag[¢r, - - -, Pnl, U = diag[¢1, ..., ¢¥n),
and the diagonal entries satisfy ¢? + 2 = 1 and ¢;,¢; >0 for i = 1,...,n. Then

U, quﬂ—\Iﬂ 20w Hm or

T _
R { 0 U, || —200 ®2-92 || 0 U,

from which we obtain a real Schur form of @) after a simple permutation. We develop an algorithm
to compute a full CS decomposition of the matrix Z and determine a real Schur form of @ from
this decomposition. Sutton [16] describes an algorithm for computing a full CS decomposition of a
unitary matrix in a 2 x 2 block form. His algorithm is more reliable than other CS decomposition
methods. Our algorithm follows the approach described in [17] for SVD iterations.

An orthogonal matrix is perfectly well-conditioned and all its eigenvalues are unimodular.
Therefore, any backward stable method will compute all eigenvalues with high accuracy. However,
this does not mean that small real and imaginary parts of the eigenvalues always are computed
with high relative accuracy. For this reason, we apply the Demmel-Kahan zero-shift SVD iteration
technique [5] to accurately compute small singular values of blocks of Z.

When an orthogonal similarity transformation needs to be generated for the orthogonal eigen-
problem, a CS decomposition-based eigenvalue method only requires a pair of orthogonal matrices
{U1,Us} or {V1, Va} to be determined. This results in an efficient algorithm. Moreover, differently
from QR-type algorithms, which normally use unimodular shifts, the CS decomposition-based
method uses standard shifts.

We remark that the initial reduction method can be applied to complex unitary matrices as
well. The factorization ©ZXZ7 provides a new condensed form for real orthogonal matrices and
therefore is of independent interest. The full CS decomposition algorithm can be applied to solve
real orthogonal eigenvalue problems, as well as to compute a CS decomposition of a unitary matrix.

This paper is organized as follows. Section 2 describes the initial orthogonal transformation
that determines the representation H,H, of the given matrix (). We explain in Section 3 how a
real orthogonal matrix is orthogonally similar to XZXZ7 and why a full CS decomposition of Z
gives a Schur form of XZXZ7T. Section 4 contains a full CS decomposition algorithm and some
implementation details, and Section 5 presents a new algorithm for the orthogonal eigenvalue
problem based on the full CS decomposition. This section also contains a few computed examples.
Section 6 contains concluding remarks.



In the remainder of this paper, I denotes an identity matrix, e; is the jth column of I, and
| - |2 stands for the Euclidean vector norm or associated induced matrix norm. We use MATLAB
inspired notation to define a submatrix. For instance for a matrix A = [a;;], we let

A(i: j, k) = [aik, .-, ajk]T

denote the submatrix that consists of the vector made up of the entries of column k of A in rows
i through j. Similarly,
A(k,i: ) = [aki, - - -, agy]

stands for the vector consisting of the entries of row k& and columns i through j.

2 Initial reduction to condensed form

This section describes a process for reducing a 2n x 2n unitary matrix ) by unitary similarity
transformation to the form H,H., where both H, and H, are in product form; see (2). Details of
the process are shown in the algorithm below, which uses the following elementary matrices:

(a) Hg(vy,0) or simply Hy (1 <k < p—1) denotes a p x p Householder matrix analogous to (1).
Note that for a vector z = [x1,z2]T # 0 with 25 > 0, we have

L1 L2

7:—77 0‘:720
Vi + 23 Vi + 23

ERIC I

For k = p, we let Hp(y) = diag[I,—1, —]. When o is real, [Hg(vy,0)]* = Hi(7,0).

Then

(b) Hsi(x) is a modified p x p Householder matrix associated with a vector z € CP~**1. It is
defined by

H>;(x) = diag[l;—1, H] diag[l;—1, B, Ip—],
where H is a Householder matrix such that Hz = f|z|e; and |8| = 1. Therefore,

0
x

Hao)" | 3 | = lokees

When i = p, x is a scalar and H>,(z) = diag[l,—1, 5], where § = 1 if x = 0; otherwise
B=ua/lxl

For a given vector z = [yT x;,27]7 with y € C71 2 € CP~% and [x;,2T7]T # 0, we can
determine a Householder matrix H;(vy, o) with ¢ > 0 and a matrix H>;41(z) such that

[Hi(/yva)]*[HZiJrl(Z)]*x = [y,a,O]T, Q= \/ |x1|2 + ”ZH% > 0.

Algorithm 1. Given a 2n X 2n unitary matriz Q, the algorithm computes a unitary matriz ©g
such that ©5Q0¢ = H, H,.

0. Set @0 :Ign.
1. Fork=1,2,...,.n—1

(a) Determine H>ai, := H>21,(Q(2k : 2n,2k — 1))
(b) Update Q « HZ o QH>o, O¢ <= OoH>2p



(¢) Determine Hap_1 := Hop_1(Vok—1,02k—1) With yop—1 and ook—1 > 0 satisfying

N
—V2k—1 O2k—1 92k—12k—1 | _ €1
O2k—1  V2k—1 Q2k,2k—1

(d) Update Q < Hj,,_,Q
(e) Determine Hsopy1 = H>op+1(Q(2k, 2k + 1 : 2n)*)
(f) Update Q <= H%y; QH>2k11, O < OoH 241
(9) Determine Hay := Hoy (7o, 02r) with Yo and oo > 0 satisfying
[ —V2k f% T { q2k,2k ] = e
02k Y2k G2k, 2k+1
(h) Update Q < QH3,
End For

2. (a) Determine H>o, := H>2,(Q(2n,2n — 1))
(b) Update Q < H%,,QH>2n, Op < OgHx>2,
(c) Determine Hop—1 := Hop—1(Yan—1,02n—1) With Yon—1 and oan,—1 > 0 satisfying
—Y2n—-1 O2n-—1 : d2n—1,2n—1
O2n—1 Yon—1 q2n,2n—1
(d) Update Q < H3, _1Q
(e) Determine Hayp := Hap(y2n) With Yon = —@2n.2n

:el

We illustrate the process with a 6 x6 unitary matrix. For k = 1, we determine H>o, H1, H>3, Ho
such that

r r x T T r Tr r r X X
r r r T T X + x xx x T
oz o2 oz oz x| HI,QH> 0 2 z =z 2 «
Qixmxmxx [ 0 2 2 = 2 =x
r r xr T T T 0 z =z =z x =z
r r x T T 0 z =z =z o «
1 ® @ ® ® ® 1 ® @ ® ® ®
0 =z = x = 0O x + 0 0 O
HYHZ,QH>o 00z =z 2 z= = HX H{HL,QH>2H>3 0z 2 = =z =
— 0 2 = = x =x a — 0 2 = = x =x
0 2 = = x =z 0 2 = = x =x
0 = = x =z 0 = = x =
1 ® @ @ ® ®
01 0 0 0 O
H;SHTH;QQH22H23H; 0 ® = = x «x
B JEN 0 ® = =z x= =x |’
0 ® = x x «x
0 ® = = =z =z

where “0” denotes a zero introduced by transformation, “4” stands for a nonnegative entry, the
entries “1” are due the fact that the matrices H; and @ are unitary, and “®” is a zero entry that
arises because we work with unitary matrices.

For k = 2, we repeat the procedure with the trailing 4 x 4 submatrix to obtain

1 ® ® ® ® ®
0O 1 0 0 0 O
H25H3H24H23H1HZQQH22H23H2HZ4HZ5H4 =10 © 0 1 0 0
0 ® 0 ® = =
0 ® 0 ® x =



Finally, application of H>¢, Hs, and Hg yields

HyHigHS Hy HS  H 3Hy HS0QH>oH>3Hs HoyHos Hy H>6Hy = I

In general, we have

Hgn—lHEQnHEQn—l s H§3HTH§2QH22H23H§ s HZQTL—lH;n—2H227LH§n =1

Using the fact that Hy commutes with H>; and HZ; for any j >k + 1, and letting

©¢ = H>oH>3 ... H>opn_1H>o,,

the above equation can be written as

(Hs, 1 Hap, g .. HyHY)OQO0(Hy Hy ... Hy, o Hj,) =1,

which gives

©5Q00 = H,H., H,=H\Hs...Hy,_1, H,=Hy,.. HyHy=HyH,.. . Ho,. (3)

Several comments are in order:

1.

Algorithm 1 is similar to the algorithm described in [4] for unitary matrices. The main
difference is that the latter takes H, as the reduction target. Our algorithm computes the
matrices Hy, ..., Ho,_1 explicitly in the elimination process. With Hog_1 being involved
explicitly, Algorithm 1 avoids the decision-making step for determining the matrices H>op41,
and is more straightforward to implement and potentially more reliable.

Algorithm 1 follows the same approach used in [17] for the initial reduction of a full CS
decomposition. The procedure in [17] differs in that it applies two-sided non-similar block
diagonal unitary transformations.

If Hy, is diagonal for some k during the computations, the unitary matrix H,H. decouples
and yields two or more submatrices.

If @ is real orthogonal, because det H, = —1 for all k = 1,...,2n — 1, it follows that
det Q = —det Hay, () = ~. In this case, if v = —1, then 1 and —1 must be eigenvalues of Q.
These eigenvalues can be deflated; see [1, 8].

Algorithm 1 requires about 64n3/3 flops for computing H,, H.. If the unitary matrix O
has to be stored, additional 32n3/3 flops are needed. Here, one flop stands for one of the
arithmetic floating-point operations +, —, X, +, V-

We briefly turn to the stability of Algorithm 1. Let éo, Hy, (k=1,...,2n) be the computed
matrices determined by the reduction process. It follows from standard error analysis [6, Chapter
5] that there are unitary matrices ©¢ and Hy, (k= 1,...,2n) such that

with

I+A=(HHs... .Hy 1)*05(Q+ E1)O0(HoHy ... Hap_oHo,)*

|E1]2, 160 — Oola, [Hy — Hul,. .., |Hzn — Hanl2 = O(p),

where I + A is the computed matrix obtained without enforcing the diagonal entries to be 1 and
the entries with ® in the illustration to be zero; p denotes machine precision. From

[T+ A)"(I+A4) = Ianfz = [(Q+ E1)"(Q + Er) — Ian]2 = O)

and the zero pattern of A as shown in the illustration, one can show similarly as in [17] that

[A]2 = O(n).



It is easily seen that
Ty Fony = My . oy s (I 4 Fy), HoHy . Hoy = By Hon(1 4 F)
with | Fy |2, | Fe]2 = O(u). Then for the computed matrices
Hy:=H\Hs...Hoy 1,  H.:= HyH,...Hs,,

one has o . .
HoHe = GS(Q + E)@Oa HEHQ = O(M)

This shows backward stability of Algorithm 1.

3 Transformation of H, H, to XZX27

From now on, we assume that Q € R?"*2" is orthogonal and that there is a real orthogonal matrix
©g such that
05 Q0 = H,H,,

where

Hy = Mt =dag || 7070 ] T ]| e e ]

o1 st g3 73 O2n—1 Yon—1
. —Y2 02 —Y2n—-2 O2n—2
H., = HyH,...H,, =diag |1, e —-1],
‘ 2 an g{ [ o2 Y2 ] ’ [ Oan—2  Y2n—2 ] ’ ]

and o >0 for k=1,...,2n — 1. Note that all vq,...,v2,—1 are real.
Define for any v, € R with 02 + %2 =1 and ¢ > 0, the numbers a,b € R with a,b > 0 by

ol 2(1+7)

2(1—) o
0.
( 2 ’ \/2(17)> A

Then one obtains the spectral decompositions
a b 1" -y o a b | |1 0 (4)
b —a o v b —a | |0 -1
b oal’ -y o b a| | -1 0 (5)
—a b o v —a b | | 0 1|

In fact, if 0 = sin @ and v = cos 6 for some 6 € (0, 7), then a = cos(0/2) and b = sin(0/2).
Application of (4) to each block of H, yields an orthogonal matrix

T ai by as by Qn, by
| R e |

with ay, by > 0 and a? + b7 =1 for k=1,...,n, such that

(av b) =

and

e’'n,e, = diag[l,-1,1,-1,...,1,-1].

Similarly, by applying (5) to each 2 x 2 block in H, we can determine an orthogonal matrix

o fi o fo1 o gn
O, = diag |:17|: -g1 N :| LR |: —Gn-1 Jfn-1 ]71]



with fr,gx >0 and f7 + g2 =1for k=1,...,n—1, such that

or'H.0e. = diag[l,-1,1,-1,...,1,-1].

Introduce ;
n 0
P:[61,63,-..,€2n_1,€2,€4,...,€2n}7 Z:|: 0 _In:|
Then
(©,P)'H,(0,P) = (6.P)TH,(0,P) = X.
Now define
Z = (e,P)’'(e.pr) = (PTe,P)"(PTO.P) =: Z,7.,
where
[ al b1 T
ag bo
_ an by
ZO o b1 —ai ’
bo —az
L bn —Qn i
(6)
- 0 _
fi —-g1 O
frn—1 —Gn-1 0
Zo =
0 o fi
O In—1 fn—l
. O 1 -

Then it follows from

elQe,=H,H. =0,P%(0,P)"(6.P)x(0.P)"

that
(000,P)'Q(600,P) =%2%2". (7)
Because Z is an orthogonal matrix, it has a CS decomposition, see, e.g., [6],
v, 0] (v o0 _J[e W ®
0 U, 0o Wi | ¥ —-o |’

where Uy, Us, Vi, Vo € R™*"™ are orthogonal and

CD:diag[(ﬁvaSQv"‘vgbn]? qj:diag[¢1aw2w~w¢n]

with ¢2 + 2 =1 and ¢, ¢y > 0 for k =1,...,n. Finally, let

B Ui 0
0= @0@013[ o U }P. 9)



Then we have the real Schur decomposition

T s P — v} 2419 } {Qﬁ—d}% 2¢n1n, H
© Q@‘dlagH—wlwl o2 —p? || Sagnn @2 -2 || (10)

Note that for

- Vi 0
G_G)OGEP[ ) VQ}P,

we have another real Schur decomposition

AT NS AT AT A 1 3 — 3 —2¢1¢1] [(ﬁi—(/)% =205, H
@Q@‘@Q@‘dlag“ 2n B2 || 2entn 242 ||

In order to generate the orthogonal matrices © or ©, one has to compute either the matrix pairs
{U1,Us} or {V1,Va}, but not necessarily both of them.

We remark that in [1] an SVD-based method was proposed for solving the eigenvalue problem
for Q. However, the approach there is different from ours. We finally note that the factorizations
of this section do not apply to complex unitary matrices, because their eigenvalues might not
appear in complex conjugate pairs.

4 Computation of a full CS decomposition of 7

We turn to the problem of computing a full CS decomposition of Z. The product form Z = Z,Z,
with Z,, Z, given by (6) yields

[ a1 b1g1 b1 f1 ]
as f1 —a291
bnflgnfl bnflfnfl
7 — anfnfl —anpGdn—1 bn
b —ai191 —alfl
bafi - —bagy
. —Qp—-19n—1 *an—lfn—l
L bnfnfl _bngnfl —Qpn
[ o Bi1 13 i
Qg - —Bi3
/Bn—l,l Qp—1,3
_ Q1 b1 oy | _ | Zu | Zi2 (1)
ay —Pi2 —Qy | Zo1 | Zo2 |
gy - —B14
—Bn-1,2 L —Qp1a
L Qn2 —ﬂn—1,4 —COng |

The further discussion requires the following elementary orthogonal matrices:

(a) For x = [x1,x2]T # 0, we define Householder matrices H;;(z) € R?"*2" and Givens matrices
G”(l') € R™ ™ by
Hij(z) = ILym+(y— Dejel — (v + 1)ejef + a(eiejr + ejeiT), 1<i<j<2n,

Gij(x) = In+(y—1)(eie] +eje] ) +olejef —eie]), 1<i<j<m,



where

X T2
7:«/3024-:027 J:\/x2—|—:c2
1 2 1 2

e e g

Note that 7,0 > 0 when z1, 22 > 0. For clarity, we sometimes will write H;;(z) and G;;(z)
as H;;(v,0) and Gjy;(v,0), respectively.

satisfy

(b) For z = [z1,22)7 #0 and 1 <i < n < j < 2n, we define 2n x 2n Givens matrices

Gij(x) = Iy + (v — 1)(esel + eje?) + a(ejeiT — e,»ejr),
where
X2 €

2 2 2 2
xi + 3 ] + X3

2T el )

Again, v,0 > 0 when x1, x5 > 0.

are such that

In [16], Sutton proposed a full SVD iteration process that applies the bidiagonal iteration
to all four bidiagonal blocks of Z simultaneously. For one simultaneous bidiagonal iteration, it
determines real orthogonal matrices Uy, Uy, V1, Vo € R™*™ such that

SRR

with Z of the same form as Z. The iteration is based on the fact that for any pair of real numbers
1, pio satisfying p2 + p3 = 1, we have

Zh 2y — i1 = p3l — Z3, Zn,
Z1Z{y — 131 = p3l — Z12 715,
ZyaZiny — i1 = p3l — Z{5 712,
Zoo Zdy — 121 = 3l — Zoy Z1,.

In exact arithmetic the simultaneous bidiagonal iteration is equivalent to one bidiagonal iteration
on Zy1 (or Zao) with a shift ,u%, or on Zio (or Zsp) with a shift ,u%. Note that one bidiagonal
iteration on a block, say Z;; with a shift 1%, is equivalent to one QR iteration on Z{; Z1; with the
same shift p? [6, Sec. 8.6]: if 71y = UT Z1,1Vy is upper bidiagonal with Uy, V; real orthogonal and
Viey parallel to (21, Z11—p21)ey, then ZlTl 7y = Vi (ZE Z11) V1 is symmetric tridiagonal generated
from ZlTlZH using a similarity transformation with V;. Here we describe a related simultaneous
iteration procedure that is based on the alternative initial reduction procedure considered in [17].
The main difference is that in Algorithm 2 below one does not need to decide which row or column
will be used for generating a Givens matrix in each step of the bulge-chasing process. Another
difference is that Algorithm 2 computes Z,, Z. of the same forms as Z,, Z. defined in (6) by
reducing Z to I, and then determines Z = Z,Z, after the reduction process.

Algorithm 2 [Full CS bidiagonal iteration]. Given a 2n X 2n real orthogonal matriz Z of the
form (11), the algorithm computes orthogonal matrices Uy, Us, Vi, Vo € R ™ such that

T
Uy Vi _ 5
L ul "]
by applying one QR iteration step to ZL Z11 with shift u3. The orthogonal matrices Uy, Us, Vi, Va
are determined by updating available matrices.



0. Compute x = (ZL5 Z11 — p21)(1:2,1) and Fis := G12(7)
Update Z11 < Z11F12, Zoy < Za1F1a
Update ‘/1 — V1F12

1. Fork=1,2,...,n—1

(a) Determine Gy k41 = G p+1(Z11(k : k+1,k)) and ék,k.}rl = Grpt1(Zaa(k: k+1,k))
(b) Update Z11 + Gz;k-;-lzll; Z1g G;;Ck+1Z12, Uy UlGli,k+1;
Zo1 G;‘QkHZm, Zag G£k+12227 Us < UsGy k11
(¢) Determine Hy pik := Hinik([Z11(k, k), Zo1 (K, k)]T)
(d) Update Z <— Hy nirZ

(¢) Determine Fii1iv2 = Gryrpr2(Zon(k,k+1:k+ 2)T) (and F,, == Fy ni1
:= diag[l,—1,sign(Zo1(n — 1,n))]) and Fy k11 := Gr g1 (Za2(k, k : k+1)T)

(f) Update Z11 < 21 Fyg1kt2, Zo1 < ZonFrpkv2, Vi ViFipn ko,
Z1g < Z1oFy jq1, Zoo < ZooFy 1, Vo VoFy py1

(9) Determine Gri1mn+k = Gii1n+k([Zo1(k, k + 1), Zaa(k, k)]T)
(h) Update Z < ZGEH)TH,f
End For

2. (a) Determine G,, := diag[l,,_1,sign(Z1(n,n))] and G,, = diag[I,,_1,sign(Zz1 (n,n))]

(b) Update Z11 — GZZH; Z12 — Gz;Zlg, U1 — U1G7y
o1 GEZo1, Zog < GT Zay, Uy + UGy,

(¢c) Determine Hy, 2, := Hp 2n([Z11(n, 1), Z21(n,n)]T)
(d) Update Z < Hy, 202
(e) Determine F, := diag[l,_1,sign(Za(n,n))]
(f) Update Ziz < ZroFy, Zoy < ZaaFy, Vo Vo F,
3. Form Z = Hy pi1Honyo o Hy9nGons1Ganya - Gron_1

The sign function used in the algorithm is defined for real x by

sign(z) = { aflxl, i x#0,

1, otherwise.

We illustrate the computations of Algorithm 2 with a 6 x 6 matrix Z:

z x 0|z 0 0] [z = 0|2 0 0

0 z z|z = O fxz x|z = O

7 0 0 z|0 = =z Fio 0 0 z|0 o =z

z x 0jlx 0 O — z x 0jx 0 O

0 z z|z = O fxz zjxz = 0

0 0 |0 z =« | 10 0 2|0 = x

+ x fla f 0] (1 ® 9|l® ® 0

0O =z z|xz = O 0O z z|z o O

Glg,élg 0 0 |0 =z =z H14 0 O x 0 « «x
— + x flz f O — 0O z z|x x O
0O z z|x = O 0O =z z|x z= O

0 0 z|0 = =z | |0 0 =z |0 =z =

10
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0

where “0” denotes zero, “+” stands for a nonnegative entry, “1” is one, “®” is a zero obtained
because Z is orthogonal, and elements marked by “f” are obtained by fill-in. They are generically
nonvanishing. )

Because Hy, i) commutes with the block diagonal matrix diag[G} 11, G 1] and G 4 oy

commutes with diag[Fj+17j+2,ﬁ'j7j+1] for any j > k, we obtain

T
U 0 Vi 0
H3sHosHia [ 01 U, } Z[ 01 Vs }G&G?ﬁ = .

In general, one has

T
Uy 0 Vi 0
Hypon .. HomyoHynin [ ! ] Z [ ! } Gh it Gl oy = Doy,

0 U, 0 W
Therefore .
Ui 0 i 0| 55 5
% 8o 8]
where

Zo = Hl,n+1H2,n+2 cee Hn,2n7 Ze = G2,n+1G3,n+2 cee Gn,2n71~
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Algorithm 2 requires about 130n flops. If the matrices Uy, Us, Vi, Vo have to be updated, then
additional 24n? flops are needed during the whole iteration process. One has to determine a shift
u? for the rotation Fjs. For instance, one may choose the Wilkinson shift, i.e., an eigenvalue of
the trailing 2 x 2 submatrix of Z;;Z{; that is closest to the last diagonal entry of Z1; Z1;; see [16]
for details on the choice of shift. One can show that Algorithm 2 is backward stable similarly as
we did for Algorithm 1. Alternatively, one can proceed in the same manner as in [17].

For the eigenvalue problem of an orthogonal matrix, any backward stable algorithm is also
forward stable. Hence, the eigenvalues can be computed accurately with a backward stable method.
This, however, does not guarantee that small real and imaginary parts of the eigenvalues will
be computed accurately. In our case, this is equivalent to the fact that small singular values
of the blocks of Z might not be computed accurately. We therefore describe another full CS
decomposition iteration based on the Demmel-Kahan zero-shift SVD iteration [5] to achieve high
accuracy of small singular values. The iteration procedure from Z to Z is the standard bulge-
chasing process. Since u; = 0, the iteration formulas can be explicitly derived.

Theorem 1 Let Z be the matriz generated from Z in (11) with the zero-shift full CS iteration.

Then -
o _ apssk . OGpaqk .
Qg1 = Tk, A2 = > g3 = , k4 = Qk,
Pk Tk (12)
= Brspk+1 5 Brerkyr 5
Bro = ———, Brs=—""", Bra = 2x25k+1,

Br1 = Sk,1Pk+1,

where, for k=1,2,...,n,

Th—1,10k1 Br1
2 2 2 _ ; _
P = (te—1,1081)° + Biy, tp1 = » N )
k k
2 2 2 ~ Ck—1,1Pk _ Ok41,1%k,1
e = (ck—1,10k)” + (hy11261)", CGh1=—", Sp1=—",
Tk Tk (13)
9 2 | 42 _ Ck—120k4 _ Bra
s; = (Ch—1,2004)" + Biy, Ck2 = P Sk,2 = P
k k
9 2 2 tk—1,25k Sk,2Qk41,4
G, = (te—1,25k)" + (Sk20k414)", tho = Y 22 = —
k k

with t071 = Co,1 = Cp,2 = t072 =1 and ﬁn]’ =0 fO?”j = 1,2,3,4.

Proof. A proof is provided in Appendix A. 0O
We note that the block Z; is not involved in the iteration. The four sets of parameters in (13)
stem from four Givens matrices, each of which can be computed with the following algorithm [6].

Algorithm 3 [Givens matrix]| Given a real vector x = [x1,12]7 # 0, the algorithm computes

. Yy o o 1
v,0 and r = |x|2 such that [ o }z—r{o

If |xq| > |22

Compute t = xo/x1, s =1+ t2
Compute v =1/s, o =t/s, r = |r1]s

else
Compute t = 1 /2o, s = /1 + 12
Compute v =1t/s, 0 =1/s, r = |ral|s
end

Theorem 1 suggests the following iterative method.

12



Algorithm 4 [Zero-shift CS bidiagonal iteration]. Given a 2n x 2n real orthogonal matriz
Z of the form (11), the algorithm computes orthogonal matrices Uy, Us, V1, Vo € R™*™ such that

SRR

based on one QR iteration step applied to Zi{,Z11 with zero shift. The orthogonal matrices
Uy,Us, V1, Vo are determined by updating the available matrices.

0. Set toy = to2 =co1 = co2 =1 and Bn; =0 for j =1,2,3,4.
1. Fork=1,....n—1

(a) Compute py, and G 1 (tr1, 20,1) with @ = [tr—11001, ]
with & = [Cr—1,1Pk, Ok+1,12k,1)"
with © = [ckfl,zam, 5k4]T

. T
with © = [tg—_125k, Okt1,45k,2]

(
(b) Compute 1y, and G, g+1(Ck,1, Sk,1
(c) Compute s and G g+1(ck.2, k.2
(

~— " ~— —

(d) Compute g, and Gy k41 (tk2, 2,2
(e) If k> 1
Compute ?k—l,l = Sk—1,1Pk> Bk—1,2~: Br—1,3Pk/5k—1,
Br—-1,3 = Br—1,2Tk/ k-1, Br—1,4 = 2k—1,25k
End if
(f) Compute Gy = 1y, G2 = 035kK/Dks O3 = Ck2qr/Tk, Oka = Qi
(g9) Update Uy <= UG gt1(ck1,55,1), Uz < UG g1(Ch 2, Sk,2)
and Vi <= ViGr py1(te1, 2i1), Vo = VoG g1 (tr,2, 25,2)
2. (CL) Compute p, = anltn—l,h Tn = Cn—1,1Pn, Sn = QpaCn—-12, n = tn—1,23n
(b) Compute /Nén—l,l = fn—l,lpn; Bn—1,2~: ﬂn—l,?)pn/sn—ly
ﬁn71,3 = anl,QTn/qnfl; 5n—1,4 = Zn—-1,25n
(c) Compute én1 = T, Gna = Qn3Sn/Pn, On3 = @naln/Tn, Gna = qn
This algorithm requires 44(n — 1) 4+ 4 flops. Additional 24n(n — 1) flops are needed to update
Uy, Uz, V1, Va. o R
The factored form Z,Z. is easily derived from Z if it is required. One may simply use the
entries of Z1; and Z3; and apply the following code:
0. a1 = a1, b= ai

1. Fork=1,...,n—1
(a) Determine fes Qkt1, Bk+1 by applying Algorithm 3 to z := [ak41.1, Okr1,2)7
(b) Determine g by applying Algorithm 3 to z := [5k1, BM]T
End for

This code demands 12n — 12 flops. We remark that it follows from (11) that one may also use the
formulas g = Bkl/i)k or g = Bkg/dk to compute Ggx. The reason for using the formula in the code
is to enforce the relation f7 4 g7 = 1 explicitly.

The following first order error analysis, which is based on the results in [5], shows that highly
accurate singular values can be computed with Algorithm 4. The floating-point arithmetic is
assumed to satisfy

fllaof) = (aop)(1+01) = (acB)/(1+02),  [61],]d2] < p,

where o € {4, —, X, +, \/} and p is the machine precision.
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Theorem 2 Suppose that Algorithm 4 is applied to the data {ay;} and {Bk;} to compute {au;}

and {Br;} on a computer with machine precision p. Let {ay;} and {Bkj} be the computed data.
Then

brj = (1 + €ay,),  Brj = Biy(1 +€p,,)

and
69k — 48 25k — 8 163k — 75 69k — 48
|€0Uc1| < Tﬂ? |€Otk,2| < s |604k3‘ < #M? |6ak4‘ < TN»
50k 4+ 13 50k + 9 326k — 75 188k — 83
|€ﬁk1| < —u, |631«2| < 4 122 |€Bk3| < ?Na |65k4‘ < f” (14)

4

Furthermore, if during the iterations si |, St 5,25 1,285 < T <1 for all k, then

leae | < 88 — 38T E |<44—19T

ag1| = 4§1 — 7%)2 Hy Bril = 2(1 — 7_) Hy
| ‘<4—1T | |<42—17T

Capa| = 2(1 — 7_) Hy EBral = 2(1 — 7_) Ky

134 — 1057 + 2172 134 — 1057 + 2172 (15)

|€C¥k3‘ < 2(1 — 7_)2 My |65k3| < 2(1 — 7_)2 K,
lewn| < 88 — 38T e |<657367'—4T2

awal = — 2 Al = "o -2z M

Proof. A proof is given in Appendix B. O

It is pointed out in [5] that typically the Sj;’s decease during the iterations. Therefore, the
bounds in (15) will be more realistic in practice.

We may use Algorithms 3 and 4 together to compute a full CS decomposition of Z, where
we apply the latter algorithm to compute small singular values and use the former algorithm to
compute the other ones. Slight modifications of the deflation and stopping criteria proposed in

[5] can be used. For an n x n bidiagonal matrix B with diagonal entries {c;}}_; and super(sub)-
1

diagonal entries {8;}7-], we apply the following algorithms, cf. [5]:
Algorithm A
An = |o]
Forj=n—1to1
Compute Aj = ||/ (1 + |Bj]/Aj1)
End

Algorithm B
v = |aq]
Forj=1ton—1
Compute vji1 = |ajpal/(1+1851/v5)
End

Then |B7!|5} = min; \; and |IB7Y;! = min; v;.
For each of the blocks of Z, we can apply the above algorithms to compute a lower bound for
the smallest singular value:

oy = min{| Z5' 7L 125X @an = min{ 25 17 1250 150

o1 = min{[Z5 7L 125 Y gae = min{[[ Zo [T [ Zas 50 -

Let tol be a selected tolerance. We use the following criterion to switch from zero-shift iteration
to shifted iteration:

14



If nmin{oy,, 095 ol < p
run zero-shift iteration with 7
elseif nmin{oy, 095 }tol < p
run zero-shift iteration with a permuted Z
else
run shifted iteration
end

The permuted matrix Z is given by

[ om3 Bno13 1 i
Qn-_13 - —Bn-1,1
R T R P13 Q21
poo | [0 P]_ ais —Bu_ an
0 -P P 0 ans —Bn-14 —0p2 ’
An_14 - —Bn-1,2
—Pa L —ag
L Q14 —Pi2 —aaz |
where P = [ens —€n_1,--.,(—1)""te;]. This matrix has the same pattern as Z. In the situation

that nmin{oy, g9 }tol > p and nmin{o,,, 015 }tol < p, the blocks Z11, Z22 have no small singular
values, while Z15, Z5; do. In this case we apply the zero-shift iteration to the permuted Z to
compute these small singular values. The orthogonal matrices have to be changed accordingly:

Uy < U P, Uy —UsP, Vi VoP, Vo ViP.

For pre-iteration deflation, we use the following deflation criterion when applying Algorithms
A and B to blocks of Z:

if for some j, |5;/v;| or |B;/Aj+1| < tol for all four blocks, set 8, =0 for k =1,2,3,4.
For the shifted iteration we use the deflation criterion:

i < = = .

if 1§?§4ﬁ”71’k/a"’k <tol, setfBp_1,=0, fork=1,234 (16)
Algorithm 5 [Overall CS decomposition] Given a 2n x 2n matriz Z defined in (11), the
algorithm computes a full CS decomposition (8).

Initial Step. Choose tol and M, where M is the mazimum number of full CS iterations.
Set Uy = Uy =V = Vo =1, or the already existing ones.

Iteration Step.
(a) Apply Algorithms A and B to each of the four blocks of Z
If for some j, |B;]/v; < tol or B;/\j11 < tol for all four blocks
Set Bj1 = Pjo =Bz =Bja =0
Decouple Z to form submatrices of the same form as Z
end if
(b) For each submatriz (still denoted by Z) of size 2p x 2p, goto (c)
(¢) Apply Algorithms A and B to compute 01,019,091, 099
If pmax{g,;, gg; }tol < pu

15



(d) While max{ﬁf;li‘l , ’8‘;’21’2, B’;’lz’s, 6,:2;4} > tol and # of iterations < M
Apply Algorithm 4 to Z
End while
If # of iterations is larger than M, then report divergence
otherwise, set Bp—11 =0 for k=1,2,3,4
and repeat (c) with the reduced matriz Z
Elseif pmax{cq,0q; Jtol < p
Repeat (d) with the permuted Z
Else
(e) While maxi<p<a Bp—1,6/pr > tol and # of iterations < M
Apply Algorithm 3 to Z
End while
If # of iterations is larger than M, then report divergence
otherwise, set Bp_14 =0 fork=1,2,3,4
and repeat (e) with the reduced matriz Z
End if

We let tol = nu and M = 3n?/4 in the algorithm.

Underflow may occur during the iteration process. Vanishing elements ¢, 015, 09, OF Tg9,
is a good indication. Since Z is orthogonal, we may scale up the matrix if underflow takes place.
The graded structure of Z may cause loss of accuracy. This difficulty can be reduced by chasing
the bulge in suitable direction (up or down) as described in [5].

5 The Schur form and numerical examples

The computations for determining the Schur form of a real orthogonal matrix @) are summarized
by the following algorithm:

Algorithm 6 [Orthogonal Schur form] Given a 2n X 2n real orthogonal matriz Q without real
eigenvalues, the algorithm computes the real Schur form (10).

Step 1. Apply Algorithm 1 to @ to compute the factorization (3)
Step 2. Compute the factorization (7)

Step 3. Apply Algorithm 5 to Z to compute the full CS decomposition (8) (without computing
Vi,Va)

Step 4 Form the matriz © using (9) and determine (10)

With proper choices of the tolerances, the algorithm is backward stable. The main cost is the
initial reduction step when fewer than O(n?) zero-shift CS decomposition iterations are carried
out. This is the typical situation. We tested the eigenvalue algorithm with several examples.
The main purpose of the numerical experiments is to illustrate the accuracy achieved with the
algorithm. We remark that when computing the eigenvalues of a general orthogonal matrix, zero-
shift full CS iteration typically will not improve the accuracy. This is because the matrix Z is
generated after the initial reduction process, and rounding errors from this process pollute Z. All
the experiments were carried out with MATLAB version 7.10.0 on an iMac 8.1 computer with an
Intel Core 2 Duo 2.4 GHz processor.

Example 1. We generated 40 real orthogonal matrices @ of size 30 x 30 using the MATLAB
command [Q,R]=qr(randn(30)). For each @) we computed the eigenvalues by using Algorithm
6 in two ways. Method I is simply Algorithm 6. Method II is essentially the same as Algorithm
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6, but in Step 3, we use the shifted CS iterations only. Also, for Method II the deflation criterion
(16) is changed to
< .

max, 2Bp—1,k/(0n—1k + ani) < tol
For each method, we report the maximum and minimum eigenvalue errors for each matrix. The
results are shown in Figure 1, where the matrices (labeled in horizontal direction) are sorted
according to the magnitude of the maximum errors from Method I. The “exact” eigenvalues are
computed by using eig from the MATLAB Symbolic Toolbox. For comparison we also display the
extreme errors of the eigenvalues computed by the standard MATLAB function eig. The broken
lines in Figure 1 indicate that the minimum errors are numerically zero.

Figure 1: Maximum and minimum eigenvalue errors for 40 random orthogonal matrices of Exam-
ple 1.
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Figure 1 shows that Method II computes the eigenvalues at least as accurately as eig, while
Method I may give less accurate eigenvalues. A closer look reveals that the less accurately com-
puted eigenvalues are the ones with small imaginary part, and the large errors are caused by the
zero-shift CS iterations. This is because slow convergence demands many more iterations, and
this increases the error in the real part, while accuracy of the imaginary part cannot be improved.

Example 2. In this example, we tested thirty 20 x 20 orthogonal matrices of the form
Q=UDUT,

where D is quasi-diagonal containing 10 complex conjugate eigenvalue pairs, among which are two
pairs —v/1 —1078+410~* and v/1 — 10~14£410~7. The other pairs are of the form /1 — d? +id;,
where d; is a positive random number generated with the MATLAB function rand, and the sign for
the real part also is randomly generated. The 30 orthogonal matrices are determined by the (fixed)
matrix D and 30 randomly generated orthogonal matrices U. For each matrix @) the eigenvalues
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are computed by Methods I and II, as well as by eig, similarly as in Example 1. For each Q
the zero-shift CS iterations for both the regular and permuted versions are used with Method I.
The eigenvalue errors are reported in Figure 2. We observe that similarly as in Example 1, the
zero-shift CS iteration yields the largest errors.

Figure 2: Maximum and minimum eigenvalue errors for orthogonal matrices of Example 2.
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Example 3. In this example we tested the zero-shift CS decomposition iterations to see if
the small imaginary parts of orthogonal eigenvalues can be computed accurately. To this end,
we constructed orthogonal matrices of the form H,H., and for each Hj defined in (1), we let
Y = cos Oy and o = sinfy with a random 6 € (0,7). We tested ten such randomly generated
orthogonal matrices of size 50 x 50 and observed that the relative errors of the small imaginary
parts of the eigenvalues computed with Method I are smaller than for eigenvalues computed with
the other methods, although the corresponding eigenvalue errors are slightly larger. The results
of a typical orthogonal matrix are shown in Figure 3, where the errors are arranged according to
the magnitude of the imaginary parts (in horizontal direction).

6 Conclusions and open problems

We have shown that the eigenvalue problem for a real orthogonal matrix can be formulated as
a full CS decomposition problem with a simple transformation, and based on this fact we have
developed a backward stable eigenvalue method. It is interesting that for real orthogonal matrices,
the eigenvalue problem and the CS decomposition merge in such a way.

There are still many open problems. For instance, H,H, is orthogonally similar to the matrix
YZ3ZT, which is actually a 2 x 2 block matrix with all four tridiagonal blocks. Is it possible
to develop an algorithm that uses this structure directly? Also, there are several implementation
options that can be explored. For instance, in the CS decomposition iterations one could keep Z
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Figure 3: Eigenvalue errors for a typical orthogonal matrix in Example 3.
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in product form Z,Z., which might improve speed and accuracy somewhat because the product
form is determined by only 4n — 2 parameters while Z requires 8n — 4 parameters.

Appendix A. Proof of Theorem 1

We would like to use the form of Z in (11) with {ax}, {br}, {fx}, {gr}. Note that (13) is equivalent
to

9 a1k fiok1 )’ 9 a1k fisk—1  brgk
Pr = + (bkgk) ) Ck,1 = ) )
Pl1—k—1 P1—k Pk
2 2
9 D1k ak+1bk Lok Dk ak+1bk frgk
r,=|——m + | — s Ck1 = , Skl = ————
T"l—k-1 Pk " —k DPETk
2 a1k fiok ) 2 a1k fiok br+19k
sp=| ———— | + (brt19x)", Chop=—"—, Spo = ———,
S1—k—1 S1—k Sk
2 b 2 b
o S1-k ak4+10k+1 k119K t o 51k _ Gpp1brt frr19k
Qk - + ) k2 — 9 S 2
d1—k—-1 Sk d1—k Skdk

(17)
with f1.0 = p1so = m"1—0 = S120 = @150 = 1 and f,, = 1,9, = 0. Here, for a number set
{z1,...,2,} and 1 < k < n,

15k :— 1T ... Tk

We first need the following result.
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Lemma 3
stor = (askfioe)® + (Oerapisn)?, (18)
ik = (a15efisr)® + (grsiok—1) = sTo, + (art19651-k-1)7, (19)
fork=1....n
Proof. We show (18) by induction. When k = 1, using fZ + ¢ = 1 and p? = a? + (b1g1)? =
(a1f1)? + g7 gives
(arazf1)? + (b2p1)? = (araaf1)? +03((arf1)* + g1) = (a1 f1)? + (bag1)? = s7.
Assume that (18) holds for k — 1. Since

Pk = (a1skfimk—1)? + (Okgrp1—k—1)%,
and from the assumption s7_,; | = (a15xf15k-1)% + (bgp1—k—1)?, one has

2
S1—k

a1k frok)® + (Okr19k5155-1)>
a1k fiok)? + (kr19k)? ((a15k fisk—1)* + (bkp1—k—1)?)
a1k f1onk) 2 (@hgq + bpgr) + (@1okbes1 fise—19%)° + (bkbey1grp1—k—1)°

a15k+1f15k)

)
)

2+ (a1skbrs1 fron—1)? + (bkbrr1grp1—k—1)2
24 b%+1((al—>kf1—>k—1)2 + (brgrp1—k-1)7)
2 4 (brg1piok)*

a1—k+1f 15k

(
(
(
(
(
(@151 15k

The relation (18) now follows by induction.
From (18), for any k, one has

(brr1p1ok)? = sk — (a1oks1finog)? = (@1sefise)? + (brer19x5155-1) — (@15k41 fiok)?
= bi+1((a1—>kfl—>k)2 + (gk51—>k—1)2)-

Hence, by dividing b? 41 on both sides and using

s1p = (a15kfioe)? + (brr1grs15k-1)

we obtain (19). O
Proof of Theorem 1. We show (12) and (13) by induction, following the bulge-chasing process.
The properties a? + b7 = 1 and fZ + g7 = 1 are used throughout the bulge-chasing process.
Since 1 = 0, from (11) the first column of Z{; 71, is parallel to = = [ay,b1g1]7. From this = we
determine a Givens rotation Gi2(t1.1,21,1) with p1,%1,1, 21,1 defined in (17). By post-multiplying
this rotation to Z11, Z21, we create a bulge in the (2,1) entry for each of these two blocks. Since
the first round of bulge-chasing only involves the first three rows and columns of four blocks of Z,
we focus on the window

21 by f1
a2b1f191p1_1 a1a2f1pl_1 baga | —a2g1  bafs
g as fo —azga  b3f3
1= 7T —
a1b1 fip] —g1D1 —a1 f1
bibafigipy ' arbafipy! —asge | —bagi  —asfe
b3 fo —bsgs —asfs

Let Gi2(c1,1,51,1) and Gia(c1 2, 51,2) be the Givens rotations with ri,¢i.1,¢1,1 and s1,¢1.2, 51,2
defined in (17). By pre-multiplying G¥5(c1.1,51.1) to Z11 and Z12, and GT5(c1.9,512) to Z2; and
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Zs9, simple calculations yield

r a152a2b1 791 asbinefigine | bifis]  asbinsefinseg 1
1 TlP% T1P1 T1P1 T1pP1
a152f1 bagop _a2q1 b2 fap1
T1 T1 T1P1 1
7 as fo —azgs bs f3
1 ¢
bifisi  __aissasfiga _a2b3g152 —s azbs f2g1
P1 S1P1 S1 1 S1
bap1 _aisafig2 _ais2fi52
S1 S1 S1
i bs f2 —bsg2 —asf3 |

Let Glg(t172721,2) and Ggg(t271,2271) be the Givens

rotations with ¢i,%1,2,21,2 and pa,t21,22,1

defined in (17). By post-multiplying G12(t1,2,21,2) t0 Z12, Zaa, and Gas(te 1, 22,1) to Z11, Zo1, one

obtains
) a2bi1 f1g1p2 bifiqisa q
T1P1 T1P1
P12 _ a291P1-s2P2 baforip:
T1 719151 q181
asbafags a1osf1o2 _a2a3bafogisn _a3g281 b f3
7 P2 P12 q151 q1
14 b1 fis1 __a291p2 _
P1 S1 . gl
a152baf1 42/ _92?1(P§+(b2f2)2) _aissagbafisofogn  _ aisafiso
s1P2 S1p2 Q1S§ q1
babsfags a152b3f150 __asbabsfagio __bsgasy —asf
L D2 P12 q151 q1 3J3

Now the initial bulge is chased from the (2,1) to the (3,2) position in Z1; and Zs;, and we are

ready for the next bulge-chasing step.

Assume that k& steps of bulge-chasing have been carried out.
formed by the columns and rows k+ 1,k + 2,k + 3 of Z11, Z51, denoted by zW

k+1>

of bk + 1,k +2 and rows k + 1,k + 2,k + 3 of Z12 and Zag, denoted by 22

Now the zoom-in window is

and the columns

k41°
B Pi—ok+1 7
T1k
et 2bi1 o1 Gt a1 k42f15k41 b g
Pr+1 P1—ok+1 k+29k+2
7 ap+3fk+2
v 7
k+1 ali}k+1bk+1f14)k+1fk+1 _gk+1p1~>k(Pk+1+(bk+1fk+l) ) )
S1—kPk+1 S1—kPk+1
Oks1bitafhtigris okt1bhiafioksr —a
Pht1 Plokt1 k+29k+2
| b+3fr+2
I _ Qt19kP1 vk 41Dkt brtr fha1Tis kDL ke T
4dkSkT1 >k d1—kS1—k
_ Ak+10k420k+1 fht19K TRt _ Qk420k41515k b f
ak sk a1k kt+2Jk+2
AL - —Ok+39k+2
E+1 A1 5k4+10k+10kt1 f1 okt 1 ft19k ikt 1okt
QK SkS1k q1k
_ Akt1bet1bpy2 fet19KGRt1 _ brtogkrisiok —a f
qr sk ik kt+2Jk+2
i —bk+39K+2

At step k+1, in order to annihilate the (k42, k+1) entry of Z11 and Zs; as well as the (k+2, k) entry
of Zy3 and Zsyg, we use the Givens rotations Gri1 k+2(Crt1,1, Sk+1,1) and Gri1 k+2(Crt1,2, Sk+1,2)
with 741, Ckt1,15Sk+1,1 and Sg41,Cht1,2, Sk+1,2 defined in (17). After the transformations, it is
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straightforward to show that the zoom-in windows are given by

r r a1 kt20k+2bpr1 f1s k1 fetr19k+1 Gkt2bkt1bkto fetr1gK+19K42
k+1 Tk+1Pk+1P1—k+1 Tk+1Pk+1
a1k+2f15k+1 br+29k+2P15k+1
T1—k+1 T1—k+1
L0 ak+3 k2
k+1 b1 fret18K+1 _ G1k420k+2 15 k+19k41 _ ak+20k429k119K42 ’
Pk+1 Sk4+1P1— k41 Sk41
buyopiokst _@iohgafioktigrie
51 k41 51 k41
i bi+3frt2 ]
_ Ok419kTk+1PE+1 br41fh4151 5kt15k41 apqoberibriafret1 freiagria
9k Sk Tk+1Pk+191—k R 5 Tk+1Pk+1
_apy29k+1P1 -k ((Or+1 frer1m158) "+ (S158PE+1)7) brq2frt2P1 ki1
71kt 1Dk+1915kS1—k T1okt1
Z(2) (_ —Qk4+39k+2
k+1 k10Kt fr+19KSkt1 _ S1ok41 — akt2bryafutagrta
9k Sk qd1—k Sk+1
_0ok42fioken
S1 k41
L —bk+39k+2

where we used the identity (18) to simplify the (k + 1,k 4 2) entry of Za;.

Next, we annihilate simultaneously the (k 4+ 1,k + 3) entry in both Z;; and Z2;, and the
(k+ 1,k 4 2) entry in both Z15 and Zsz with the Givens rotations G2 k+3(tk+2.1, 2k+2,1) and
Grt1,k4+2(th+1,2, Zu+1,2), respectively, with pyio,tps21, Zry2,1 and qug1,tps1,2, 2r41,2 defined in

(17). After these transformations, one has

r r Ak+2bk41 fl4+19k4+1Pk42 ]
k+1 Tk+1Pk+1
P1—k+42
T1okt1
ak+3brt2frt2gry2 a1 k+3f15k+2
(1) Pk+2 Plok+2
Zk+1 — brt1fet+18k+1 _ Qk+29k+1Pk+2 s
Pk+1 Sk+1 5 ) 5
a1 hp2bryofioniofore  Gr+2P1ok41 (Pryot(brtafry2)”)
S1—k+1Pk+2 S1—k+1Pk+2
brt2bry3frragrra a1 k42bkyr3f1rt2
L Pk+2 P1—ok+2 J
r _ Qk4+19kTk4+1Pk+1 bk41 fht1qk+15k+1 7]
4k Sk Tk+1Pk+1
_ Ok+429k+1P15k+1Pk 42 b2 k421 5k4+1P1 k41
qk+1Sk+1T1—k+1 91 —k+151—k+1
) _ Gk420k+3bkt2 fkt29Kk+19K+2 _ Qk+39k+251—k+1
Z]g )1 — qk+15k41 Akt ,
+ k4 10kt1 fEr19KSkt1 —q
qk Sk k+1
a1 k420k+2bk2f1 k2 fet2gK41 _aisk42f15k42
81—k+1Gk+1Sk+1 q1—k+1
_ Oht2bki2bkis fut2ght1ghs2 _brtsgryasiortt
L qk+1Sk+1 q1—k+1 -

where, in order to get the expressions of the (k+1,k+1), (k+1,k+2), and (k+ 2,k + 2) entries

of Z12 we have used (19).

After n — 2 steps, the zoom-in window of Z is the submatrix formed by the last two rows and
columns of Zy; and Zs;, denoted by Ziljl, and the submatrix formed by the last two rows and

22




three columns of Z15 and Z35, denoted by fo_)l:

B Pion—1
T1—sn—2
anbn_1fn_1g9n-1 a1snf1osn—1
Z(l) _ Dn—1 p1—2>n—1 .
n—1 - a1 n—1bn—1fiosn—1fn-1 _gn—lpl—>n—2(pn71+(bn—lfn—1) ) ’
S19n—-2Pn—1 S1—n—2Pn—1
bn—1bnfn_1gn-1 a15n-1bnfion—1
L Pn—1 Plosn—1
r 2
_ On—19n—2P15n—2P5_1 bn—1fn-1"15n—2P1—n—2
qn—25n—2T1—5n—2 q15n—2Sn—2
_@n—18nbpn_1fn_1gn—29n—1 _ Angn—1S15n—2 b
Z(2) — - dn—28n—2 - d1—5n—2 n
n—1 a1~>n—2an,1bn—lflan—anflgn—z a1 n—1f1n—1
S1-n—2qdn—25n—2 d1—n—2
_Gn—1bp_1bnfn_1gn—2gn-1 _ bngn—1815n-2 —a
L Gqn—28n—2 q1—sn—2 n

Similarly, using the Givens rotations Gp_1n(Cn—11,5n-1,1) and Gp_1n(cp_1,2,Sn—1,2) with
Tn—1,Cn—1,1,Sn—1,1 and with s,_1,¢cy_1,2, Sn—1,2 defined in (17), we annihilate the (n,n —1) entry
of Z11,Z21 as well as the (n,n — 2) entry of Z13, Z22. These transformations yield

anbn_1fn—1gn—1Pn

Thn—
n—1 Tr—1Pn—1
(1) n
Zn—l A bn—1fn—18n—1 _ Gngn—1Pn ’
Pn—-1 Sn—1
bnpP1on
PnS1—n—1
where
_ a1—>nf1—>n—1 L Pion
n T I TTL L bl
Pi—on—1 "l—n-1
and
2
 Gn_1gn_2Tn_1Pn_1 bn_1fn-1515n-25,_1 Anbn_1bnfn_1gn_1
qn—25n—2 Tn—1Pn—191—+n-2 ) Tn—1Pn—1
) _angn-1P1on—2((bn-1fn-1715n-2)"+(S15n—2Pn—1)") bnpP1sn—1
Z() <« T1on—1Pn—-191-n—-251>n—2 Tisn—1
n—1
7an71bn71fnflgn72sn71 __S1—on-1 7anbngn71
qn—-285n—2 q1—n—2 Sn—1
_al—»n.fl—nl—l
S1—n—1

Finally, in order to annihilate the (n — 1,n) entry in both Zja, Zss, we need the Givens rotation
Gn-1n(tn-1,2, 2n—1,2) With g,_1,t,_12,2n_1,2 defined in (17). After the transformation, Z7(12—)1

becomes

_ Gn—1gn—2Tn—1Pn—1 bn—1frn—1qn—15n-1
qn—28n—2 Tn—1Pn—1 5
_ Ongn-1P1on—1P,  bnTisn—1P1sn-1
7@ Gn—18n—1T15n—1 1 sn—1513n-1
-1 Gn—10n—1fn—19n—25n—1
- Gn—28n—2 ~qn-1
_ _@nbngn-_1P1n _ Pion
$1—-n—19n—18n—1 q1—n—1

With g, = 0, one has

Plon = Tlon = S1on = (1on = Gl flon—1-
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Eventually, Z — Z with

_ b -
" az 1}f191p2
T1p1
2
an—1bn_2fn_2gn—2Pn—1
Tn—2Pn—2
r anbn—1fn—19n—1Pn
B n—1 Tn—1Pn—1
Z11 Tn
Z‘ <~ bifis1 __a2091p2 ,
21 P1 S1
bafasa
P2
_9n—-19n—2Pn—-1
Sn—2
bn—1frn—1Sn—1 _ Gngn—1Pn
Pn—1 Sn—1
bnfrnsn
L Dn J
B bifiqis1
r1p1
__a2017T2p2 b2 f2q252
q151 T2p2
_ On_19n—2Tn—1Pn—1 bn—1fn—1qn—18n—1
qn—2Sn—2 Tn—1Pn—1
Z _ Gngn—1TnPn bngnsn
|: 12 :| dn—18n—1 T'nPn
Zoo —q1
__a2bafrgi1s2 _
q181 92
_@n—1by_1fn_1gn-28n—1 —q
qn—28n—2 n—1
_ Anbngn—15n —q
L qn—1Sn—1 n
It is easily shown that the matrix Z can be expressed as
r r @21811p2 Q139151 7
r1p1 T1p1
o _ Bizrape
q151
An1Bn—1,1Pn .. Qn—1,3¢n—15n—1
Tn—1Pn—1 Tn—1Pn—1
Brn—1,3TnPn Xn3qdnsSn
~ Tn —
Z — dn—1Sn—1 T'nPn
Q1381 _5131’2 —q
p1 S1
Q2382 . _ @24fB1482
P2 q151
Bn,fl,Spn
Sm_1 Gn—1
Qn3Sn _an45n71,45n _q
L Pn qn—15n—1 L.

The formulas in (12) can be derived using this matrix expression and (13). 0O
The sets {px}, {rx}, {sk}, {qx} have the following properties.

Lemma 4 (a) For all1 <k <mn,

0< Pks Tk Sk, Qk < 1.

(b) Fork=1,2,...,n,

1>7r 8 >p1ok > 815k 2 al—)nfl%nfh I>ro > qok > 5155 2 al*)’ﬂfl%’nfL
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Proof. (a) Using the fact that ry,...,7, are the diagonal entries of Z11, that —qq, ..., —qy are
the diagonal entries of Zss, and that Z is orthogonal, one has 0 < ri, qx < 1. From the formulas

in (13),
0<pr<yfof +B4 <1, 0<sp<y|a}, +p} <L

(b) Using the product form Z = Z,Z., one obtains

7 q1—k
k = .
T1—k

Because fk < 1, we have ¢ < r1%. The inequalities ry_r > p1_r and ¢ > S1_% follow

from the formulas in (17). The inequality pi1_x > s1k is from (19). Finally, because 0 < s < 1
for any k, one has s;_,; > s15n = @150 fion—1. 0O

Appendix B. Error analysis for Algorithm 4

In the following, ¢ with a subscript is a tiny number of size O(u). Let & be the computed value of
a (or &). We use the notation & = a(1 + ¢€,) (or & = &(1 + €,) ) and consider first order errors.
The following error analysis for the computations of a Givens rotation is from [5, Lemma 5].

Lemma 5 Suppose that v,0 and p = |z|2 are the values computed by Algorithm 3 with x =
[z1,22]T in exact arithmetic, and let 4,6, p be the computed values from a slight perturbed x with
[1(1 + €z,), 22(1 + €2,)]7. Then

Y=7(1+e), 6=0(l+e), p=pl+e),

where
€ = €2,V + €2,0° + 0, 10,] < 113/1,
€& = (€, — €x2)02 + 0y, |6 < %Ma
o = (et Bl < T

Proof of Theorem 2. Consider the computed values at the kth iteration of Algorithm 4. We
have

Bkj :Bk](1+eﬁk])7 OA‘kj :&kj<1+6akj)7 .7 = 15273747

where
€ap1 = €ry» €811 = €sp1 T Eppyy T 6,3k1’
€ape = €5, — €py, T+ Oaukas €Br2 = €pry1 — Esp T 0By (20)
€ops = €apy T €qp — €rp T Oakss EBps = €2 T €rppy — g T 5ﬁk3’
€Cars = €qi> €Bra = €zi2 + €spt1 + 65k,47
and

|6ﬂk1 |’ |6,3k4| <u, |65k2|7 |65k3|a |5ak2|7 |60¢k3| < 2.

Define Tp—1,1 = akltk—l,l- Then

jk—l,l = .’L‘k_171(1 + ewk—l,l)'

By Lemma 5, we have

Pe=p(1+e€), thi=tri(l4en,), Ze1=2z21(14¢,),
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where

13
Epk = exk—l,lt%,l + 5171«7 ‘5pk| S Zu’ (21)
2 21
€1 — ezk—l,lzk,l +5tk,17 |6tk,1| < ZM’ (22)
21
62k,1 = _Ewk—l,lti,l + 5Zk‘,l’ |6Zk,1| < ZN" (23)
Since
T = 2k,1 (1 + €xy ),
by (22),
) 25
€ary = €ty 01 = €a 12k T 02, [02] < —p (24)
Similarly,
Me=rr(l+er), Cra=cri(l4eq,) Sr1=sk1(l+e€g,)
where, by (21), (23), and using cil + 5%,1 =1,
2 2 2 2 21
€r, = emk—l,ltk,l(ck,l - sk,l) + Eck—l,lck,l + 57”k7 |67"k| < 3/1‘7
21 21
6%,1 = (26$k—1,1tz,1 + Eck—l,l + 54)‘9%,1 + 661@,” ‘54| S ?/Jﬂ ‘661«,1' S Z/Jﬂ (25)
21
€sk,1 = _(269%—1,175%,1 + 6Ck—1,1 + 64)Ci,1 + 63k,17 |6Sk,1| S Z:U"
Combining (24) with (25), one has
25
|€xk1|:| |: lel 0 :||:|€:c :| 4
s < ) k—1,1 + 52 . 26
|: |€Ck,1| 2ti,1£i,1 Si,l |60k71,1‘ 21%# . ( )
Using the same trick as in [5, Lemma 7], we get
k 2
el T (] e it ey e [ ]
lecual |~ im1 257, (1 —Il= 3]21) [T=: st 4
Hence,
25k 113k
‘ewk,ll S TM: |€Ck,1| S 4 122
and, therefore,
25k — 12 25k — 4 138k — 96 163k — 100
epud € 2 el fennal € 25 o] S o el S T

4

In the same way, for the errors in sy, ci.2, Sk,2, @k, tk,2, 2,2, With Zx_1 2 = cx—1,2044, We obtain

|€ackz|:| |: 8%2 0 :| {|€x |:|
, < s k—1,2 +
|: |6tk,2| 20%,2213,2 ZI%,Z |Etk-—1,2|

Similarly, one has [e,, ,| < 2%, and for

25
4 2
2144222, | -

4

S = Sk(]- + eSk), Cr2 = Ck,g(l + Eck,g)v Sk = 5k72(1 + esk,z);

=g +eq), tro=tro(l4e,), Zr2=2e2(l+e€s,),

26
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we have

25k — 12 25k — 4
|65k‘ S T;Ufa |60k,2|a |65k,2| S 4 Hy

138k — 96 113k 163k — 100
|€CIk| < fﬂ? |€tk,2| < T;va |62k,2| < fﬂ'

Substituting these bounds into (20) yields (14).
If Z/%,p 2,372, 5%71, 5%2 < 71 <1 for all k, then from (26) and (27), we obtain that

sl P I R
N < k—1,1 + 4 ,
[|eck,1| =l 2r 7| Jeerral 2taer | #

|€Ik 2| T 0 |6:1: B | 25
’ < k—1,2 + 1 .
{ let, .| | — [ 27 7 €t 1] % M

Following [5, Lemma §],

ol ol € ety eepals leunal < (s + 22T+ D)
€xp1ly |€x = 1 M €c y |€ =
k1 k.2 4(1 _ 7-) H k1 b2 4(1 — 7')2 4(1 — T)

Using the same derivations now yields (15). 0O
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