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Abstract. The existence, uniqueness, and parametrization of Lagrangian invariant subspaces for
Hamiltonian matrices is studied. Necessary and sufficient conditions and a complete parametrization
are given.

Some necessary and sufficient conditions for the existence of Hermitian solutions of algebraic
Riccati equations follow as simple corollaries.
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1. Introduction. The computation of invariant subspaces of Hamiltonian ma-
trices is an important task in many applications in linear quadratic optimal and H∞
control, Kalman filtering, or spectral factorization; see [13, 15, 20, 28] and the refer-
ences therein.

Definition 1.1. A matrix H ∈ C2n,2n is called Hamiltonian if JnH = (JnH)H is
Hermitian, where Jn =

[
0

−In
In
0

]
, In is the n×n identity matrix, and the superscript

H denotes the conjugate transpose.
Every Hamiltonian matrix H has the block form

H =

[
A M
G −AH

]
,

with M = MH , G = GH . Hamiltonian matrices are closely related to algebraic
Riccati equations of the form

AHX +XA−XMX +G = 0.(1.1)

It is well known [15] that if X = XH solves (1.1), then

H
[
In 0
−X In

]
=

[
In 0
−X In

] [
(A−MX) M

0 −(A−MX)H

]
.(1.2)

This implies that the columns of
[
In
−X

]
span an invariant subspace of H associated

with the eigenvalues of A −MX. Invariant subspaces of this form are called graph
subspaces [15]. The graph subspaces of Hamiltonian matrices are special Lagrangian
subspaces.
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Definition 1.2. A subspace L of C2n is called a Lagrangian subspace if it has
dimension n and

xHJny = 0 ∀x, y ∈ L.

Clearly a subspace L is Lagrangian if and only if every matrix L whose columns
span L satisfies rankL = n and LHJnL = 0.

Despite the fact that Hamiltonian matrices, algebraic Riccati equations, and their
properties have been a very active area of research for the last 40 years, there are
still many open problems. These problems are mainly concerned with Hamiltonian
matrices that have eigenvalues with zero real part and in particular with numerical
methods for such problems.

In this paper we summarize and extend the known conditions for existence of
Lagrangian invariant subspaces of a Hamiltonian matrix. Based on these results we
then give a complete parametrization of all possible Lagrangian invariant subspaces
and also discuss necessary and sufficient conditions for the uniqueness of Lagrangian
invariant subspaces.

Most of the literature on this topic is stated in terms of Hermitian solutions
for algebraic Riccati equations; see [15]. For several reasons we will, however, be
mainly concerned with the characterization of Lagrangian invariant subspaces. First
of all, the concept of Lagrangian invariant subspaces is a more general concept than
that of Hermitian solutions of the Riccati equation, since only graph subspaces are
associated with Riccati solutions. A second and more important reason is that in
most applications the solution of the Riccati equation is not the primary goal, but
rather a dangerous detour; see [21]. Finally, even most numerical solution methods
for the solution of the algebraic Riccati equations (with the exception of Newton’s
method) proceed via the computation of Lagrangian invariant subspaces to determine
the solution of the Riccati equation; see [3, 5, 6, 7, 8, 16, 17, 20, 27]. These methods
employ transformations with symplectic matrices.

Definition 1.3. A matrix S ∈ C2n,2n is called symplectic if SHJnS = Jn.
If S is symplectic, then by definition its first n columns span a Lagrangian sub-

space. Conversely, if the columns of S1 span a Lagrangian subspace, then it generates
a symplectic matrix, given, for example, by S = [S1, JnS1(S

H
1 S1)

−1]. Hence the re-
lation between Lagrangian subspaces and symplectic matrices can be summarized as
follows.

Proposition 1.4. If S ∈ C2n,2n is symplectic, then the columns of S[ In0 ]
span a

Lagrangian subspace. If the columns of S1 ∈ C2n,n span a Lagrangian subspace, then
there exists a symplectic S such that rangeS[ In0 ]

= rangeS1.
Considering Lagrangian invariant subspaces L of a Hamiltonian matrix H, we

immediately have the following important equivalence.
Proposition 1.5. Let H ∈ C2n,2n be a Hamiltonian matrix. There exists a

Lagrangian invariant subspace L of H if and only if there exists a symplectic matrix
S such that rangeS[ In0 ]

= L and

S−1HS =

[
R D
0 −RH

]
.(1.3)

The form (1.3) is called Hamiltonian block triangular form, and if furthermore R
is upper triangular (or quasi-upper triangular in the real case), it is called Hamiltonian
triangular form or Hamiltonian Schur form. Note that for the existence of Lagrangian
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invariant subspaces it is not necessary that R in (1.3) is triangular if one is not
interested in displaying actual eigenvalues. Most numerical methods, however, will
return a Hamiltonian triangular or quasi-triangular form.

Necessary and sufficient conditions for the existence of such transformations were
given in [18, 22] and in full generality in [19], and we will briefly summarize these
conditions in the next section. Numerically backward stable methods to compute
such forms have been developed in [1, 2, 3, 4].

The contents of this paper are summarized as follows. In section 2, after recall-
ing some of the results on Hamiltonian triangular forms, we discuss the existence of
Lagrangian invariant subspaces corresponding to all possible eigenvalue selections. In
section 3 we give complete parametrizations of all possible Lagrangian subspaces of
a Hamiltonian matrix associated with a particular set of eigenvalues. Based on these
results we summarize necessary and sufficient conditions for the existence and unique-
ness of Lagrangian invariant subspaces in section 4. Finally we apply these results to
give some simple proofs of (mostly known) theorems on existence and uniqueness of
Hermitian solutions to algebraic Riccati equations in section 5.

2. Hamiltonian block triangular forms and existence of Lagrangian in-
variant subspaces. To study an invariant subspace problem we first need to discuss
the possible selection of associated eigenvalues.

We denote by Λ(A) the spectrum of a square matrix A, counting multiplicities.
For a Hamiltonian matrix, if λ ∈ Λ(H) and Reλ �= 0, then it is easy to see that also
−λ̄ ∈ Λ(H); see [15, 20]. Furthermore, if H has the block triangular form (1.3) and if
iα is a purely imaginary eigenvalue (including zero), then it must have even algebraic
multiplicity. It follows that the spectrum of a Hamiltonian matrix H in the form (1.3)
can be partitioned into two disjoint subsets,

Λ1(H) = {λ1, . . . , λ1︸ ︷︷ ︸
n1

,−λ̄1, . . . ,−λ̄1︸ ︷︷ ︸
n1

, . . . , λµ, . . . , λµ︸ ︷︷ ︸
nµ

,−λ̄µ, . . . ,−λ̄µ︸ ︷︷ ︸
nµ

},

Λ2(H) = {iα1, . . . , iα1︸ ︷︷ ︸
2m1

, . . . , iαν , . . . , iαν︸ ︷︷ ︸
2mν

},(2.1)

where λ1, . . . , λµ are pairwise disjoint eigenvalues with positive real part and iα1, . . . ,
iαν are pairwise disjoint purely imaginary eigenvalues (including zero).

If a matrix is transformed as in (1.3), then the spectrum associated with the
Lagrangian invariant subspace spanned by the first n columns of S is Λ(R). Since
Λ(H) = Λ(R) ∪ Λ(−RH), it follows that Λ(R) must be associated to a characteristic
polynomial

µ∏
j=1

(λ− λj)tj (λ+ λ̄j)nj−tj
ν∏
j=1

(λ− iαj)mj ,

where tj are integers with 0 ≤ tj ≤ nj for j = 1, . . . , µ. We denote the set of all
possible such selections of eigenvalues by Ω(H). Note that Ω(H) contains

∏µ
j=1(nj+1)

different selections.
In most applications it is desirable to determine Lagrangian invariant subspaces

associated with eigenvalue selections for which only one of the eigenvalues of the pair
λj ,−λ̄j (which are not purely imaginary) can be chosen in Λ(R). In another words,
tj must be either 0 or nj . Such subspaces all called unmixed, and the associated
Riccati solution, if it exists, is called the unmixed solution of the Riccati equation; see
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[26]. We denote the subset of all possible such selections by Ω̃(H). Obviously Ω̃(H)
contains 2µ different elements.

Note that all selections in Ω(H) contain the same purely imaginary eigenvalues.
Note further that if H cannot be transformed to the Hamiltonian block triangular
form (1.3), then the set Ω(H) may be empty. A simple example for this is the matrix
J1.

We now recall some results on the existence of Hamiltonian triangular forms. In
the following we denote a single Jordan block associated with an eigenvalue λ by
Nr(λ) = λIr +Nr, where Nr is a nilpotent Jordan block of size r. We also frequently
use the antidiagonal matrices

Pr =




−1
(−1)2

. .
.

(−1)r


(2.2)

and denote by ej the jth unit vector of appropriate size.
Lemma 2.1 (see [19]). Suppose that iα is a purely imaginary eigenvalue of a

Hamiltonian matrix H and that the Jordan block structure associated with this eigen-
value is N(iα) := iαI +N , where

N = diag(Nr1 , . . . , Nrs).

Then there exists a full column rank matrix U such that HU = UN(iα) and

UHJnU = diag(π1Pr1 , . . . , πsPrs),

where πk ∈ {1,−1} if rk is even and πk ∈ {i,−i} if rk is odd.
Using the indices and matrices introduced in Lemma 2.1, the structure inertia

index associated with the eigenvalue iα is defined as

IndS(iα) = {β1, . . . , βs},

where βk = (−1)
rk
2 πk if rk is even, and βk = (−1)

rk−1

2 iπk if rk is odd. Note that
the βi are all ±1 and there is one index associated with every Jordan block. The
structure inertia index is closely related to the well-known sign characteristic for
Hermitian pencils (see [15]), since every Hamiltonian matrix H can be associated
with the Hermitian pencil λiJ − JH. Although the sign characteristic is a more
general concept since it also applies to general Hermitian pencils, we prefer to use
the structure inertia index, because it is better suited for the analysis of Hamiltonian
triangular forms; see [19].

For the following analysis the tuple IndS(iα) is partitioned into three parts,
IndeS(iα), Ind

c
S(iα), Ind

d
S(iα), where IndeS(iα) contains all the structure inertia in-

dices corresponding to even rk, Ind
c
S(iα) contains the maximal number of structure

inertia indices corresponding to odd rk in ±1 pairs, and InddS(iα) contains the re-
maining indices; i.e., all indices in InddS(iα) have the same sign; see [19].

Necessary and sufficient conditions for the existence of a symplectic similarity
transformation to a Hamiltonian triangular Jordan-like form (1.3) are given in the
following theorem.

Theorem 2.2. Let H be a Hamiltonian matrix, let iα1, . . . , iαν be its pairwise
distinct purely imaginary eigenvalues, and let the columns of Uk, k = 1, . . . , ν, span
the associated invariant subspaces of dimensionmk. Then the following are equivalent:
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(i) There exists a symplectic matrix S such that S−1HS is Hamiltonian block
triangular.

(ii) There exists a unitary symplectic matrix U such that UHHU is Hamiltonian
block triangular.

(iii) UHk JUk is congruent to Jmk
for all k = 1, . . . , ν.

(iv) InddS(iαk) is void for all k = 1, . . . , ν.
Moreover, if any of the equivalent conditions holds, then the symplectic matrix S can
be chosen such that S−1HS is in Hamiltonian triangular Jordan form



Rr 0 0 0 0 0
0 Re 0 0 De 0
0 0 Rc 0 0 Dc
0 0 0 −RHr 0 0
0 0 0 0 −RHe 0
0 0 0 0 0 −RHc


 ,(2.3)

where the blocks with subscript r are associated with eigenvalues of nonzero real part
and have the substructure

Rr = diag(Rr1, . . . , R
r
µ), Rrk = diag(Ndk,1

(λk), . . . , Ndk,pk
(λk)), k = 1, . . . , µ.

The blocks with subscript e are associated with the structure inertia indices of even rk
for all purely imaginary eigenvalues and have the substructure

Re = diag(Re1, . . . , R
e
ν), Rek = diag(Nlk,1

(iαk), . . . , Nlk,qk
(iαk)),

De = diag(De1, . . . , D
e
ν), Dek = diag(βek,1elk,1

eHlk,1
, . . . , βek,qkelk,qk

eHlk,qk
).

The blocks with subscript c are associated with pairs of blocks of inertia indices associ-
ated with odd-sized blocks for purely imaginary eigenvalues and have the substructure

Rc = diag(Rc1, . . . , R
c
ν), Rck = diag(Bk,1, . . . , Bk,rk),

Dc = diag(Dc1, . . . , D
c
ν), Dck = diag(Ck,1, . . . , Ck,rk),

where

Bk,j =


 Nmk,j

(iαk) 0 −
√

2
2 emk,j

0 Nnk,j
(iαk) −

√
2

2 enk,j

0 0 iαk


 ,

Ck,j =

√
2

2
iβck,j


 0 0 emk,j

0 0 −enk,j

−eHmk,j
eHnk,j

0


 .

Proof. The proof of equivalence for (i) and (iv) is given in Theorem 1.3 in [25].
The equivalence of the other conditions and the structured Hamiltonian triangular
Jordan form (2.3) was derived in [19].

Remark 1. For real Hamiltonian matrices a real quasi-triangular Jordan form
analogous to (2.3) and a similar set of equivalent conditions as in Theorem 2.2 can be
given. We refer the reader to [25] and Theorem 24 in [19] for details.

The necessary and sufficient conditions in Theorem 2.2 guarantee the existence of
only one Lagrangian invariant subspace associated to one selection in Ω(H). But the
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following theorem shows they also guarantee the existence of a Lagrangian invariant
subspace associated to every selection in Ω(H).

Theorem 2.3. Let H be a Hamiltonian matrix. If any of the conditions in
Theorem 2.2 holds, then for every eigenvalue selection ω ∈ Ω(H) there exists at least
one corresponding Lagrangian invariant subspace.

Proof. A proof for this result based on condition (iv) was given in [23, 25], but
a simple proof follows directly from (2.3). Note that any ω contains half the number
of eigenvalues for every purely imaginary eigenvalue. So a basis for a corresponding
invariant subspace is easily determined from (2.3). For an eigenvalue pair λk,−λ̄k
we need to consider only the small Hamiltonian block

[
Rr

k
0

0
−(Rr

k)H
]
. Note that Rrk

is upper triangular. Suppose that the selection ω contains tk copies of λk and sk
copies of −λ̄k. A corresponding basis of the invariant subspace can then be chosen
based on a symplectic permutation which exchanges trailing sk× sk blocks in Rrk and
−(Rrk)

H .

In this section we have reviewed some results on the existence of (unitary) sym-
plectic transformations to Hamiltonian block triangular form and the existence of
Lagrangian invariant subspaces. In the next section we use these results to give a full
parametrization of all possible Lagrangian subspaces and therefore also a parametriza-
tion of all symplectic similarity transformations to Hamiltonian block triangular form.

3. Parametrization of all Lagrangian invariant subspaces. In the previ-
ous section we have shown that if H has a Hamiltonian block triangular form, then
for every eigenvalue selection ω ∈ Ω(H) there exists at least one corresponding invari-
ant subspace. In this section we will parametrize all possible Lagrangian invariant
subspaces associated to a given selection ω.

For this we will need some technical lemmas.

Lemma 3.1. Consider pairs of matrices (πkPrk , Nrk), k = 1, 2, where r1, r2 are
either both even or both odd. Let π1, π2 ∈ {1,−1} if both rk are even and π1, π2 ∈
{i,−i} if both rk are odd; let

(Pc,Nc) :=
([

π1Pr1 0
0 π2Pr2

]
,

[
Nr1 0
0 Nr2

])
;

and let d := |r1−r2|
2 . If π1 = (−1)d+1π2, i.e., β1 = −β2 for the corresponding β1 and

β2, then we have the following transformations to Hamiltonian triangular form:

1. If r1 ≥ r2, then with

Z1 :=



Id 0 0 0
0 Ir2 0 − 1

2 π̄2P
−1
r2

0 0 π̄1P
−1
d 0

0 −Ir2 0 − 1
2 π̄2P

−1
r2




we obtain ZH1 PcZ1 = J r1+r2
2

and

Z−1
1 NcZ1 =

[
N r1+r2

2
D

0 −NHr1+r2
2

]
,

where D = τede
H
r1+r2

2

+ τ̄ e r1+r2
2
eHd , τ = − 1

2π2.
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2. If r1 < r2, then with

Z2 =



π1Pr1 0 1

2Ir1 0
0 π2Pd 0 0

−π1Pr1 0 1
2Ir1 0

0 0 0 Id




we obtain that ZH2 PcZ2 = J r1+r2
2

and

Z−1
2 NcZ2 =

[ −NHr1+r2
2

D

0 NHr1+r2
2

]
,

where D = τe1e
H
r1+1 + τ̄1er1+1e

H
1 , τ = − 1

2π1.

Proof. The proof is a simple modification of the proof of Lemma 18 in [19].

Lemma 3.2. Consider a nilpotent matrix in Jordan form N = diag(Nr1 , . . . , Nrp).

(i) If the columns of the full column rank matrix X form an invariant subspace of
N , i.e., NX = XA for some matrix A, then X = UZ, where Z is nonsingular
and

U =




It1 0 . . . 0 0
0 V1,2 . . . V1,p−1 V1,p

0 It2 . . . 0 0
0 0 . . . V2,p−1 V2p

...
...

. . .
...

...
0 0 . . . Itp−1

0
0 0 . . . 0 Vp−1,p

0 0 . . . 0 Itp
0 0 . . . 0 0



.(3.1)

Here for k = 1, . . . , p, 0 ≤ tk ≤ rk, and for i = 1, . . . , p−1 and j = i+1, . . . , p,
we have Vi,j ∈ Csi,tj with si = ri−ti. Moreover, if Ms = diag(Ns1 , . . . , Nsp),
Mt = diag(Nt1 , . . . , Ntp), and E = diag(et1e

H
1 , . . . , etpe

H
1 ), then

V =




0 V12 . . . V1p

. . .
. . .

...
. . . Vp−1,p

0




satisfies the algebraic Riccati equation

MsV − VMt − V EV = 0.

(ii) If the columns of the full column rank matrix X form an invariant subspace
of NH , i.e., NHX = −XA for some matrix A, then X = ÛZ, where Z is
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nonsingular and

Û =




0 0 . . . 0 0
−It̂1 0 . . . 0

V̂2,1 0 . . . 0 0
0 −It̂2 . . . 0 0
...

...
. . .

...
...

V̂p−1,1 V̂p−1,2 . . . 0 0
0 0 . . . −It̂p−1

0

V̂p,1 V̂p,2 . . . V̂p,p−1 0
0 0 . . . 0 −It̂p



.(3.2)

Here for k = 1, . . . , p, 0 ≤ t̂k ≤ rk, and for i = 2, . . . , p and j = 1, . . . , i− 1,
we have V̂i,j ∈ Cŝi,t̂j with ŝi = ri− t̂i. Moreover, if Mŝ = diag(Nŝ1 , . . . , Nŝp),
Mt̂ = diag(Nt̂1 , . . . , Nt̂p), and E = diag(e1e

H
ŝ1
, . . . , e1e

H
ŝp
), then

V̂ =




0

V̂21
. . .

...
. . .

. . .

V̂p1 . . . V̂p,p−1 0




satisfies the algebraic Riccati equation

MHŝ V̂ − V̂ MH
t̂

− V̂ EV̂ = 0.

Proof. We will derive the structure of X by multiplying nonsingular matrices
to X from the right. Let us first prove part (i). Partition X =

[
X1

X2

]
so that X2

has rp rows. Then using the QR or singular value decomposition [12], there exists
a nonsingular (actually unitary) matrix Y1 such that X2 = [0, X22]Y1, where X22 ∈
Crp,tp and rankX22 = tp. (This implies that 0 ≤ tp ≤ rp.) Then we have the partition

X̂ = XY −1
1 =

[
X11

0
X12

X22

]
. Since rangeX is an invariant subspace of N , so is range X̂.

Hence, there exists a matrix Â such that

NX̂ = X̂Â.(3.3)

If we partition Â =
[
A11

A21

A12

A22

]
conformally with X̂, then (3.3) implies that A21 = 0

and NrpX22 = X22A22. Because X22 has full column rank and Nrp is a single Jordan
block, it is clear that A22 is similar to Ntp , i.e., there exists a nonsingular matrix

Y22 such that Y −1
22 A22Y22 = Ntp , and hence Nrp(X22Y22) = (X22Y22)Ntp . By Lemma

4.4.11 in [14], X22Y22 =
[
T
0

]
, where T is an upper triangular Toeplitz matrix and T

must be nonsingular, since X22 has full column rank. Therefore, by setting X̃ = X̂Y2

with Y2 = diag(I, Y22)T
−1, it follows that

X̃ =


 X̃1 X̃2

0 Itp
0 0


 ,

and (3.3) becomes NX̃ = X̃
[
Ã11

0
Ã12

Ntp

]
. Setting Ñ = diag(Nr1 , . . . , Nrp−1) it follows

that ÑX̃1 = X̃1Ã11, and since X has full column rank, X̃1 also has full column rank.
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By inductively applying the construction that leads from X to X̃, we determine
a nonsingular matrix Z1 such that XZ−1

1 = X̆, where X̆ has the block structure

X̆ =




It1 W1,2 . . . W1,p−1 W1,p

0 V1,2 . . . V1,p−1 V1,p

0 It2 . . . W2,p−1 W2,p

0 0 . . . V2,p−1 V2,p

...
...

. . .
...

...
0 0 . . . Itp−1 Wp−1,p

0 0 . . . 0 Vp−1,p

0 0 . . . 0 Itp
0 0 . . . 0 0



,

with 0 ≤ ti ≤ ri. The blocks Wi,j in X̆ can be eliminated by performing a sequence
of block Gaussian type eliminations from the right. Hence, there exists a nonsingular
matrix Z2 such that X̆Z−1

2 = U , where U is in (3.1). Therefore, by setting Z := Z2Z1

we have X = UZ.
From the block form of U we can determine a block permutation matrix Q such

that QU =
[
I
V

]
and QNQ−1 =

[
Mt

0
E
Ms

]
. Since

[
I
V

]
is invariant to QNQ−1, we have

MsV − VMt − V EV = 0.
Part (ii) is proved analogously by beginning the reduction from the top and

compressing in each step to the left.
Using these lemmas we are able to parametrize the set of all Lagrangian invariant

subspaces of a Hamiltonian matrix H associated with a fixed eigenvalue selection in
ω ∈ Ω(H). Let H be in Hamiltonian block triangular form (1.3) and let the spectrum
of H be as in (2.1). Then (see [19]) there exists a symplectic matrix S such that
S−1HS =

[
R
0

D
−RH

]
, where R = diag(R1, . . . , Rµ+ν) and D = diag(D1, . . . , Dµ+ν).

Furthermore, the blocks are reordered such that Hk :=
[
Rk

0
Dk

−RH
k

]
is Hamiltonian

block triangular and associated with an eigenvalue pair λk,−λ̄k with nonzero real
part for k = 1, . . . , µ and purely imaginary eigenvalues iαk for k = µ + 1, . . . , µ + ν.
Furthermore, Λ(R) = ω and rangeS[ I0 ] = L.

For this block diagonal form there exists a block permutation matrix P such that

PHJP = diag(Jn1 , . . . , Jnµ ;Jm1 , . . . , Jmν ) =: J̃ ,

P−1S−1HSP = diag(H1, . . . , Hµ;Hµ+1, . . . , Hµ+ν).(3.4)

Suppose that there exists another Lagrangian invariant subspace L̃ corresponding to
ω. Using the same argument, there exists a symplectic matrix S̃ such that for the
same block permutation matrix P we have

P−1S̃−1HS̃P = diag(H̃1, . . . , H̃µ; H̃µ+1, . . . , H̃µ+ν),

where again all H̃k are Hamiltonian block triangular and Λ(H̃k) = Λ(Hk) for all
k = 1, . . . , µ + ν. Therefore, we have S̃P = SPE for some block diagonal matrix
E = diag(E1, . . . , Eµ+ν) satisfying HkEk = EkH̃k. Since PHJP = J̃ and since S and

S̃ are symplectic, it follows that E = P−1S−1S̃P satisfies EH J̃E = J̃ , which implies
that all blocks Ek are symplectic. Since S̃ = SPEP−1, the difference between S̃ and
S (and therefore L̃ and L) is completely described by the first half of the columns
of the symplectic matrices Ek, i.e., the Lagrangian invariant subspaces of the small
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Hamiltonian matrices Hk (note that all H̃ are Hamiltonian block triangular). Fol-
lowing this argument, it is sufficient to parametrize all possible Lagrangian invariant
subspaces of a Hamiltonian matrix with either a single purely imaginary eigenvalue
iα or a single eigenvalue pair λ,−λ̄ with Reλ �= 0.

Consider first the case of a single purely imaginary eigenvalue. In this case Ω(H)
has only one element. So all Lagrangian invariant subspaces are associated to the
same eigenvalue.

To simplify our analysis we need the following Hamiltonian Jordan form.

Lemma 3.3. Let H be a Hamiltonian matrix that has only one eigenvalue iα.
Then there exists a symplectic matrix S such that

R := S−1HS =

[
N(iα) D

0 −N(iα)H

]
,(3.5)

where N = diag(Nr1 , . . . , Nrp), D = diag(D1, . . . , Dp). Here either Dj = β
e
j erje

H
rj , so

that H has a Jordan block N2rj with structure inertia index βej ∈ {1,−1}, or Dj =
τjedje

H
rj + τ̄jerje

H
dj

with τj =
1
2 (−1)

rj+dj+1

2 iβj if rj+dj is odd, and τj =
1
2 (−1)

rj+dj
2 βj

if rj + dj is even for some βj ∈ {−1, 1}, so that H has two Jordan blocks Nrj+dj ,
Nrj−dj with structure inertia indices βj, −βj, respectively.

Proof. Since H− iαI is Hamiltonian, we may without loss of generality (w.l.o.g.)
consider the problem with α = 0, i.e., H that has only the eigenvalue zero. Since
H has only one multiple eigenvalue, the columns of every nonsingular matrix span a
corresponding invariant subspace so that condition (iii) of Theorem 2.2 holds. The
canonical form (3.5) then is obtained in a similar way as for (2.3); see [19]. The
only difference is that here we match all possible pairs of Jordan block with opposite
structure inertia indices in such a way that even blocks are matched with even blocks,
and odd blocks with odd blocks, and furthermore the blocks are ordered in decreasing
size. Finally we use the technique given in Lemma 3.1.

The complete parametrization is then as follows.

Theorem 3.4. Let H be a Hamiltonian matrix that has only one purely imaginary
eigenvalue. Let S be symplectic such that S−1HS is in Hamiltonian canonical form
(3.5). Then all possible Lagrangian subspaces can be parametrized by rangeSU , where

U =




It1 0 . . . 0 0 0 . . . 0 0
0 V12 . . . V1,p−1 V1p W11 . . . W1,p−1 W1p

0 It2 . . . 0 0 0 . . . 0 0
0 0 . . . V2,p−1 V2p WH

12 . . . W2,p−1 W2p

...
...

. . .
...

...
...

. . .
...

...
0 0 . . . Itp−1 0 0 . . . 0 0

0 0 . . . 0 Vp−1,p WH
1,p−1 . . . Wp−1,p−1 Wp−1,p

0 0 . . . 0 Itp 0 . . . 0 0
0 0 . . . 0 0 WH

1p . . . WH
p−1,p Wpp

0 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 0 −Is1 0 . . . 0
0 0 . . . 0 0 V H

12 0 . . . 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 V H
1,p−1 . . . 0 0

0 0 . . . 0 0 0 . . . −Isp−1 0

0 0 . . . 0 0 V H
1p . . . V H

p−1,p 0

0 0 . . . 0 0 0 . . . 0 −Isp




,(3.6)



LAGRANGIAN INVARIANT SUBSPACES 1055

with block sizes 0 ≤ sj , tj ≤ rj and sj + tk = rj. Then, setting

Mt = diag(Nt1 , . . . , Ntp),

Ms = diag(Ns1 , . . . , Nsp),

E = diag(et1e
H
1 , . . . , etpe

H
1 ),

partitioning the Hermitian blocks

Dj =

[
Gj Fj
FHj Kj

]
,

and setting

K = diag(K1, . . . ,Ks),

F = diag(F1, . . . , Fs),

G = diag(G1, . . . , Gs),

it follows that the block matrices

V :=




0 V1,2 . . . V1,p

. . .
. . .

...
. . . Vp−1,p

0


 , W :=


 W1,1 . . . W1,p

...
. . .

...
WH1,p . . . Wp,p


 =WH

satisfy

[
Ms FH

0 −MHt

] [
W V
V H 0

]
+

[
W V
V H 0

] [
MHs 0
F −Mt

]

−
[
W V
V H 0

] [
0 EH

E G

] [
W V
V H 0

]
−
[
K 0
0 0

]
= 0,(3.7)

or equivalently V , W satisfy

0 =MsV − VMt − V EV,(3.8)

0 = (Ms − V E)W +W (Ms − V E)H

+ (V F )H + V F − V GV H −K.(3.9)

Every Lagrangian invariant subspace is uniquely determined by a set of parameters
t1, . . . , tp with 0 ≤ tj ≤ rj and a set of matrices Vi,j, i = 1, . . . , p− 1, j = i+1, . . . , p,
and Wi,j, i = 1, . . . , p, j = i, . . . , p, satisfying (3.8) and (3.9).

Moreover, all symplectic matrices that transform H to Hamiltonian block triangu-
lar form can be parametrized as SUY, where Y is a symplectic block triangular matrix,
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U = [U, Ũ ], with U as in (3.6), and

Ũ =




0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 It1 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 It2 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . Itp−1 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 Itp
Is1 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 Is2 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . Isp−1 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 Isp 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0




.(3.10)

Proof. As in Lemma 3.3, we assume that the only eigenvalue of H is zero. Consid-
ering the form (3.5), it is sufficient to prove that every basis X of a Lagrangian invari-
ant subspace of R can be expressed as X = UY . To prove this, we first compress the
bottom square block of X, i.e., we determine a matrix Y1 such that XY1 =

[
X11

0
X12

X22

]
where X22 has full column rank. Obviously X11 also has full column rank. Then,
since XY1 is still a basis of an invariant subspace of R, the block triangular form of R
implies that the columns ofX11 andX22 form bases of the invariant subspace ofN and
−NH , respectively. Applying Lemma 3.2, there exist matrices Z1 and Z2 such that
U11 := X11Z1 and U22 := X22Z2 have structures as the matrices in (3.1) and (3.2)
associated with the integer parameters t1, . . . , tp and t̂1, . . . , t̂p, respectively. Now let

U := XY1

[
Z1

0
0
Z2

]
Y2 =

[
U11

0
U12

U22

]
, where Y2 is used to eliminate the blocks in X12Z2

using the identity blocks in U1,1. Since X, and hence also U , is Lagrangian, we have

that UH11U22 = 0. Thus, we have t̂j = mj − tj =: sj for all j = 1, . . . , p and V̂i,j = V
H
j,i

for all i = 2, . . . , p, j = 1, . . . , p−1. Since UH12U22 is Hermitian, it follows that U12 has
the desired form. To prove (3.7), as in the proof of Lemma 3.2, there exists a block
permutation matrix P such that P [U11, U12] =

[
I
V

0
W

]
. Let P̃ = diag(P, P ), which is

symplectic. Then

P̃U =



I 0
V W
0 V H

0 −I


 , P̃−1RP̃ =



Mt E G F
0 Ms FH K
0 0 −NHt 0
0 0 −EH −NHs


 .

Since the columns of P̃U form an invariant subspace for P̃−1RP̃, it follows that the
matrices V,W satisfy (3.7). Conditions (3.8) and (3.9) follow directly from (3.7).
To show the uniqueness of a particular Lagrangian invariant subspace, suppose that
there are two matrices U1, U2 of the same form as U such that rangeSU1 = rangeSU2.
Then UH2 JU1 = 0, and from this it follows first that the associated integer parameters
t1, . . . , tp must be the same, and thus all the blocks Vi,j , Wi,j must be the same.

To prove the second part, let X be a symplectic matrix which triangularizes H.
Since the first n columns of X form a Lagrangian invariant subspace, there exists
a matrix U of the form (3.6) such that rangeX [

I
0

]
= rangeSU . Then the matrix
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U = [U, Ũ ] with Ũ as in (3.10) is symplectic. Since both X and SU are symplectic
and their first n columns span the same subspace, there exists a symplectic block
triangular matrix Y such that X = SUY.

These results show that the parameters that characterize a Lagrangian invariant
subspace are integers tj with 0 ≤ tj ≤ mj , and the matrices Vi,j , Wi,j satisfying the
Riccati equations (3.7) or, equivalently, (3.8) and (3.9). Note that the equation forW
is a singular Lyapunov equation. The equation for V is quadratic. But if we consider
it blockwise, it is equivalent to a sequence of singular Sylvester equations,

NsiVi,j − Vi,jNtj −
j−1∑
k=i+1

Vi,kEkVk,j = 0(3.11)

for i = p− 1, . . . , 1, j = i+ 1, . . . , p. For results on nonsymmetric Riccati equations,
see [10].

In general not much more can be said about this parametrization. In the special
case of a Hamiltonian matrixH that has only two Jordan blocks, we have the following
result.

Corollary 3.5. Consider a Hamiltonian matrix H that has exactly two Jordan
blocks Nr1(iα), Nr2(iα) with 0 < r2 ≤ r1 and the corresponding structure inertia
indices β1 = −β2. Then there exists a symplectic matrix S such that

S−1HS =

[
Nm(iα) D

0 −Nm(iα)H
]
,

where m = (r1 + r2)/2, d = (r1 − r2)/2, and D = τede
H
m + τ̄ eme

H
d , and τ = ±i/2 if

r1 is odd and τ = ±1/2 if r2 is even. All Lagrangian invariant subspaces of H can be
parametrized by

rangeS



It 0
0 W
0 0
0 −Is


 ,

and all symplectic matrices that transform H to Hamiltonian block triangular form
can be parametrized as

S



Ip 0 0 0
0 W 0 Iq
0 0 Ip 0
0 −Iq 0 0


Y,

where Y is symplectic block triangular, d ≤ t ≤ m, t+ s = m, W =WH satisfying

NsW +WNHs = 0,(3.12)

which has infinitely many solutions for every s > 0.
Proof. Note that r1 + r2 is the size of the Hamiltonian matrix H, which must be

even. So r1 and r2 must be both even or odd. The canonical form and the form of
the parametrization follow directly from Theorem 3.4 by setting there p = 1. So we
need to prove only that d ≤ t ≤ m and that (3.12) holds. For p = 1, (3.8) reduces to

NsW +WNHs = K,
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where K is the trailing s × s block of D. Then K = 0 if t ≥ d (s ≤ r2) and
K = τed−teHs + τ̄ ese

H
d−t if t < d (s > r2). If t ≥ d, then the singular Lyapunov

equation has infinitely many Hermitian solutions W ; see [11, 14]. If t < d and r1, r2
are both even, then it follows that τ �= 0 is real. By comparing the elements, it follows
that the Lyapunov equation has no solution. The same conclusion follows for the case
that r1, r2 are both odd. Consequently W exists if and only if d ≤ t ≤ m.

In this simple case the parameters are completely given. But more importantly
this result also gives a sufficient condition that a Hamiltonian matrix has infinitely
many Lagrangian invariant subspaces.

Corollary 3.6. If a Hamiltonian matrix H has exactly one eigenvalue iα and
has at least two even-sized or two odd-sized Jordan blocks with opposite structure
inertia indices, then H has infinitely many Lagrangian invariant subspaces.

Proof. We may assume w.l.o.g. that the two (even or odd) Jordan blocks are
arranged in trailing position of R in the canonical form (3.5). Choosing tj = rj for
all j = 1, . . . , p− 1 implies that all Vi,j are void, W =Wp,p, and

U =



I 0 0
0 Itp 0
0 0 Wpp
0 0 0
0 0 −Isp


 .

By Corollary 3.5 there are infinitely many Lagrangian invariant subspaces (that
are parametrized by Wp,p) for the small Hamiltonian matrix

Hp :=

[
Nmp(iα) Dp

0 −Nmp(iα)
H

]
,

and hence there are also infinitely many Lagrangian invariant subspaces for H.
This corollary shows that to obtain a unique Lagrangian invariant subspace, all

structure inertia indices of H must have the same sign. Moreover, by Theorem 2.2
this also implies that H has only even-sized Jordan blocks. In the next section we
will prove that this is also sufficient.

In order to complete the analysis we need to study Hamiltonian matrices H that
have only two eigenvalues λ, −λ̄ that are not purely imaginary. If H ∈ C2n,2n, then
the algebraic multiplicities of λ, −λ̄ are both n, and hence Ω(H) consists of n + 1
selections ω(m), m = 0, . . . , n, where ω(m) contains m copies of λ and n−m copies
of −λ̄.

It follows from Theorem 2.2 that in this case there exists a symplectic matrix S
such that

R := S−1HS =

[
N(λ) 0
0 −N(λ)H

]
,(3.13)

where N(λ) = λI +N , N = diag(Nr1 , . . . , Nrp).
For every ω(m), 0 ≤ m ≤ n, the parametrization of all possible Lagrangian

invariant subspaces can be derived in a similar way as in the case of purely imaginary
eigenvalues.

Theorem 3.7. Let H ∈ C2n×2n be a Hamiltonian matrix that has only eigenval-
ues λ,−λ̄ which are not purely imaginary. Let S be a symplectic matrix that trans-
forms H to the form (3.13). For every selection ω(m) ∈ Ω(H) all the corresponding
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invariant subspaces can be parametrized by rangeSU , where U has the form




It1 0 . . . 0 0 0 0 . . . 0 0
0 V12 . . . V1,p−1 V1,p 0 0 . . . 0 0
0 It2 . . . 0 0 0 0 . . . 0 0
0 0 . . . V2,p−1 V2,p 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . Itp−1

0 0 0 . . . 0 0
0 0 . . . 0 Vp−1,p 0 0 . . . 0 0
0 0 . . . 0 Itp 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 −Is1 0 . . . 0 0
0 0 . . . 0 0 V H1,2 0 . . . 0 0
0 0 . . . 0 0 0 −Is2 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 V H1,p−1 V H2,p−1 . . . 0 0
0 0 . . . 0 0 0 0 . . . −Isp−1

0
0 0 . . . 0 0 V H1p V H2,p . . . V Hp−1,p 0
0 0 . . . 0 0 0 0 . . . 0 −Isp




,(3.14)

with 0 ≤ sj , tj ≤ rj, sj + tj = rj, and
∑p
j=1 tj = m. If we set

Mt = diag(Nt1 , . . . , Ntp),

Ms = diag(Ns1 , . . . , Nsp),

E = diag(et1e
H
1 , . . . , etpe

H
1 ),

then the matrix

V :=




0 V12 . . . V1p

. . .
. . .

...
. . . Vp−1,p

0




must satisfy the Riccati equation

0 =MsV − VMt − V EV.(3.15)

Every Lagrangian invariant subspace associated with ω(m) is uniquely determined by
a set of parameters {t1, . . . , tp} with 0 ≤ tj ≤ rj and

∑p
j=1 tj = m and a set of

matrices Vi,j, i = 1, . . . , p− 1, j = i+ 1, . . . , p, satisfying (3.15).

Moreover, all symplectic matrices that transform H to Hamiltonian block tri-
angular form can be parametrized by SUY, where Y is symplectic block triangular,
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U = [U, Ũ ] with U as in (3.10), and

Ũ =




0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 It1 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 It2 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . Itp−1 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 Itp
Is1 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 Is2 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . Isp−1

0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 Isp 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0




.

Proof. It is sufficient to consider the Lagrangian invariant subspaces of R in
(3.13). Let the columns of X span a Lagrangian invariant subspace of R associated
with ω(m). Then RX = XA and Λ(A) = ω(m). Since λ �= −λ̄, there exists a matrix
Y such that Y −1AY =

[
A1

0
0
A2

]
, where A1 is m × m and has only the eigenvalue

λ and A2 is (n − m) × (n − m) and has only the eigenvalue −λ̄. If we partition
XY =

[
X11

X21

X12

X22

]
conformally with Y −1AY , then from the block diagonal form of R

we obtain X12 = 0, X21 = 0 and N(λ)X11 = X11A1, −N(λ)HX22 = X22A2, since
X11, X22 must have full column rank. We apply Lemma 3.2, and then the result
follows as in the case of purely imaginary eigenvalues.

The parametrization in this case is essentially the same as in the case of purely
imaginary eigenvalues except that here W is void and

∑p
j=1 tj is fixed for a given

ω(m). In both cases the blocks Vi,j still satisfy a sequence of Sylvester equations
(3.11).

Again we have a corollary.
Corollary 3.8. Let H ∈ C2n×2n be a Hamiltonian matrix that has only the

eigenvalues λ,−λ̄ which are not purely imaginary. If H has exactly two Jordan blocks
with respect to λ, then for every fixed ω(m) ∈ Ω(H) the corresponding Lagrangian
invariant subspaces can be parametrized as

S




It1 0 0 0
0 V 0 0
0 It2 0 0
0 0 0 0
0 0 0 0
0 0 −Is1 0
0 0 V H 0
0 0 0 −Is2



,

where t1 + t2 = m, tj + sj = rj, and 0 ≤ tj , sj ≤ rj for j = 1, 2.
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Furthermore, V = [0, T ] if s1 < t2 and V =
[
T
0

]
if s1 ≥ t2, where T is an

arbitrary square upper triangular Toeplitz matrix. So for every ω(m) with 0 < m < n
there are infinitely many Lagrangian invariant subspaces.

Proof. Applying Theorem 3.7 for p = 2 we obtain the parametrization and the
restrictions for t1, t2. The expression for V follows from the fact that V satisfies the
Sylvester equation Ns1V − V Nt2 = 0.

In this special case we have the following uniqueness result.
Corollary 3.9. Let H ∈ C2n×2n be a Hamiltonian matrix that has only the

eigenvalues λ,−λ̄ which are not purely imaginary. Then we have the following:
(i) For ω(0) or ω(n) the corresponding Lagrangian subspace is unique.
(ii) If H has only a single Jordan block with respect to λ, then for every fixed

ω(m) ∈ Ω(H) with 0 ≤ m ≤ n the corresponding Lagrangian invariant sub-
space is unique. In this case there exists a symplectic matrix Ŝ such that

Ŝ−1HŜ =

[
R D
0 −RH

]
,(3.16)

with R = diag(Nm(λ),−Nn−m(λ)H), D = eme
H
m+1 + em+1e

H
m.

(iii) If H has at least two Jordan blocks with respect to λ, then for every fixed
ω(m) ∈ Ω(H) with 0 < m < n there are infinitely many corresponding La-
grangian invariant subspaces.

Proof. (i) For ω(0) all tj must be zero, so U =
[

0
−In

]
is unique. Analogously, for

ω(n) the unique Lagrangian invariant subspace is U =
[
In
0

]
.

(ii) By assumption p = 1, so for a fixed ω(m), U is unique as


Im
0
0

−In−m


 .

Then (3.16) follows from (3.13) and the special form U for p = 1.
(iii) In this case we can choose the integers tj such that t1 < r1 and tp > 0. We

set Vi,j = 0 except for V1,p, which is chosen to satisfy Ns1V1,p − V1,pNtp = 0. Since
s1, tp > 0, there are infinitely many solutions V1,p and, hence, infinitely many U .

In the next section we will use the parametrizations to characterize the existence
and uniqueness of Lagrangian invariant subspaces.

4. Existence and uniqueness of Lagrangian invariant subspaces. In this
section we summarize all results given in the previous sections and give a complete
characterization of the existence and the uniqueness of Lagrangian invariant subspaces
for a Hamiltonian matrix. This complete result includes previous results based on the
structure inertia indices of [23, 25].

Theorem 4.1 (existence). Let H ∈ C2n×2n be a Hamiltonian matrix, let iα1, . . . ,
iαν be its pairwise distinct purely imaginary eigenvalues, and let λ1,−λ̄1, . . ., λµ,−λ̄µ
be its pairwise distinct nonimaginary eigenvalues. The following are equivalent:

(i) H has a Lagrangian invariant subspace for one ω ∈ Ω(H).
(ii) H has a Lagrangian invariant subspace for all ω ∈ Ω(H).
(iii) There exists a symplectic matrix S such that S−1HS is Hamiltonian block

triangular.
(iv) There exists a unitary symplectic matrix U such that UHHU is Hamiltonian

block triangular.
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(v) For all k = 1, . . . , ν, if Uk span the invariant subspace associated with iαk,
then UHk JUk is congruent to Jmk

.

(vi) InddS(iαk) is void for all k = 1, . . . , ν.

Proof. This result in different notation is known; see [19, 23, 24, 25].

Theorem 4.2 (uniqueness for Ω̃(H)). Let H ∈ C2n×2n be a Hamiltonian ma-
trix. Let iα1, . . . , iαν be its pairwise distinct purely imaginary eigenvalues and let
λ1,−λ̄1, . . . , λµ,−λ̄µ be its pairwise distinct nonimaginary eigenvalues. Suppose that
any of the equivalent conditions of Theorem 4.1 for the existence of Lagrangian in-
variant subspaces holds. Then the following are equivalent:

(i) For every ω ∈ Ω̃(H) there exists a unique associated Lagrangian invariant
subspace.

(ii) If ω ∈ Ω̃(H) and if S1 and S2 are symplectic matrices such that S−1
1 HS1 =[

R1

0
D1

−RH
1

]
, S−1

2 HS2 =
[
R2

0
D2

−RH
2

]
, and Λ(R1) = Λ(R2) = ω, then S−1

1 S2 is

symplectic block triangular.
(iii) There exists an ω ∈ Ω̃(H) such that H has a unique associated Lagrangian

invariant subspace.
(iv) There exists an ω ∈ Ω̃(H) such that if S1 and S2 are symplectic matrices satis-

fying S−1
1 HS1 =

[
R1

0
D1

−RH
1

]
, S−1

2 HS2 =
[
R2

0
D2

−RH
2

]
, and Λ(R1) = Λ(R2) = ω,

then S−1
1 S2 is symplectic block triangular.

(v) Let
[
A
0

B
−AH

]
be an arbitrary Hamiltonian block triangular form of H. If

for a purely imaginary eigenvalue iαk the columns of Φk form a basis of the
left eigenvector subspace of A, i.e., ΦHk A = iαkΦ

H
k , then ΦHk BΦk is positive

definite or negative definite.
(vi) For every purely imaginary eigenvalue iαk there are only even-sized Jordan

blocks which, furthermore, have all structure inertia indices of the same sign.

If the uniqueness conditions do not hold, then for every ω ∈ Ω̃(H) there are infinitely
many Lagrangian invariant subspaces. They can be parametrized by applying Theo-
rem 3.4 for every iαk.

Proof. The proof of the equivalence of (i) and (vi) has been given (in different
notation) in Theorem 1.3 of [25]. For completeness we give the whole proof in our
terminology. By the argument in section 3 it suffices to consider a Hamiltonian matrix
H that has either a single purely imaginary eigenvalue iα or an eigenvalue pair λ and
−λ̄. In the first case we again take iα = 0.

Since by Corollary 3.9 for nonimaginary eigenvalues the corresponding invari-
ant subspaces are unique, we need to consider only the case of a purely imaginary
eigenvalue.

The proofs of (i) ⇔ (ii) and (iii) ⇔ (iv) are obvious. Corollary 3.6 implies that
(ii) ⇒ (vi). If (vi) holds, then by Theorem 2.2 there exists a symplectic matrix S
such that

R := S−1HS =

[
R D
0 −RH

]
,(4.1)

where R = diag(Nl1 , . . . , Nlq ) andD = β diag(el1e
H
l1
, . . . , elqe

H
lq
). (Recall that iα = 0.)

We need to prove only that for every symplectic Z satisfying Z−1RZ =
[
R̃
0

D̃
−R̃H

]
, Z

is block triangular. Partitioning Z =
[
Z11

Z21

Z12

Z22

]
, it follows that

RZ11 +DZ21 = Z11R̃(4.2)
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and

−RHZ21 = Z21R̃.(4.3)

Suppose that Z21 �= 0; then by (4.3) it follows that rangeZ21 is an invariant
subspace of −RH . Hence, there exists a vector x such that Z21x �= 0 and

RHZ21x = 0,(4.4)

i.e., Z21x is a left eigenvector of R. Multiplying (Z21x)
H and x on both sides of (4.2)

and using (4.4), we get

(Z21x)
HD(Z21x) = −xHZH21Z11R̃x.

Since Z is symplectic, we have ZH21Z11 = ZH11Z21. Combining (4.3) and (4.4), we get

xHZH21Z11R̃x = xHZH11Z21Ãx = −xHZH11RHZ21x = 0

and, therefore,

(Z21x)
HD(Z21x) = 0.

On the other hand, since Z21x is a left eigenvector of R, by the structure of R
there must exist a nonzero vector y such that Z21x = Ey, where

E := [ep1 , . . . , epq ],(4.5)

with pk =
∑k
j=1 lj for k = 1, . . . , q. But EHDE = βIq and hence

0 = (Z21x)
HD(Z21x) = y

HEHDEy = βyHy �= 0,

which is a contradiction.
(i) ⇒ (iii) is obvious and (iii) ⇒ (i) follows from (iii) ⇒ (vi) by Corollary 3.6 and

(vi) ⇔ (i).
To prove (vi) ⇒ (v) let R̂ =

[
A
0

B
−AH

]
be an arbitrary Hamiltonian triangular

form of H and let R be as in (4.1). Since (vi) holds and (vi)⇔ (ii), there exists a

symplectic block triangular matrix S =
[
S1

0
S2

S−H
1

]
(see [5]) such that R̂ = S−1RS.

Hence S−1
1 RS1 = A and B = S−1

1 RS2 + S
−1
1 DS

−H
1 + SH2 R

HS−H
1 . Since A is similar

to R, a left eigenvector subspace of A can be chosen as Φ = SH1 E, where E is as in
(4.5). Then a simple calculation yields ΦHBΦ = βIq.

For (v) ⇒ (vi) suppose that R̂ =
[
A
0

B
−AH

]
satisfies (v). Using the same argument

as for (vi) ⇒ (ii) and replacing R by R̂ we obtain that (v) ⇒ (ii). Since (ii) ⇔ (vi),
it follows that (v) also implies (vi).

Theorem 4.3 (uniqueness for Ω(H)). Let H ∈ C2n×2n be a Hamiltonian ma-
trix. Let iα1, . . . , iαν be its pairwise distinct purely imaginary eigenvalues and let
λ1,−λ̄1, . . . , λµ,−λ̄µ be its pairwise distinct nonimaginary eigenvalues. Suppose that
any of the equivalent conditions of Theorem 4.1 for the existence of Lagrangian in-
variant subspaces holds. Then the following are equivalent:

(i) For every ω ∈ Ω(H) there exists a unique associated Lagrangian invariant
subspace.
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(ii) Let ω ∈ Ω(H). If S1 and S2 are symplectic matrices such that S−1
1 HS1 =[

R1

0
D1

−RH
1

]
, S−1

2 HS2 =
[
R2

0
D2

−RH
2

]
, and Λ(R1) = Λ(R2) = ω, then S−1

1 S2 is

symplectic block triangular.
(iii) There exists an ω ∈ Ω(H), but ω �∈ Ω̃(H), such that H has a unique associated

Lagrangian invariant subspace.
(iv) There exists an ω ∈ Ω(H), but ω �∈ Ω̃(H), such that if S1 and S2 are sym-

plectic matrices satisfying S−1
1 HS1 =

[
R1

0
D1

−RH
1

]
, S−1

2 HS2 =
[
R2

0
D2

−RH
2

]
, and

Λ(R1) = Λ(R2) = ω, then S−1
1 S2 is symplectic block triangular.

(v) Let
[
A
0

B
−AH

]
be an arbitrary Hamiltonian block triangular form of H. Then

either A has one of λk,−λ̄k as its eigenvalue and has a unique corresponding
left eigenvector, or A has both λk,−λ̄k as eigenvalues and has unique corre-
sponding left eigenvectors xk and yk such that xHk Byk �= 0. Furthermore, for
every iαk if the columns of Φk form a basis of the left eigenvector subspace of
A, i.e., ΦHk A = iαkΦ

H
k , then ΦHk BΦk is positive definite or negative definite.

(vi) For every nonimaginary eigenvalue, H has only one corresponding Jordan
block, and for every purely imaginary eigenvalue iαk, H has only even-sized
Jordan blocks with all structure inertia indices of the same sign.

If the uniqueness conditions do not hold, then for every ω ∈ Ω(H) there are infinitely
many Lagrangian invariant subspaces. They can be parametrized by applying Theo-
rem 3.4 for every iαk and Theorem 3.7 for every pair λk,−λ̄k.

Proof. The proof of the equivalence of (i) and (vi) has again been given (in
different notation) in Theorem 1.3 of [25]. For completeness we again give the whole
proof in our terminology.

By the argument in section 3 it suffices to consider that the Hamiltonian matrix
H has only either a single purely imaginary eigenvalue iα or an eigenvalue pair λ and
−λ̄, and in the first case we will assume iα = 0. For the purely imaginary eigenvalue
the proof is as that of Theorem 4.2. Hence, consider H with an eigenvalue pair λ,−λ.
The parts (i)⇔ (ii) and (iii)⇔ (iv) are obvious. (i)⇔ (vi) follows from Corollary 3.9.
(i) ⇔ (iii) follows, since (iii) ⇒ (vi) and (vi) ⇔ (i), and since ω �∈ Ω̃(H) implies
that both λ and −λ̄ have been chosen in ω. It remains to prove (v) ⇔ (vi). We may
assume that both λ, −λ̄ are in Λ(A), since otherwise ω ∈ Ω̃(H).

For (vi) ⇒ (v) let R̂ =
[
A
0

B
−AH

]
be an arbitrary Hamiltonian triangular form

of H. Since (vi) holds, by (3.16) in Corollary 3.9 the Hamiltonian canonical form is
R =

[
R
0

D
−RH

]
, where R = diag(Nt(λ),−Ns(λ)H), D = ete

H
t+1 + et+1e

H
t , and t is the

multiplicity of λ in Λ(A). By (ii) there exists a symplectic matrix S =
[
S1

0
S2

S−H
1

]
such

that R̂ = S−1RS. Hence S−1
1 RS1 = A and B = S−1

1 RS2 +S
−1
1 DS

−H
1 +SH2 R

HS−H
1 .

If only one of λ,−λ̄ is in Λ(A), then, since A is similar to R, it is also in Λ(R).
Hence, either t = 0 or s = 0 and R (and thus also A) has only one corresponding left
eigenvector. If both λ,−λ̄ are in Λ(A), then s, t > 0. In this case R has only left
eigenvectors et and et+1 with respect to λ and −λ̄, respectively. Therefore, A also has
only left eigenvectors SH1 et and S

H
1 et+1 for λ and −λ̄, respectively. Then it is easy to

see that eHt S1BS1et+1 = eHt Det+1 = 1.

For (v) ⇒ (vi), if A has only one of λ,−λ̄ as its eigenvalue and has a unique left
eigenvector, then A also has only one right eigenvector. Since Λ(A) ∩ Λ(−AH) = ∅,
in this case R̂ has also a unique corresponding right eigenvector. Therefore, there
is only one corresponding Jordan block. By the canonical form (3.13) for the other
eigenvalue there is also only one Jordan block. If A has both λ,−λ̄, then we first show
that for left eigenvectors x, y of A such that xHBy �= 0, condition (ii) holds. Then we
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show that x, y must be unique. As in the proof of Theorem 4.2 we need only prove

that for every symplectic matrix Z satisfying Z−1R̂Z =
[
R̃
0

D̃
−R̃H

]
, Λ(R̃) = Λ(A) it

follows that Z is block triangular. Partitioning Z =
[
Z11

Z21

Z12

Z22

]
, it follows that

AZ11 +BZ21 = Z11R̃(4.6)

and

−AHZ21 = Z21R̃.

Suppose that Z21 �= 0; then rangeZ21 is an invariant subspace of −AH . Hence there
exists z1, with either R̃z1 = −λ̄z1 or R̃z1 = λz1 such that Z21z1 �= 0, which implies
that Z21z1 is the left eigenvectors of A corresponding to λ or −λ̄. W.l.o.g., assume
that z1 satisfies R̃z1 = −λ̄z1. Let z2 �= 0 satisfy zH2 A = −λ̄zH2 . Multiplying zH2
and z1 on both sides of (4.6), a simple calculation yields zH1 B(Z21z2) = 0, which is a
contradiction.

Suppose that x, y are not unique. Then let X form the left eigenvector subspace
of A with respect to λ. Since XHBy has more than one row, there always exists
a vector z such that zHXHBy = 0, which is a contradiction. So x and y must be
unique.

Remark 2. For real Hamiltonian matrices it is reasonable to consider real La-
grangian invariant subspaces. For this problem we have to give a natural additional
restriction on the eigenvalue selections. Note that in this case if λ is a nonreal eigen-
value of H, then λ̄,−λ̄, and −λ are also eigenvalues of H. To obtain real invariant
subspaces it is necessary to keep the associated eigenvalues in conjugate pairs. So if
we choose a nonreal λ we must choose λ̄ with same multiplicity. But essentially we
can use the same construction as for the complex case to solve this problem (see [19]),
since if H is real, then for real eigenvalues the corresponding invariant subspaces can
be chosen real. So for these eigenvalues we can still use Theorems 3.7 and 3.4 by
choosing V and W real.

In this section we have given necessary conditions for the existence and uniqueness
of Lagrangian invariant subspaces. In the following section we obtain as corollaries
several results on the existence and uniqueness of Hermitian solutions of the algebraic
Riccati equation.

5. Hermitian solutions of Riccati equations. In this section we apply the
existence and uniqueness results for Lagrangian invariant subspaces to analyze the
existence and uniqueness of Hermitian solutions of the algebraic Riccati equation

AHX +XA−XMX +G = 0,(5.1)

with M =MH and G = GH . The related Hamiltonian matrix is H =
[
A
G

M
−AH

]
. The

following result is well known; see, e.g., [15].
Proposition 5.1. The algebraic Riccati equation (5.1) has a Hermitian solution

if and only if there exists a 2n × n matrix L =
[
L1

L2

]
, with L1, L2 ∈ Cn×n and L1

invertible, such that the columns of L span a Lagrangian invariant subspace of the
related Hamiltonian matrix H associated to ω ∈ Ω(H). In this case X = −L2L

−1
1 is

Hermitian and solves (5.1) and Λ(A−MX) = ω.
It follows that we can study the existence and uniqueness of solutions of algebraic

Riccati equations via the analysis of Lagrangian invariant subspaces of the associated
Hamiltonian matrices.



1066 GERHARD FREILING, VOLKER MEHRMANN, AND HONGGUO XU

Unlike the Lagrangian invariant subspace problem, which only depends on the
Jordan structure, Hermitian solutions of the Riccati equation depend further on the
top block of the basis of the Lagrangian invariant subspace and the choice of the
associated eigenvalues. In other words, for a given Hamiltonian block triangular
form R, all Hamiltonian matrices which are similar to R have Lagrangian invariant
subspaces, while for Riccati equation solutions these Hamiltonian matrices may be
partitioned into three groups which (i) have Hermitian solutions for all selections
Ω(R), (ii) have Hermitian solutions for some ω ∈ Ω(R), (iii) have no Hermitian
solution for any ω ∈ Ω(R).

Example 1. Consider three Riccati equations with matrices

(a) A =

[
i 0
0 1

]
, M =

[
1 −1− i

−1 + i 0

]
, G =

[
0 0
0 0

]
,

(b) A =

[
i 0
0 1

]
, M =

[
1 −1− i

−1 + i −2

]
, G =

[
0 0
0 0

]
,

(c) A =

[
i 0
0 −1

]
, M =

[
0 0
0 0

]
, G =

[ −1 −1 + i
−1− i 0

]
.

In all three cases the related Hamiltonian matrices have the same Hamiltonian Jordan
canonical form 


i 0 1 0
0 1 0 0
0 0 i 0
0 0 0 −1


 ,

and Ω(H) = {ω1, ω2} with ω1 = {i, 1}, ω2 = {i,−1}. Certainly for both ω1, ω2 all
Hamiltonian matrices have a unique Lagrangian invariant subspace. But the Hermi-
tian solutions of the Riccati equation are different. In case (a) for ω1 the solution is
X = 0 and for ω2 there is no solution. In case (b) for ω1 the solution is 0 and for ω2

the solution is X =
[
0
0

0
−1

]
. In case (c) for both ω1 and ω2 there is no solution at

all. It is also possible that the Riccati equation has no Hermitian solution, while the
related Hamiltonian matrix has infinitely many Lagrangian invariant subspaces.

Example 2. For

A =M =

[
0 0
0 0

]
, G =

[
0 1
1 0

]

the Riccati equation (5.1) has no solution. But for the associated Hamiltonian matrix
the bases of the Lagrangian invariant subspace can be parametrized as


−iβ 0
−1 0
0 1
α iβ


 ,




0 γ
0 0
0 1
1 0


 ,




0 1
0 0
0 0
1 0


 ,

where α, β, γ are real.
By using the parametrizations in section 3 we can give a necessary and sufficient

condition for the existence of the Hermitian solutions of the Riccati equation (5.1).
Note that for the solvability of the Riccati equation it is necessary that the Hamilto-
nian matrix H associated to (5.1) has a Hamiltonian block triangular form. So there
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exists a symplectic matrix S such that

S−1HS =

[
R D
0 −RH

]
(5.2)

with R = diag(R1, . . . , Rµ;Rµ+1, . . . , Rµ+ν), D = diag(0, . . . , 0;Dµ+1, . . . , Dµ+ν). A

submatrixHk :=
[
Rk

0
0

−RH
k

]
has the Jordan form (3.13) with respect to the eigenvalues

λk,−λ̄k for k = 1, . . . , µ, and a submatrix Hk :=
[
Rk

0
Dk

−RH
k

]
has the Jordan form (3.5)

with respect to iαk−µ for k = µ+ 1, . . . , µ+ ν.

Theorem 5.2. Let H be the Hamiltonian matrix associated with the algebraic
Riccati equation (5.1) and assume that H has a Hamiltonian block triangular form.
Let S be a symplectic matrix satisfying (5.2) and let P be a permutation matrix such
that

P−1S−1HSP = diag(H1, . . . , Hµ;Hµ+1, . . . , Hµ+ν),

PHJP = diag(Jn1 , . . . , Jnµ ;Jm1
, . . . , Jmν ),(5.3)

where Hk =
[
Rk

0
0

−RH
k

]
. Then for an eigenvalue selection ω ∈ Ω(H), the Riccati

equation (5.1) has a Hermitian solution X with Λ(A−MX) = ω if and only if there
exist matrices U1, . . . , Uµ and Q1, . . . , Qν with the following properties. The matrices
Uk are 2nk × nk and have the block form (3.10) with blocks satisfying (3.15) and the
matrices Qk are 2mk ×mk and have the block form (3.6) with blocks satisfying (3.8)
and (3.9) such that

L1 := [In, 0]SP diag(U1, . . . , Uµ;Q1, . . . , Qν)(5.4)

is nonsingular.

Moreover, X = −[0, In]SP diag(U1, . . . , Uµ;Q1, . . . , Qν)L
−1
1 .

Proof. Since H has a Hamiltonian block triangular form, we have (5.2) and P
can easily be determined to obtain (5.3). A given ω specifies the number elements
λk, −λ̄k, and hence by Theorems 3.7 and 3.4 we obtain the parametrizations for the
bases of the associated Lagrangian invariant subspaces of H. Thus by Proposition 5.1
we have the conclusion.

Remark 3. If in the Hamiltonian matrixH =
[
A
G

M
−AH

]
the matrixM is positive or

negative semidefinite, then the invertibility of L1 in (5.4) is ensured by a controllability
assumption; see Theorem 3.1 and Remark 3.2 in [9] or [15] for details. If (5.1) has a
Hermitian solution with respect to a selection ω, then the uniqueness follows directly
from the uniqueness results for Lagrangian invariant subspaces.

Theorem 5.3. Let X = XH be a Hermitian solution of (5.1) with Λ(A−MX) =
ω. Then X associated to ω is unique if and only if the related Hamiltonian matrix H
has a unique Lagrangian invariant subspace associated to ω. Moreover, in this case
if ω ∈ Ω̃(H), then for every selection in Ω̃(H) for which the associated Hermitian
solutions exists, it is unique.

If the uniqueness condition for the Lagrangian invariant subspaces of H does not
hold and if (5.1) has at least one Hermitian solution associated with a selection ω,
then (5.1) has infinitely many Hermitian solutions associated to ω.

Proof. The uniqueness conditions for the Hermitian solutions follows from the
equivalence of (i) and (iii) in Theorems 4.2 and 4.3.
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If (5.1) has a solution X associated to an ω, following Theorem 5.2, there must
be two sets of matrices U1, . . . , Uµ and Q1, . . . , Qν such that for

L = SP diag(U1, . . . , Uµ;Q1, . . . , Qν) =:

[
L1

L2

]
,

L1 is nonsingular and X = −L2L
−1
1 . If the uniqueness condition for H does not

hold, then for at least one pair λk, −λ̄k or one purely imaginary eigenvalue iαk the
uniqueness condition does not hold. In the case of a pair λ,−λ̄, by Theorem 3.7 the
parameters s1, . . . , sp cannot be all zero. So the matrix V cannot be void and satisfies
(3.15) or equivalently (3.11). For every Vi,j the associated equation is a singular
Sylvester equation. So at least for the last Vi,j , say V1,p, there are infinitely many
solutions. This means that we can choose infinitely many bases which are near to a
certain Uk. For the case of an eigenvalue iα from Theorem 3.4 again s1, . . . , sp cannot
be all zero. So W cannot be void. Since W must satisfy the singular Lyapunov
equation (3.8), there are infinitely many solutions. So we can also choose infinitely
many bases which are near to a certain Qk. Consequently if the uniqueness condition
of H does not hold, then there are infinitely many bases L̃ of the Lagrangian invariant
subspaces associated to ω such that ||L̃− L|| < ||L−1

1 ||, which implies that there are
infinitely many Hermitian solutions corresponding to such L̃.

If a Hermitian solution X is known, then we can use it to verify the uniqueness.
Corollary 5.4. Let X be a Hermitian solution of (5.1) with Λ(A−MX) = ω.

Let the columns of Φk, k = 1, . . . , ν, span the left eigenspaces of A−MX corresponding
to iαk. If Φ

H
k MΦk is either positive definite or negative definite for all k = 1, . . . , ν,

then ω ∈ Ω̃(H) implies that X is unique. If ω �∈ Ω̃(H), then X is unique if we
have the additional condition that for every eigenvalue pair λk and −λ̄k the matrix
A−MX either has one of them as its eigenvalue and has a unique corresponding left
eigenvector, or has both of them as eigenvalues and the corresponding left eigenvectors
xk, yk satisfy x

H
k Myk �= 0 for k = 1, . . . , µ.

Proof. The proof follows directly from the fact that

S−1HS =

[
A−MX M

0 −(A−MX)H

]
=: R,

where S =
[
I

−X
0
I

]
is symplectic, and from (v) in Theorems 4.2 and 4.3.

6. Conclusion. Based on Hamiltonian block triangular forms for Hamiltonian
matrices under symplectic similarity transformations we have given necessary and suf-
ficient conditions for the existence and uniqueness of Lagrangian invariant subspaces.
If the subspace is not unique, then we have given a complete parametrization of all
possible Lagrangian invariant subspaces. We have then applied these results to derive
existence and uniqueness results for Hermitian solutions of algebraic Riccati equations
as corollaries.

REFERENCES

[1] G. Ammar, P. Benner, and V. Mehrmann, A multishift algorithm for the numerical solution
of algebraic Riccati equations, Electron. Trans. Numer. Anal., 1 (1993), pp. 33–48.

[2] P. Benner, V. Mehrmann, and H. Xu, A new method for computing the stable invariant
subspace of a real Hamiltonian matrix, J. Comput. Appl. Math., 86 (1997), pp. 17–43.

[3] P. Benner, V. Mehrmann, and H. Xu, A numerically stable, structure preserving method for
computing the eigenvalues of real Hamiltonian or symplectic pencils, Numer. Math., 78
(1998), pp. 329–358.



LAGRANGIAN INVARIANT SUBSPACES 1069

[4] P. Benner, V. Mehrmann, and H. Xu, A note on the numerical solution of complex Hamilto-
nian and skew-Hamiltonian eigenvalue problems, Electron. Trans. Numer. Anal., 8 (1999),
pp. 115–126.

[5] A. Bunse-Gerstner, Matrix factorization for symplectic QR-like methods, Linear Algebra
Appl., 83 (1986), pp. 49–77.

[6] A. Bunse-Gerstner, R. Byers, and V. Mehrmann, Numerical methods for algebraic Riccati
equations, in Proceedings of the Workshop on the Riccati Equation in Control, Systems,
and Signals, S. Bittanti, ed., Como, Italy, 1989, pp. 107–116.

[7] R. Byers, Hamiltonian and Symplectic Algorithms for the Algebraic Riccati Equation, Ph.D.
thesis, Cornell University, Ithaca, NY, 1983.

[8] R. Byers, A Hamiltonian QR-algorithm, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 212–229.
[9] G. Freiling, On the existence of Hermitian solutions of general algebraic Riccati equations,

in Proceedings of the International Symposium on the Mathematical Theory of Networks
and Systems, Perpignan, France, 2000, A. El Jai and M. Fliess, eds., to appear.

[10] G. Freiling and G. Jank, Non-symmetric matrix Riccati equations, Z. Anal. Anwendungen,
14 (1995), pp. 259–284.

[11] F. Gantmacher, Theory of Matrices, Vol. 1, Chelsea, New York, 1959.
[12] G. Golub and C. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press,

Baltimore, 1996.
[13] M. Green and D. Limebeer, Linear Robust Control, Prentice-Hall, Englewood Cliffs, NJ,

1995.
[14] R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge,

UK, 1991.
[15] P. Lancaster and L. Rodman, The Algebraic Riccati Equation, Oxford University Press,

Oxford, 1995.
[16] A. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans. Automat. Con-

trol, AC-24 (1979), pp. 913–921.
[17] A. Laub, Invariant subspace methods for the numerical solution of Riccati equations, in The

Riccati Equation, S. Bittanti, A. Laub, and J. Willems, eds., Springer-Verlag, Berlin, 1991,
pp. 163–196.

[18] W.-W. Lin and T.-C. Ho, On Schur Type Decompositions for Hamiltonian and Symplectic
Pencils, Tech. report, Institute of Applied Mathematics, National Tsing Hua University,
Taiwan, 1990.

[19] W.-W. Lin, V. Mehrmann, and H. Xu, Canonical forms for Hamiltonian and symplectic
matrices and pencils, Linear Algebra Appl., 302/303 (1999), pp. 469–533.

[20] V. Mehrmann, The Autonomous Linear Quadratic Control Problem, Theory and Numerical
Solution, Lecture Notes in Control and Information Sciences 163, Springer-Verlag, Heidel-
berg, 1991.

[21] V. Mehrmann and H. Xu, Numerical methods in control, J. Comput. Appl. Math., 123 (2000),
pp. 371–394.

[22] C. Paige and C. Van Loan, A Schur decomposition for Hamiltonian matrices, Linear Algebra
Appl., 14 (1981), pp. 11–32.

[23] A. Ran and L. Rodman, Stability of invariant maximal semidefinite subspaces, Linear Algebra
Appl., 62 (1984), pp. 51–86.

[24] A. Ran and L. Rodman, Stability of invariant Lagrangian subspaces I, in Topics in Operator
Theory, Oper. Theory Adv. Appl. 32, I. Gohberg, ed., Birkhäuser, Basel, 1988, pp. 181–218.
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