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Abstract

We study canonical forms for Hamiltonian and symplectic matrices or pencils
under equivalence transformations which keep the class invariant. In contrast to other
canonical forms our forms are as close as possible to a triangular structure in the same
class. We give necessary and sufficient conditions for the existence of Hamiltonian
and symplectic triangular Jordan, Kronecker and Schur forms. The presented results
generalize results of Lin and Ho [17] and simplify the proofs presented there.
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1 Introduction

In this paper we study canonical (Jordan and Kronecker) and condensed (Schur) forms
for matrices and matrix pencils with a special structure under equivalence transformations
that keep this structure invariant. Let us first introduce the algebraic structures that we
consider.
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Let Jn :=

[
0 In
−In 0

]
, where In is the n × n identity matrix. We will just use J if the

size is clear from the context. The superscripts T , H represent the transpose and conjugate
transpose, respectively.

Definition 1

1. A matrix H ∈ C2n×2n is called Hamiltonian if HJn = (HJn)H . Every Hamiltonian
matrix can be expressed as

H =

[
A D
G −AH

]
, (1)

where D = DH and G = GH .

2. A matrix H ∈ C2n×2n is Hamiltonian triangular if H is Hamiltonian and in the block
form (1), with G = 0 and where A is upper triangular or quasi upper triangular if H
is real.

3. A matrix S ∈ C2n×2n is called symplectic if SHJnS = Jn.

4. A matrix S ∈ C2n×2n is symplectic triangular if it is symplectic and has the block

form S =

[
S1 S2

0 S−H1

]
, where S1 is upper triangular or quasi upper triangular if S

is real.

5. A matrix pencilMh−λLh ∈ C2n×2n is called Hamiltonian ifMhJnLHh = −LhJnMH
h .

6. A matrix pencil Mh − λLh ∈ C2n×2n is Hamiltonian triangular if it is Hamilto-

nian, Mh =

[
M1 M3

0 M2

]
and Lh =

[
L1 L3

0 L2

]
, where M1,M

H
2 , L1, L

H
2 are upper

triangular. If the pencil is real then M1,M
H
2 are quasi upper triangular.

7. A matrix pencil Ms − λLs ∈ C2n×2n is called symplectic if MsJnMH
s = LsJnLHs .

8. A matrix pencilMs−λLs ∈ C2n×2n is symplectic triangular if it is symplectic,Ms =[
M1 M3

0 M2

]
and Ls =

[
L1 L3

0 L2

]
, where M1,M

H
2 , L1, L

H
2 are upper triangular. If

the pencil is real then M1,M
H
2 are quasi upper triangular.

9. A matrix Q ∈ C2n×2n is unitary symplectic if QHQ = I2n and QHJnQ = Jn.

Matrices and pencils with the structures introduced in Definition 1 occur in a large number
of applications. Classical applications are the solution of linear quadratic optimal control
problems, where the matrices or matrix pencils associated with the two point boundary
value problems of Euler-Lagrangian equations have these structures [18], the solution of
H∞ control problems [8], eigenvalue problems in quantum mechanics [20] or the solution
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of algebraic Riccati equations [2, 15]. While the Hamiltonian matrices form a Lie Algebra,
the symplectic matrices form the corresponding Lie group.

Our interest in canonical and condensed forms is multifold. First of all we would like
to have a complete picture of all the invariants under structure preserving similarity or
equivalence transformations. For matrices these results are well-known, see [16, 6]. We
extend these results to pencils. Second we would like to have canonical forms as well as
condensed forms that are closely related, like the Jordan canonical form under similarity
and the Schur form under unitary similarity. Both these classical forms are upper triangular
and display eigenvalues and invariant subspaces. The reason why we like to have forms
of a similar structure is that the computation of the Jordan canonical form is usually
an ill-conditioned problem for finite precision computation, while the computation of the
Schur form is not. From the Schur form, however, some of the extra information of the
Jordan form can be computed also in finite precision, e.g. [11]. If we obtain a triangular
Jordan-like form and a similar Schur form, then the latter may lead us to a computational
method from which also part of the Jordan structure can be determined.

The third motivation arises from applications in control theory. Since the solution of
linear quadratic optimal control problems and algebraic Riccati equations can be obtained
via the computation of special (Lagrangian) invariant subspaces, we would like to obtain
these subspaces from the canonical and condensed forms, e.g. [4, 18, 1]. But in general
it is not clear whether such Lagrangian subspaces exist. Most results (see e.g. [15]) give
only sufficient conditions, which are usually not necessary. So we would like to be able
to diagnose from the canonical and condensed form whether the solutions exist and are
unique. To do this in a similar fashion theoretically and computationally, we need to have
forms which are at least partly accessible numerically, and from which we can read off the
Lagrangian subspaces.

These questions and the construction of canonical or condensed forms for the described
structured pencils or matrices is the topic of an enormous number of publications in the last
40 years, since it was recognized that these structures play an important role in the analysis
and solution of control problems. For a discussion of these applications and previous results,
we refer the reader to the monographs [18, 2, 15] and the references given therein.

To describe the general ideas in our approach let us consider the Hamiltonian matrix
case. The discussion for the other cases is similar. The global goal is to determine a
symplectic matrix U , such that

U−1HU =

[
A D
0 −AH

]

is Hamiltonian triangular, as condensed as possible, and displays all the invariants under
symplectic similarity transformation. Again as mentioned before there are several reasons
for this goal. The algebraic structure of the matrix usually reflects physical properties of
the underlying practical problem and thus it should be also reflected in the analysis as
well as in the computational methods. The triangular structure is the structure that we
expect to obtain from numerical methods, since from this structure we can easily read off
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eigenvalues and invariant subspaces. The maximal condensation, as in the standard Jordan
canonical form, will give us the information about the invariants like the sizes of Jordan
blocks and the eigen- and principal vectors.

There are many different approaches that one can take to derive canonical and condensed
forms for Hamiltonian matrices. For the problems studied here, which are matrices from
classical Lie and Jordan algebras a complete survey was given in [6], describing all the
types of invariants that may occur. In this general framework, however, only the types of
invariants are described, but not triangular forms or Schur forms.

Another very simple approach to obtain a canonical form is the idea to express the
Hamiltonian matrix H as a matrix pencil λJ −JH, i.e., a pencil where one of the matrices
is skew Hermitian and the other is Hermitian. Using congruence transformations UH(λJ−
JH)U , we obtain a canonical form via classical results for such pencils, see e.g., [22, 23].
In view of our goals, however, this is not quite what we want, since in general these forms
do not give that UHJU = J , hence they do not lead to the structured form that we are
interested in. The other disadvantage of this approach is that it will not display directly
the Lagrangian subspaces, since it is not a triangular from.

Another classical approach is to use the pencil λiJ − JH, which is now a Hermitian
pencil. Since iJ defines an indefinite scalar product, the elaborate theory of matrices
in spaces with indefinite scalar products, e.g., [7] can be employed and the associated
canonical forms can be obtained. This approach has been used successfully in the analysis
of the algebraic Riccati equation [15] but shares the disadvantages with the approach via
the pencil λJ −JH. Another difficulty is that for real problems the problem is turned into
a complex problem due to the multiplication with i.

A canonical form under symplectic similarity directly for the Hamiltonian matrix was
first obtained in [16], but it has a very unusual structure which is not triangular or even
near triangular and it also cannot be used to determine the Lagrangian subspaces in a
simple way.

A condensed form under unitary symplectic similarity transformations for Hamiltonian
matrices was first considered in [21]. These results were extended later in [17]. Other
studies concerning canonical and condensed forms were given in [25, 26, 9].

The main motivation for our research arose from an unpublished technical report of Lin
and Ho on the existence of Hamiltonian Schur forms [17]. The results given there (for which
the proofs are very hard to follow) are obtained as simple corollaries to our canonical form.

Particular emphasis in this paper is placed on the analysis of the eigenstructure associated
to eigenvalues on the imaginary axis in the Hamiltonian case, or on the unit circle in the
symplectic case, since this is where previous results did not give the complete analysis.
Furthermore we derive our results from classical non-structured canonical forms.

The paper is structured as follows. In Section 2, we introduce the notation and give
some preliminary results. Section 3 gives some technical results which are needed for the
construction of the canonical forms in the Hamiltonian case. Complex and real Hamiltonian
Jordan forms are then presented in Section 4. The analogous results for Hamiltonian pencils
are presented in Section 5. In Section 6 we present again some technical results to deal
with the symplectic case. These results are then used to derive the canonical froms for
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symplectic pencils in Section 7 and symplectic matrices in Section 8. The paper is written
in such a way that the sections containing the canonical forms are essentially self contained
and can be read without going through the technical lemmas in Sections 3 and 6.

2 Notation and preliminaries

In this section we introduce the notation and give some preliminary results.

Definition 2

1. A k−dimensional subspace U ⊆ Cn is called (right) invariant subspace for A ∈ Cn×n

if for a matrix U whose columns span U, there exists a matrix C ∈ Ck×k such that
AU = UC. It is called left invariant subspace for A ∈ Cn×n if it is an invariant
subspace for AH .

2. A k−dimensional subspace U ⊆ Cn is called (right) deflating subspace for a pencil
A − λB ∈ Cn×n if for a matrix U whose columns span U, there exist matrices
V ∈ Cn×k, C1, C2 ∈ Ck×k, such that AU = V C1, BU = V C2. It is called left
deflating subspace for A−λB ∈ Cn×n if it is a right deflating subspace for AH−λBH .

3. A k−dimensional subspace U ⊆ C2n is called isotropic if xHJny = 0 for all x, y ∈ U.

4. A subspace U ⊆ C2n is called Lagrangian subspace if it is isotropic and is not con-
tained in a larger isotropic subspace. A Lagrangian subspace always has dimension
n.

5. A subspace U ⊆ C2n is called Lagrangian invariant subspace of a matrix A ∈ Cn×n

if it is a (right) invariant subspace of A and is Lagrangian.

6. A subspace U ⊆ C2n×2n is called Lagrangian deflating subspace of the matrix pair
A− λB if it is a (right) deflating subspace of A− λB and is Lagrangian.

The eigenvalues of Hamiltonian and symplectic matrices have certain symmetries. Al-
though these properties are well-known, see e.g., [18], we list them following tables 1–4. We
will use Λ(A) and Λ(A,B) to denote the spectrum and generalized spectrum of a square
matrix A and a matrix pencil A− λB, respectively. In the following tables the word even
denotes the fact that the algebraic multiplicity of an eigenvalue is even.

We will frequently use the following well-known properties of Hamiltonian and symplectic
matrices and pencils, see e.g., [18].

Proposition 1

1. If A is Hamiltonian (symplectic) and U is symplectic, then U−1AU is still Hamilto-
nian (symplectic).
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λ ∈ Λ(H) Complex Hamiltonian Real Hamiltonian

General Hamiltonian triangular General Hamiltonian triangular

Reλ 6= 0 −λ̄ −λ̄ λ̄,−λ̄,−λ λ̄,−λ̄,−λ
Reλ = 0
λ 6= 0

even −λ(= λ̄) λ,−λ even

λ = 0 even even even

Table 1: Eigenvalues of Hamiltonian matrices

λ ∈ Λ(Mh,Lh) Complex Hamiltonian Real Hamiltonian

General Hamiltonian triangular General Hamiltonian triangular

Reλ 6= 0 −λ̄ −λ̄ λ̄,−λ̄,−λ λ̄,−λ̄,−λ
Reλ = 0
λ 6= 0

even −λ(= λ̄) λ,−λ even

λ = 0 even even even
λ =∞ even even even

Table 2: Eigenvalues of Hamiltonian pencils

λ ∈ Λ(S) Complex symplectic Real symplectic

General Symplectic triangular General Symplectic triangular

|λ| 6= 1 λ̄−1 λ̄−1 λ̄, λ̄−1, λ−1 λ̄, λ̄−1, λ−1

|λ| = 1
λ 6= ±1

even λ̄ λ, λ̄ even

λ = ±1 even even even

Table 3: Eigenvalues of symplectic matrices

λ ∈ Λ(Ms,Ls) Complex symplectic Real symplectic

General Symplectic triangular General Symplectic triangular

|λ| 6= 1, 0,∞ λ̄−1 λ̄−1 λ̄, λ̄−1, λ−1 λ̄, λ̄−1, λ−1

λ = 0, (∞) ∞, (0) 0,∞ even 0,∞ even
|λ| = 1
λ 6= ±1

even λ̄ λ, λ̄ even

λ = ±1 even even even

Table 4: Eigenvalues of symplectic pencils

6



2. If M− λL is Hamiltonian (symplectic), Y is nonsingular and U is symplectic, then
Y(M− λL)U is Hamiltonian (symplectic).

Finally let us introduce two triangular factorizations that will be used frequently in the
following.

Lemma 3

1. For every matrix Z ∈ C2n×2n there exists a unitary matrix Q ∈ C2n×2n, such that

Z =

[
R1,1 R1,2

0 R2,2

]
Q, with R1,1, RH

2,2 upper triangular.

2. For every symplectic matrix S ∈ C2n×2n there exists a unitary symplectic matrix

Q ∈ C2n×2n, such that S = Q

[
R1,1 R1,2

0 R−H1,1

]
, with R1,1 upper triangular.

For real matrices there are corresponding real factorizations.

Proof. The first part is a slight variation of the usual QL decomposition for ZH , see e.g.,
[11] and the second part was proved in [3].

For completeness we also list the following well-known property of invariant subspaces,
which follows directly from the Jordan canonical form, e.g. [10].

Proposition 2 Let A ∈ Cn×n, let the columns of U span the left invariant subspace of
A corresponding to λ1 ∈ Λ(A) and let the columns of V span the right invariant subspace
corresponding to λ2 ∈ Λ(A). If λ1 6= λ2 then UHV = 0. If λ1 = λ2 then det(UHV ) 6= 0.

Every Hermitian matrix A is congruent to its inertia matrix diag(Ip(A),−In(A), 0z(A)),
where p(A), n(A), z(A) denote the number of positive, negative and zero eigenvalues of A.
By Ind(A) we denote the tuple (1, . . . , 1︸ ︷︷ ︸

p(A)

,−1, . . . ,−1︸ ︷︷ ︸
n(A)

, 0, . . . , 0︸ ︷︷ ︸
z(A)

) associated with the inertia

matrix of A. We will also use the same notation for skew Hermitian matrices, i.e., for
a skew Hermitian matrix A we denote by Ind(A) the tuple (i, . . . , i︸ ︷︷ ︸

p(A)

,−i, . . . ,−i︸ ︷︷ ︸
n(A)

, 0, . . . , 0︸ ︷︷ ︸
z(A)

),

where p(A), n(A), z(A) are the number of eigenvalues of A with positive, negative and zero
imaginary parts.

3 Technical lemmas for the Hamiltonian case

In this section we consider several technical results that are needed to derive the (Jordan)
canonical form of a given Hamiltonian matrix H under symplectic similarity transforma-
tions.

The goal is to determine a symplectic matrix U , such that

U−1HU =

[
A D
0 −AH

]
(2)
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is Hamiltonian triangular, as condensed as possible, and displays all the invariants under
symplectic similarity transformation.

Lemma 4 Let H be symplectically similar to a Hamiltonian triangular matrix. Then there
exists a symplectic matrix U , such that

U−1HU =

[
Ã D̃

0 −ÃH

]
, (3)

where Ã = diag(R1, . . . , Rµ, P1, . . . , Pν) and D̃ = diag(0, . . . , 0, D1, . . . , Dν) are partitioned
conformally. The blocks Pj are associated with the pairwise different purely imaginary
eigenvalues and the blocks Rj are associated with the pairwise different eigenvalues with
nonzero real part, i.e., each block Pj has only one single purely imaginary eigenvalue iαj
and αj 6= αk for j 6= k; analogously each block Rj has only one eigenvalue λj and λj 6= λk
for j 6= k.

Proof. By hypothesis there exists a symplectic matrix U1 such that

U−1
1 HU1 =

[
A D
0 −AH

]
.

Using the Jordan canonical form of A, there exists a nonsingular matrix T , such that
Ã := T−1AT = diag(R1, . . . , Rµ, P1, . . . , Pν) as desired. Then[

T−1 0
0 TH

]
U−1

1 HU1

[
T 0
0 T−H

]
=

[
Ã T−1DT−H

0 −ÃH

]
.

Using a sequence of symplectic similarity transformations with matrices of the form

[
I Xj

0 I

]
,

where Xj is Hermitian, we can bring T−1DT−H to the desired block diagonal form D̃, see
e.g., [18].

It follows that we can restrict the analysis of the Jordan and Schur forms for Hamilto-
nian matrices to matrices with one single eigenvalue. In this way, we immediately obtain
necessary conditions for the invariant subspaces. The following result appeared first in an
unpublished paper [17]. We will give a different proof.

Proposition 3 Let H be a Hamiltonian matrix, let iα1, . . . , iαν be its pairwise different
purely imaginary eigenvalues and let Uk, k = 1, . . . , ν be matrices whose columns span
the associated invariant subspaces. Analogously let λ1, . . . , λµ, −λ̄1, . . . ,−λ̄µ be the pair-
wise different eigenvalues with nonzero real parts and let Vk, Ṽk, k = 1, . . . , µ be matrices
whose columns span the associated invariant subspaces. If H is symplectically similar to a
Hamiltonian triangular matrix, then for all k = 1, . . . , µ, we have

V H
k JVk = 0, Ṽ H

k JṼk = 0, det(Ṽ H
k JVk) 6= 0; (4)

and for all k = 1, . . . , ν, UH
k JUk is congruent to Jlk for some integer lk.
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Proof. By hypothesis we have (3). Partition the columns of U conformally with (3), i.e.,

U = [V1 . . . , Vµ, U1,1, . . . , U1,ν , Ṽ1, . . . , Ṽµ, U2,1, . . . , U2,ν ].

Obviously the columns of Uk := [U1,k, U2,k], k = 1, . . . , ν span the invariant subspaces
corresponding to iαk, k = 1, . . . , ν and the columns of Vk, Ṽk span the invariant subspaces
corresponding to Λ(Rk) and Λ(−RH

k ), respectively. The assertion then follows since U is
symplectic.

For the eigenvalues with nonzero real parts, as the following Lemma shows, the asso-
ciated invariant subspaces always satisfy the necessary condition (4). Recall that for a
Hamiltonian matrix H if λ ∈ Λ(H) and Reλ 6= 0 then −λ̄ ∈ Λ(H) and clearly −λ̄ 6= λ.

Lemma 5 Let λ be an eigenvalue with nonzero real part of a Hamiltonian matrix H. Let
the columns of the full rank matrices V , Ṽ span the invariant subspaces corresponding to λ
and −λ̄, respectively, i.e., HV = V T1, HṼ = Ṽ T2 and Λ(T1) = {λ}, Λ(T2) = {−λ̄}. Then

V HJV = Ṽ HJṼ = 0, det(V HJṼ ) 6= 0.

Moreover, V, Ṽ can be chosen such that

[V, Ṽ ]HJ [V, Ṽ ] = J, H[V, Ṽ ] = [V, Ṽ ] diag(T,−TH),

where Λ(T ) = {λ} and T is in Jordan canonical form.

Proof. Since H = −JHHHJ , we have

V HJH = −TH1 V HJ, Ṽ HJH = −TH2 Ṽ HJ,

and since Λ(−TH1 ) = {−λ̄}, Λ(−TH2 ) = {λ}, it follows that the columns of JHV , JH Ṽ span
the left invariant subspaces corresponding to −λ̄ and λ, respectively. It is also immediate
that the algebraic and geometric multiplicities of −λ̄ and λ are equal. Employing Propo-
sition 2 we get that V HJV = Ṽ HJṼ = 0, and det(V HJṼ ) 6= 0. Since V HJH = −TH1 V HJ
and HṼ = Ṽ T2, it follows that −TH1 (V HJṼ ) = V HJṼ T2. With V̂ := Ṽ (V HJṼ )−1 we
then have HV̂ = −V̂ TH1 and [V, V̂ ]HJ [V, V̂ ] = J , H[V, V̂ ] = [V, V̂ ] diag(T1,−TH1 ). Clearly
T1 can be chosen to be in Jordan canonical form.

For the invariant subspaces corresponding to the purely imaginary eigenvalues the situ-
ation is more complicated.

Example 1 Consider the Hamiltonian matrix J1 =

[
0 1
−1 0

]
with eigenvalues i,−i.

The invariant subspaces associated with both eigenvalues have dimension one. Thus, by
Proposition 3, J1 is not symplectically similar to a Hamiltonian triangular form.

If a Hamiltonian matrix H ∈ C2n×2n has a purely imaginary eigenvalue iα, then there
exists a full rank matrix U ∈ C2n×m whose columns span the corresponding invariant
subspace such that

HU = U(iαIm +M), (5)
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where M is a nilpotent matrix in Jordan canonical form, i.e.,

M = diag(M1, . . . ,Ms), (6)

with
Mk := N(rk,mk) := diag(Nrk , . . . , Nrk︸ ︷︷ ︸

mk

), (7)

where

Nrk :=


0 1

. . . . . .
. . . 1

0

 ∈ Crk×rk . (8)

Since H is Hamiltonian, we have UHJH = (iαIm −MH)UHJ and

UHJHU = UHJU(iαIm +M) = (iαIm −MH)UHJU,

which implies that
UHJUM +MHUHJU = 0.

Since the columns of U and JHU span the right and left invariant subspaces of H corre-
sponding to iα, respectively, Proposition 2 implies that K := UHJU is nonsingular. Thus,
we have that

KM +MHK = 0, K = −KH , detK 6= 0. (9)

These properties are preserved under similarity transformations to M , since for an arbitrary
nonsingular matrix X, (9) implies that

(XHKX)(X−1MX) + (X−1MX)H(XHKX) = 0, XHKX = −(XHKX)H . (10)

For the original Hamiltonian matrix this means that

HUX = UX(X−1(iαIm +M)X). (11)

We will now use a sequence of such similarity transformations to condense K = UHJU
and H as much as possible. This condensation process consists of two parts. First we
will use similarity transformations that commute with M . This means that we re-arrange
the chains of principal vectors while keeping the relation (5). In the second step we then
transform U and M simultaneously to approach the maximally condensed forms. This
process is quite technical and uses a variety of technical lemmas that we present in the
following subsections.
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3.1 Matrices that commute with nilpotent Jordan matrices

In this section we recall some well-known results on matrices that commute with nilpotent
matrices in Jordan canonical form. We also present some technical lemmas.

Denote the set of all matrices that commute with a given nilpotent matrix N by G(N).
This set is well studied, e.g., [12]. We recall a few results.

Proposition 4 Let Nr be as in (8) and let

Pr =


0 −1

(−1)2

·
(−1)r 0

 . (12)

Then

1. P−1
r = PH

r = (−1)r−1Pr,

2. P−1
r NH

r Pr = −Nr.

The similarity transformations that we consider are related to upper triangular Toeplitz
matrices of the form

T :=


τ0 τ1 . . . τr−1

. . . . . .
...

. . . τ1

0 τ0

 =
r−1∑
k=0

τkN
k
r . (13)

The diagonal element of such a matrix is denoted by θ(T ) := τ0. We have the following
well-known Lemma, see Lemma 4.4.11 in [12].

Lemma 6 Let Nj, Nk be as in (8). A matrix E ∈ Cj×k satisfies NjE = ENk if and only
if E has the form

E =


T j = k,[

0 T
]
j < k,[

T
0

]
j > k,

(14)

where T has the form (13).

For more complicated nilpotent matrices in Jordan form we have the following well-known
Lemma, see [10, 12]. In the following we denote the set of j×k rectangular upper triangular
Toeplitz matrices E as in (14) by Gj×k.

Lemma 7 Let
N = diag(Nr1 , . . . Nrs), (15)

where each Nrk is of the form (8). A matrix E commutes with N if and only if E has the
block structure E = [Ei,j]s×s, where each Ei,j ∈ Cri×rj is a rectangular upper triangular
Toeplitz matrix of the form (14).
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For the nilpotent matrix N(r,m) as in (7), it follows that E ∈ G(N(r,m)) if and only if E has
the block structure E = [Ei,j]m×m, partitioned conformally with N(r,m), where Ei,j ∈ Gr×r.
Collecting the diagonal elements of each of the blocks in one matrix we obtain an m×m
matrix

Θ(E) :=


Θ(E1,1) . . . Θ(E1,m)

...
. . .

...
Θ(Em,1) . . . Θ(Em,m)

 ,
which we call the main submatrix of E.

Lemma 8

1) If E1, E2 ∈ Gj×k, then E1 + E2 ∈ Gj×k.

2) If E1 ∈ Gj×k and E2 ∈ Gk×l, then E1E2 ∈ Gj×l. E1E2 is of full rank if and only if
E1, E2 both have full row rank (if j < l) or full column rank (if j ≥ l). Moreover,
E1E2 is nonsingular if and only if E1 and E2 are square and nonsingular.

Proof. The first part is trivial. For the second part we only consider the case j ≥ l. The
case j < l can be obtained in a similar way.

We have three subcases. If j < k then E1 =
[

0 T1

]
, E2 =

[
T2

0

]
, where T1 ∈ Cj×j,

T2 ∈ Cl×l are upper triangular Toeplitz matrices. If k ≥ j + l, then we have E1E2 = 0. If

k < j + l then E1E2 =

[
T3

0

]
, where T3 =

[ k − j j + l − k
j + l − k 0 T̂3

k − l 0 0

]
, and T̂3 is upper

triangular Toeplitz. Note that θ(T̂3) = θ(T1)θ(T2).

If j ≥ k ≥ l, then E1 =

[
T1

0

]
, E2 =

[
T2

0

]
, where T1 ∈ Ck×k, T2 ∈ Cl×l are upper

triangular Toeplitz. We then have E1E2 =

[
T3

0

]
, where T3 ∈ Cl×l is upper triangular

Toeplitz and θ(T3) = θ(T1)θ(T2).

If k < l, then E1 =

[
T1

0

]
, E2 =

[
0 T2

]
, where T1 ∈ Ck×k, T2 ∈ Ck×k. We then obtain

E1E2 =

[
T3

0

]
, where T3 =

[ l − k k

k 0 T̂3

l − k 0 0

]
, T̂3 ∈ Ck×k is upper triangular Toeplitz

and θ(T̂3) = θ(T1)θ(T2). Hence in all subcases E1E2 ∈ Gj×l and only in the second subcase
it is possible to have rank(E1E2) = l. So we need that j ≥ k ≥ l and θ(T1), θ(T2) 6= 0.
Therefore, rank(E1) = k, rank(E2) = l. The reverse direction is obvious.

Lemma 9 Let E ∈ G(N) for N given in (15) and let P = diag(Pr1 , . . . , Prs).

1. If F ∈ G(N), then FE,EF ∈ G(N).
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2. If E is nonsingular, then E−1 ∈ G(N).

3. P−1EHP ∈ G(N).

Proof. By definition of G(N) we have EN = NE.

1. Since FN = NF , we have EFN = ENF = NEF and thus, EF ∈ G(N). Similarly
we obtain FE ∈ G(N).

2. Since E is nonsingular, from EN = NE we have E−1N = NE−1 and thus E−1 ∈
G(N).

3. By Proposition 4, P−1NHP = −N . Applying similarity transformations with P to
(EN)H = (NE)H we obtain (P−1EHP )N = N(P−1EHP ) and hence P−1EHP ∈
G(N).

Defining

Ω := [e1, er+1, . . . , e(m−1)r+1; e2, er+2, . . . , e(m−1)r+2; . . . ; er, e2r, . . . , emr],

where ek is the k-th unit vector, we have for each E ∈ G(N(r,m)), that

ω(E) := ΩTEΩ =


Θ(E) ∆1 . . . ∆r−1

. . . . . .
...

. . . ∆1

0 Θ(E)

 . (16)

This transformation sets up a one-to-one relationship between G(N(r,m)) and the set of
block upper triangular Toeplitz matrices.

We then have the following result.

Lemma 10 Let M be as in (5) with the block sizes arranged in decreasing order, r1 >
. . . > rs. Let

PM := diag(Pr1 , . . . , Pr1︸ ︷︷ ︸
m1

, . . . , Prs , . . . , Prs︸ ︷︷ ︸
ms

), (17)

with Pri defined as in (12). Let E ∈ G(M) and partition E conformally with the block
structure of M in (6), i.e., E = [Ei,j]s×s and Ek,k ∈ G(N(rk,mk)). Let Θ(Ek,k) be the main
submatrices of the diagonal blocks Ek,k, k = 1, . . . , s. Then E is nonsingular if and only if
det(Θ(Ek,k)) 6= 0, for all k = 1, . . . , s.

If E is nonsingular, then there exists a matrix Y ∈ G(M), such that

(P−1
M Y HPM)EY =


Ê1,1 0

∗ Ê2,2
...

. . . . . .

∗ . . . ∗ Ês,s

 , (18)

13



where
Θ(Êk,k) = Θ(Ek,k), k = 1, . . . , s, (19)

and where for each k, Θ(Êk,k) is the main submatrix of the diagonal block Êk,k ∈ G(N(rk,mk)).
If E is a real matrix, then Y can be chosen real as well.

Proof. First we prove the necessity. Since E is nonsingular, Θ(E1,1) must be nonsingular.
Otherwise we would have that the matrix composed by the columns 1, r1 + 1, . . . , (m1 −
1)r1+1 of E is rank deficient. By (16) we obtain that det Θ(E1,1) 6= 0 implies det(E1,1) 6= 0.

Set Y = I −
[
Ir1m1

0

]
E−1

1,1 [0, E1,2, . . . , E1,s]. By Lemma 8 and 9 we can verify that

Y, P−1
M Y HPM ∈ G(M). Moreover, Y is block upper triangular and P−1

M Y HPM is block
lower triangular. Thus, we have

(P−1
M Y HPM)EY =

[
E1,1 0
∗ E(2)

]
,

where E(2) ∈ G(M (2)), M (2) = diag(M2, . . . ,Ms). Partition E(2) = [E
(2)
i,j ](s−1)×(s−1) con-

formally with M (2). Then E
(2)
k,k = Ek+1,k+1 − Ek+1,1E

−1
1,1E1,k+1. So each sub-block of E

(2)
k,k

is equal to the corresponding sub-block of Ek+1,k+1 plus a sum of the m1 matrices of the
form F1F2, with F1 ∈ Grk+1×r1 , F2 ∈ Gr1×rk+1 . Since r1 > rk+1 for all k = 1, . . . , s − 1,
by Lemma 8 the main elements of all such F1F2 are zero. Note that F1F2 is square upper
triangular Toeplitz. It follows that Θ(E

(2)
k,k) = Θ(Ek+1,k+1) for k = 1, . . . , s− 1.

Repeating the reductions on E(2), after s − 1 steps we determine a matrix Y ∈ G(M)
which satisfies (18) and Θ(Ek,k) = Θ(Êk,k) are nonsingular for all k = 1, . . . , s.

For the sufficiency observe that for det Θ(Ek,k) 6= 0, k = 1, . . . , s the factorization (18) ex-

ists. By (16) and the fact that Θ(Ek,k) = Θ(Êk,k), we obtain that each Êk,k is nonsingular,
hence E is nonsingular.

For real E the reduction process immediately gives that Y can be chosen real.
The final Lemma in this subsection discusses a special case.

Lemma 11 Let E ∈ G(N(r,m)), where N(r,m) is as in (7) and let

P(r,m) := diag(Pr, . . . , Pr︸ ︷︷ ︸
m

). (20)

If P(r,m)E is a nonsingular skew Hermitian matrix, then there exists a matrix Y ∈ G(N(r,m))
such that

Y H(P(r,m)E)Y = diag(π1Pr, . . . πmPr), (21)

where (π1, . . . , πm) = Ind(Θ(E)).
If E is real and if r is even then Y can be chosen real as well.

Proof. For simplicity in the proof we use P for P(r,m).
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Using the linear operator ω in (16), we obtain that Ê = ω(E) is block upper triangular
Toeplitz with diagonal block Θ(E). Moreover, we have

P̂ = ω(P ) =


0 −Im

(−Im)2

·
(−Im)r 0

 .

Since PE is skew Hermitian, so is P̂ Ê. Using the Kronecker product A⊗ B = [aijB], see

[14], Ê can be expressed as Ê =
∑r−1
k=0 N

k
r ⊗ Ek, where E0 = Θ(E). By symmetry if r is

even, then E0, E2, . . . , Er−2 are Hermitian and E1, E3, . . . , Er−1 are skew Hermitian, and
if r is odd, then E0, E2, . . . , Er−1 are skew Hermitian and E1, E3, . . . , Er−2 are Hermitian.
Suppose that Ŷ is a block upper triangular Toeplitz matrix with the same block structure
as Ê. Let Ŷ =

∑r−1
k=0 N

k
r ⊗ Yk. Using properties of the Kronecker product [14], we obtain

P̂−1Ŷ HP̂ =
r−1∑
k=0

(P−1
r NH

r Pr)
k ⊗ Y H

k =
r−1∑
k=0

(−1)kNk
r ⊗ Y H

k ,

and hence

(P̂−1Ŷ HP̂ )ÊŶ =
r−1∑
k=0

Nk
r ⊗ {

k∑
p=0

(−1)pY H
p (

k−p∑
q=0

Ek−p−qYq)}.

Here we have used that Nk
r = 0 for k ≥ r. Now choose Ŷ such that

(P̂−1Ŷ HP̂ )ÊŶ = Ir ⊗ Π, Π = diag(π1, . . . , πm). (22)

Then we have determined matrices Y0, . . . , Yr−1, such that for k = 1, . . . , r − 1,

Y H
0 E0Y0 = Π, (23)

Y H
0 E0Yk + (−1)kY H

k E0Y0 = −Ck, (24)

with

Ck =


Y0

Y1
...

Yk−1


H 

Ek Ek−1 . . . E1

−Ek−1 −Ek−2 . . . −E0
...

... ·
(−1)k−1E1 (−1)k−1E0 0




Y0

Y1
...

Yk−1

 .
Since E0 = Θ(E), there exists a nonsingular matrix Y0 that satisfies (23). By the structure
of Ek, in the case that r is even, we have that if k is even then Ck is Hermitian and if k
is odd then Ck is skew Hermitian. In the case that r is odd, if k is even then Ck is skew
Hermitian and if k is odd then Ck is Hermitian. By (16), detE 6= 0 implies detE0 6= 0. So
in any case Yk can be chosen subsequently as Yk = −1

2
(Y H

0 E0)−1Ck to satisfy (24). (Note
that the choice is not unique.)

Applying the inverse transform ω−1 on (22) and setting Y = ω−1(Ŷ ), we obtain from
(16) that Y ∈ G(N(r,m)) and

(P−1Y HP )EY = ω−1(Ir ⊗ Π) = diag(π1Ir, . . . , πmIr).
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Pre-multiplying by P we have (21).
If E is real and r is even, then since E0 = Θ(E) is real symmetric, Y0, Yk be chosen real

in (23) and (24). Therefore Ŷ and also Y can be chosen real.
Note that Θ(E) is Hermitian if r is even and it is skew Hermitian if r is odd. Thus

Ind(Θ(E)) consists of elements +1,−1, 0 if r is even and +i,−i, 0 if r is odd.

3.2 The structure of K

In this subsection we analyze the structure of skew Hermitian matrices K that satisfy (9)
for a given nilpotent matrix M .

Lemma 12 Let M be a nilpotent matrix as in (6) and let K be as in (9). Then there
exists a matrix E ∈ G(M) such that K = PME with PM defined in (17).

Proof. By Proposition 4, P−1
M MHPM = −M . Thus KM + MHK = 0 implies that

(P−1
M K)M = M(P−1

M K). By definition of G(M) we then obtain P−1
M K ∈ G(M).

Lemma 13 Let M be a nilpotent matrix as in (6) and let K be as in (9). Let E =
[Ei,j]s×s ∈ G(M) be such that K = PME, where E is partitioned conformally with M =
diag(M1, . . . ,Ms). If the index of Θ(Ek,k) is (πk,1, . . . , πk,mk) for k = 1, . . . , s, then there
exists a nonsingular matrix Y ∈ G(M) such that

Y HKY = diag(π1,1Pr1 , . . . , π1,m1Pr1 , . . . , πs,1Prs , . . . , πs,msPrs). (25)

If K is real and Y = [Y1, . . . , Ys] is partitioned in columns conformally with M , then Yk
can be chosen to be real for all k corresponding to an even rk.

Proof. Without loss of generality we may assume that r1 > . . . > rs.
Lemma 12 implies that there exists a matrix E ∈ G(M), such that K = PME and, since

K is nonsingular, so is E. Hence we can employ Lemma 10. Since K = −KH , using (18),
there exists Y1 ∈ G(M) so that

Y H
1 KY1 = PM(P−1

M Y H
1 PM)EY1 = PM diag(Ê1,1, . . . , Ês,s)

= diag(P(r1,m1)Ê1,1, . . . , P(rs,ms)Ês,s),

where P(rk,mk) is defined as in (20). Moveover, for all k = 1, . . . , s the matrix P(rk,mk)Êk,k
is skew Hermitian. Applying Lemma 11, for each P(rk,mk)Êk,k there exists a matrix Ŷk ∈
G(N(rk,mk)), such that

Ŷ H
k (P(rk,mk)Êk,k)Ŷk = diag(πk,1Prk , . . . , πk,mkPrk),

where
(πk,1, . . . , πk,mk) = Ind(Θ(Êk,k)) = Ind(Θ(Ek,k)).

The last equality follows from Lemma 10.
Set Y2 := diag(Ŷ1, . . . , Ŷs) then Y2 ∈ G(M) and also Y := Y1Y2 ∈ G(M). Furthermore

Y HKY has the form (25).
The real case follows from the corresponding real parts in Lemmas 10 and 11.
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Remark 1 The matrices Y ∈ G(M) constructed in the proof of Lemma 10 and 11 are in
general not unique.

Notice that (πk,1, . . . , πk,mk) is the inertia index of Θ(Ek,k). But by Lemma 10, for all
k = 1, . . . , s, Θ(Ek,k) is invariant under congruence transformations with Y ∈ G(M). So
all these indices are uniquely determined by the matrices K and M . Hence (25) can be
viewed as the canonical form of K under congruence transformations in G(M).

From the beginning of the construction we see that the matrices K, M contain the char-
acteristic quantities associated with the eigenvalues of iα of H, in particular the number
and sizes of Jordan blocks. Based on these quantities we set

βk,j :=

 (−1)
rk
2 πk,j, if rk is even,

(−1)
rk−1

2 iπk,j, otherwise.
(26)

Note that by construction βk,j ∈ {1,−1}.

Definition 14 Let πk,j be as in (25) and βk,j as in (26), then the tuple

IndS(iα) := (β1,1, . . . , β1,m1 , . . . , βs,1, . . . , βs,ms) (27)

is called the structure inertia index of the eigenvalue iα.

It is not surprising that certain signs associated with Jordan blocks to purely imaginary
eigenvalues will be important. These signs obviously occur in the approaches to obtain
canonical forms for Hermitian pencils as studied in [7, 22] or in the analysis of Lagrangian
subspaces [9]. These signs are sometimes called sign characteristics and they play the key
role in determining the structure of the Hamiltonian Jordan canonical form and in the
solvability theory for algebraic Riccati equations [15].

By Lemma 13 we have obtained a partition of a matrix K as in (9) into m =
∑s
k=1 mk

submatrices of the form πk,jPrk , where πk,j ∈ {1,−1} if r is even and πk,j ∈ {i,−i} if r is
odd. Each πk,jPrk corresponds to a nilpotent block Nrk in the Jordan canonical form. In
other words, by the above construction we have obtained all chains of principal vectors U
of H corresponding to all the single Jordan blocks satisfying UHJU = πk,jPrk .

3.3 Combining Jordan blocks to Hamiltonian Jordan blocks

Since the matrix pair (K,M) from (9) can be decoupled in blocks (πk,jPrk , Nrk) associated
with Jordan blocks which are in general not Hamiltonian, we will now describe possibilities
to combine or split such Jordan blocks to Hamiltonian Jordan blocks.

Lemma 15

1. For a pair (πP2r, N2r), with π = (−1)rβ and β ∈ {1,−1}, let Ze := diag(Ir, πP
−1
r ).

Then

ρe(πP2r, N2r) := (ZH
e (πP2r)Ze, Z

−1
e N2rZe)

=

([
0 Ir
−Ir 0

]
,

[
Nr βere

H
r

0 −NH
r

])
. (28)
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2. For a pair (πP2r+1, N2r+1), with π = (−1)r+1iβ and β ∈ {1,−1}, let

Zo(r) := diag(Ir+1, (πPr)
−1). (29)

Then

ρo(πP2r+1, N2r+1) := (Zo(r)
H(πP2r+1)Zo(r), Zo(r)

−1N2r+1Zo(r))

=


 0 0 Ir

0 iβ 0
−Ir 0 0

 ,
 Nr er 0

0 0 iβeHr
0 0 −NH

r


 . (30)

Proof. We can rewrite the matrix pair (πP2r, N2r) as([
0 πPr

(−1)rπPr

]
,

[
Nr ere

H
1

0 Nr

])
.

Then we obtain (28) by Proposition 4.
Similarly we can rewrite (πP2r+1, N2r+1) as

 0 0 πPr
0 iβ 0

(−1)r+1πPr 0 0

 ,
 Nr er 0

0 0 eH1
0 0 Nr




and with the given Zo(r) we obtain (30).
For an even size matrix pair (πPr, Nr) the transformation ρe yields a pair of the form

(Jr, Tr) with a Hamiltonian triangular matrix Tr. For a single odd size matrix pair, however,
we cannot obtain such a form, since J has even size. Thus, it is a natural idea to combine
two odd size pairs associated with (possibly different) purely imaginary eigenvalues iα1, iα2.

In the following we will use the notation Nk(λ) := λI +Nk.

Lemma 16 Given two matrix pairs (πkP2rk+1, N2rk+1(iαk)) for k = 1, 2, with αk real,
πk = (−1)rk+1iβk and βk ∈ {1,−1}. Let

(Pc, Nc) :=

([
π1P2r1+1 0

0 π2P2r2+1

]
,

[
N2r1+1(iα1) 0

0 N2r2+1(iα2)

])
,

V :=

[
v1,1 v1,2

v2,1 v2,2

]
:=
√

2
2

[
−1 iβ1

−1 −iβ1

]
and

Zc :=

[
Zo(r1) 0

0 Zo(r2)

]


Ir1 0 0 0 0 0
0 0 v1,1 0 0 v1,2

0 0 0 Ir1 0 0
0 Ir2 0 0 0 0
0 0 v2,1 0 0 v2,2

0 0 0 0 Ir2 0


. (31)
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Then for
ϕc(Pc, Nc) := (ZH

c PcZc, Z
−1
c NcZc) (32)

we obtain

ZH
c PcZc =



0 0 0 Ir1 0 0
0 0 0 0 Ir2 0
0 0 w1,1 0 0 w1,2

−Ir1 0 0 0 0
0 −Ir2 0 0 0
0 0 w2,1 0 0 w2,2


,

and

Z−1
c NcZc =



Nr1(iα1) 0 −
√

2
2
er1 0 0 i

√
2

2
β1er1

0 Nr2(iα2) −
√

2
2
er2 0 0 −i

√
2

2
β1er2

0 0 z1,1 −i
√

2
2
β1e

H
r1

−i
√

2
2
β2e

H
r2

z1,2

0 0 0 −Nr1(iα1)H 0 0
0 0 0 0 −Nr2(iα2)H 0

0 0 z2,1

√
2

2
eHr1 −

√
2

2
β1β2e

H
r2

z2,2


,

where [
w1,1 w1,2

w2,1 w2,2

]
=

1

2

[
i(β1 + β2) 1− β1β2

β1β2 − 1 i(β1 + β2)

]
,[

z1,1 z1,2

z2,1 z2,2

]
=

1

2

[
i(α1 + α2) β1(α1 − α2)
−β1(α1 − α2) i(α1 + α2)

]
. (33)

Proof. The proof is clear by direct multiplication.

Corollary 17 Let (Pc, Nc) be as in Lemma 16. If β1 = −β2, then there exists a nonsin-
gular matrix Z, such that ZHPcZ = J and Z−1NcZ is Hamiltonian triangular if and only
if α1 = α2. If β1 = β2, then Pc is not congruent to J .

Proof. Let β1 = −β2. If α1 = α2, then the result follows immediately, since ZH
c PcZc =

Jr1+r2+1 and Z−1
c NcZc is Hamiltonian triangular. The converse direction, i.e., that there

does not exist a further reduction to Hamiltonian triangular form can be easily observed
from the eigenvalue properties in Table 1, since the eigenvalues of Z−1

c NcZc are iα1 and
iα2.

Since Ind(Pc) = (i, . . . , i︸ ︷︷ ︸
r1+r2

, iβ1, iβ2,−i, . . . ,−i︸ ︷︷ ︸
r1+r2

), Pc is congruent to J if and only if β1 = −β2.

For two blocks associated with the same eigenvalue there is also another possibility to
transform to Hamiltonian triangular form.
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Lemma 18 Given two matrix pairs (πkPrk , Nrk), k = 1, 2, where r1, r2 are either both
even or both odd. Let for k = 1, 2, πk ∈ {1,−1} if both rk are even and πk ∈ {i,−i} if both
rk are odd. Let

(Pc, Nc) :=

([
π1Pr1 0

0 π2Pr2

]
,

[
Nr1 0
0 Nr2

])

and d := |r1−r2|
2

. If π1 = (−1)d+1π2, i.e., β1 = −β2 for the corresponding β1 and β2, then
we have the following transformations.

1. If r1 ≥ r2 then with

Z1 :=


Id 0 0 0

0
√

2
2
Ir2 0 −

√
2

2
π̄2P

−1
r2

0 0 π̄1P
−1
d 0

0 −
√

2
2
Ir2 0 −

√
2

2
π̄2P

−1
r2


we obtain for ϕ1(Pc, Nc) := (ZH

1 PcZ1, Z
−1
1 NcZ1) that ZH

1 PcZ1 = J r1+r2
2

and

Z−1
1 NcZ1 =


Nd

√
2

2
ede

H
1 0 −

√
2

2
π2ede

H
r2

0 Nr2 −
√

2
2
π̄2er2e

H
d 0

0 0 −NH
d 0

0 0 −
√

2
2
e1e

H
d −NH

r2

 . (34)

2. If r1 < r2, then with

Z2 =


√

2
2
π1Pr1 0

√
2

2
Ir1 0

0 π2Pd 0 0

−
√

2
2
π1Pr1 0

√
2

2
Ir1 0

0 0 0 Id


we obtain for ϕ2(Pc, Nc) := (ZH

2 PcZ2, Z
−1
2 NcZ2) that ZH

2 PcZ2 = J r1+r2
2

and

Z−1
2 NcZ2 =


−NH

r1
0 0 −

√
2

2
π1e1e

H
1

−
√

2
2
e1e

H
r1
−NH

d −
√

2
2
π̄1e1e

H
1 0

0 0 Nr1

√
2

2
er1e

H
1

0 0 0 Nd

 . (35)

Proof. The proof follows directly by multiplying out the products.

Remark 2 It is very difficult to compare the different possibilities to combine blocks to
Hamiltonian form. First of all the form (35) is not of the triangularity structure that
we want, while the from (34) is of the right triangularity structure and actually is more
condensed than the form obtained in Lemma 16.
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The invariant subspaces are also different, when using transformations ρe, ρo, ϕ1, ϕ2 or
ϕc. This is demonstrated in the following simple example.

Let H be a nilpotent Hamiltonian matrix with two Jordan blocks N2r1 and N2r2 , and
r1 ≥ r2. Then there exist corresponding matrices V1 = [V1,1, V1,2, V1,3, V1,4], V2 = [V2,1, V2,2],
where V1,2, V1,3, V2,1, V2,2 ∈ C2(r1+r2)×r2 and V1,1, V1,4 ∈ C2(r1+r2)×(r1−r2), so that for k = 1, 2,

HVk = VkN2rk , V H
k JVk = πkP2rk .

Suppose that the structure inertia index associated with the eigenvalue 0 is IndS(0) =

(1,−1). Then we can determine different symplectic matrices U such thatHU = U
[
R D
0 −RH

]
.

First we use ρe of Lemma 15. Then U := [U1, U2] with U1 =
[

[V1,1, V1,2] V2,1

]
and

U2 =
[

[V1,3, V1,4](π1Pr1)−1, V2,2(π2Pr2)−1
]
.

Note that U1, which spans a Lagrangian invariant subspace of H, is composed from the
first halves of the chains of principal vectors corresponding to N2r1 and N2r2 respectively.

Using ϕ1 we get U1 =
[
V1,1

√
2

2
[V1,2 − V2,1, V1,3 − V2,2]

]
, which is composed from the

first r1 + r2 principal vectors corresponding to N2r1 and all principal vectors corresponding
to N2r2 . Using ϕ2 we get the same subspaces.

Clearly the two related Lagrangian invariant subspaces are different even for r1 = r2. A
similar example can be easily constructed if H has two odd size Jordan blocks.

We will now use the construction described in Lemma 15 to Corollary 17 to characterize
a condensed form that is near to a Hamiltonian triangular form, i.e., a matrix U so that
HU = UT in (5), with Λ(T ) = {iα} and T is near to a Hamiltonian triangular form.

Lemma 19 Let iα be an eigenvalue of the Hamiltonian matrix H. Then there exists a
matrix U = [U1, U2, U3] of full column rank, such that HU = UT , where U , T satisfy

UHJU =


0 0 I 0 0
0 0 0 I 0
−I 0 0 0 0
0 −I 0 0 0

0 0 0 0 K̂

 , T =


R1 0 D1 0 0
0 R2 0 D2 0
0 0 −RH

1 0 0
0 0 0 −RH

2 0
0 0 0 0 R3

 , (36)

with K̂ = diag(πd1P2t1+1, . . . , π
d
zP2tz+1) and R3 = diag(N2t1+1(iα), . . . , N2tz+1(iα)). The

matrices R1, R2, D1, D2 are substructured further as

R1 = diag(Nl1(iα), . . . , Nlq(iα)), D1 = diag(βe1el1e
H
l1
, . . . , βeqelqe

H
lq ),

R2 = diag(B1, . . . , Br), D2 = diag(C1, . . . , Cr),

where for k = 1, . . . , r

Bk =

 Nmk(iα) 0 −
√

2
2
emk

Nnk(iα) −
√

2
2
enk

iα

 ,
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Ck =

√
2

2
iβck

 0 0 emk
0 0 −enk
−eHmk eHnk 0

 .
Furthermore the structure inertia index also consists of three parts,

IndS(iα) = (IndeS(iα), IndcS(iα), InddS(iα)),

where

1. IndeS(iα) := (βe1, . . . , β
e
q) corresponds to even size Jordan blocks N2lk(iα), k = 1, . . . , q

which are contained in

[
R1 D1

0 −RH
1

]
;

2. IndcS(iα) := (βc1, . . . , β
c
r ;−βc1, . . . ,−βcr) corresponds to odd size Jordan blocks N2m1+1(iα),

. . . , N2mr+1(iα), N2n1+1(iα), . . . , N2nr+1(iα), which are coupled as pairs([
πkP2mk+1 0

0 ((−1)|mk−nk|+1πk)P2nk+1)

]
,

[
N2mk+1(iα) 0

0 N2nk+1(iα)

])

and contained in

[
R2 D2

0 −RH
2

]
;

3. InddS(iα) := (βd1 , . . . , β
d
z ) = ((−1)t1iπd1 , . . . , (−1)tz iπdz) with βd1 = . . . = βdz . This part

corresponds to the Jordan blocks in R3.

Proof. Let the columns of X span the invariant subspace of H corresponding to iα
and suppose that X satisfies (5) - (8). Applying Lemma 13 to K := XHJX we get a
transformation matrix Y , such that Y HKY has the form (25). We then perform further
transformations as in Lemma 15–Corollary 17 to the pairs of the form (πPr, Nr) as they
arise in (25).

For even r we use ρe defined in (28), which implies that there exists a matrix Xr, such
that

XH
r JXr = J, HXr = Xr(Z

−1
e Nr(iα)Ze).

For odd r we combine together as many pairs as possible of the form (π1P2r1+1, N2r1+1(iα))
together with (π2P2r2+1, N2r2+1(iα)), so that the corresponding β1 and β2 satisfy β1 = −β2.
Using ϕc in (32), there exists a matrix Xr1,r2 such that (note that the eigenvalues are same)

XH
r1,r2

JXr1,r2 = J, HXr1,r2 = Xr1,r2(Z−1
c diag(N2r1+1(iα), N2r2+1(iα))Zc).

Grouping the first half of the columns of all the Xr and Xr1,r2 together in U1 and the
second half of the columns in U2, using the same order and forming U3 by grouping all the
chains of principal vectors corresponding to the remaining odd size matrices (all having
the same sign β) we can form U := [U1, U2, U3] and we can easily verify (36).
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Remark 3 Note that the factorization (36) is in general not unique. If several structure
inertia indices for odd size Jordan blocks have opposite signs or if as in Lemma 18 two
matrix pairs with opposite signs of the indices are grouped then we may get a different
factorization.

The non-uniqueness implies that IndcS(iα) and InddS(iα) can be selected in many ways in
the sense that the elements can correspond to different Jordan blocks with different sizes.
However, by our construction all odd size pairs of indices with opposite sign are grouped
in IndcS(iα) and all remaining indices in InddS(iα). For a given iα, IndcS(iα) always contains
the same number of 1 and −1 and InddS(iα) contains elements with all 1 or −1. So the
number of elements and the signs of IndcS(iα) and InddS(iα) are uniquely determined.

4 Hamiltonian Jordan canonical forms

Using the technical results from the previous section, we are now ready to derive the
canonical forms for Hamiltonian matrices under symplectic similarity transformations.

Theorem 20 (Hamiltonian Jordan canonical form) Given a complex Hamiltonian ma-
trix H, there exists a complex symplectic matrix U such that

U−1HU =



Rr 0
Re De

Rc Dc

Rd Dd

0 −RH
r

0 −RH
e

0 −RH
c

Gd −RH
d


, (37)

where the different blocks have the following structures.
1. The blocks with index r are associated with the pairwise distinct eigenvalues with

nonzero real part λ1, . . . , λµ,−λ̄1, . . . ,−λ̄µ of H. The Jordan blocks associated with λk
(−λ̄k) have the form

Rr = diag(Rr
1, . . . , R

r
µ), Rr

k = diag(Ndk,1(λk), . . . , Ndk,pk
(λk)), k = 1, . . . , µ.

2. The blocks with indices e and c are associated with pairwise distinct purely imag-
inary eigenvalues iα1, . . . , iαν grouped together in such a way that the structure inertia
indices satisfy IndeS(iαk) = (βek,1, . . . , β

e
k,qk

), which are associated with even sized blocks and
IndcS(iαk) = (βck,1, . . . , β

c
k,rk

,−βck,1, . . . ,−βck,rk) which are associated with paired odd sized
blocks. These blocks have the following substructures.

Re = diag(Re
1, . . . , R

e
ν), Re

k = diag(Nlk,1(iαk), . . . , Nlk,qk
(iαk)),

De = diag(De
1, . . . , D

e
ν), De

k = diag(βek,1elk,1e
H
lk,1
, . . . , βek,qkelk,qke

H
lk,qk

),

Rc = diag(Rc
1, . . . , R

c
ν), Rc

k = diag(Bk,1, . . . , Bk,rk),

Dc = diag(Dc
1, . . . , D

c
ν), Dc

k = diag(Ck,1, . . . , Ck,rk),
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where for k = 1, . . . , ν and j = 1, . . . , rk we have

Bk,j =

 Nmk,j(iαk) 0 −
√

2
2
emk,j

0 Nnk,j(iαk) −
√

2
2
enk,j

0 0 iαk

 ,

Ck,j =

√
2

2
iβck,j

 0 0 emk,j
0 0 −enk,j

−eHmk,j eHnk,j 0

 .
3. The blocks with index d are associated with two disjoint sets of purely imaginary eigen-

values {iγ1, . . . , iγη}, {iδ1, . . . , iδη} ⊆ {iα1, . . . , iαν}, such that the corresponding structure
inertia indices are (βd1 , . . . , β

d
η), (−βd1 , . . . ,−βdη) with βd1 = . . . = βdη . The blocks have the

following substructures.

Rd = diag(Rd
1, . . . , R

d
η), Dd = diag(Dd

1, . . . , D
d
η), Gd = diag(Gd

1, . . . , G
d
η),

where for k = 1, . . . , η

Rd
k =

 Nsk(iγk) 0 −
√

2
2
esk

0 Ntk(iδk) −
√

2
2
etk

0 0 i
2
(γk + δk)

 ,

Dd
k =

√
2

2
iβdk

 0 0 esk
0 0 −etk
−eHsk eHtk −i

√
2

2
(γk − δk)

 ,

Gd
k = βdk

 0 0 0
0 0 0
0 0 −1

2
(γk − δk)

 .
Proof. Using Lemma 5, for each eigenvalue λk with nonzero real part, we can determine

a matrix Qk = [Qk,1, Qk,2], such that

QH
k JQk = J, HQk = Qk diag(Rr

k,−(Rr
k)
H),

where Rr
k is the Jordan canonical form associated with the eigenvalue λk.

Using Lemma 19, for each purely imaginary eigenvalue iαk, we can determine a matrix
Uk = [Uk,1, Uk,2, Uk,3], such that

UH
k JUk =

 0 I 0
−I 0 0

0 0 K̂k

 , HUk = Uk


Re
k 0 De

k 0 0
0 Rc

k 0 Dc
k 0

0 0 −(Re
k)
H 0 0

0 0 0 −(Rc
k)
H 0

0 0 0 0 Rk,3

 ,

has the structure as in (36). Moreover, in the structure inertia index InddS(iαk) (corre-
sponding to K̂k) all elements βk,1, . . . , βk,ζk have the same sign.
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Let X = [Q1, . . . , Qµ, U1, . . . , Uν ]. Since the columns of each of the blocks span invariant
subspaces of distinct eigenvalues, X is nonsingular, and hence Ind(XHJX) has the same
number of elements i and −i.

By Lemmas 5, 15 and 16, each of the inertias Ind(QH
k JQk), Ind([Uk,1, Uk,2]HJ [Uk,1, Uk,2])

contains the same numbers of elements i and −i. Also for each Uk,3, Ind(UH
k,3JUk,3) contains

the same numbers of elements i and −i and the additional elements are iβk,1,. . . , iβk,ζk .
Note that

XHJX = diag(Jnr1 , . . . , Jnrµ ; Jne1 , Jnc1 , K̂1, . . . , Jneν , Jncν , K̂ν),

where nrk =
∑pk
j=1 dk,j, n

e
k =

∑qk
j=k lk,j and nck =

∑rk
j=1(mk,j + nk,j + 1), for k = 1, . . . , ν.

Taking all the iβk,j, j = 1, . . . , ζk, k = 1, . . . , ν together, there must be an equal number

of elements i and −i. This implies that we can group all the pairs (K̂k, Rk,3) in couples of
two with opposite structure inertia indices. Applying ϕc as in Lemma 16 to these couples
we can determine matrices Wk = [Wk,1,Wk,2], such that

WH
k JWk = J, HWk = Wk

[
Rd
k Dd

k

Gd
k −(Rd

k)
H

]
.

Partition Uk,1 = [Vk,1, Vk,2], Uk,2 = [Ṽk,1, Ṽk,2] in columns according to the block sizes of
Re
k and Rc

k, respectively and set

U = [Q1,Ve1 ,Vc1,W1,Q2,Ve2 ,Vc2,W2],

where

Q1 = [Q1,1, . . . , Qµ,1], Ve1 = [V1,1, . . . , Vν,1],

Vc1 = [Ṽ1,1, . . . , Ṽν,1], W1 = [W1,1, . . . ,Wη,1],

Q2 = [Q1,2, . . . , Qµ,2], Ve2 = [V1,2, . . . , Vν,2],

Vc = [Ṽ1,2, . . . , Ṽν,2], W2 = [W1,2, . . . ,Wη,2].

Then by Proposition 2, U is symplectic and U−1HU has the form (37).
For a real Hamiltonian matrix H, we would like to have a real canonical form. As for the

classical Jordan canonical form, we combine eigenvectors and principals vectors associated
with complex conjugate pairs. Introducing the matrices

Ψ2r = [e1, er+1, e2, er+2, . . . , er, e2r], Φ2r = diag(Φ2,Φ2, . . . ,Φ2︸ ︷︷ ︸
r

), (38)

where

Φ2 =

√
2

2

[
1 −i
1 i

]
,

we have the following trivial lemma.

Lemma 21
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1. Let A = [ai,j] be a complex r × r matrix. Then

(Ψ2rΦ2r)
H

[
A 0
0 Ā

]
(Ψ2rΦ2r) := [Bi,j],

is a real block matrix with 2× 2 blocks

Bi,j =

[
Re aij, Im ai,j
− Im ai,j Re ai,j

]
, i, j = 1, . . . , r.

2. If U is a complex n× r matrix, then [U, Ū ]Ψ2rΦ2r is real.

To simplify the notation in the real Jordan canonical form, we set in the following

Nr(Λ) =


Λ I 0

. . . . . .
. . . I

0 Λ

 , (39)

where either Λ is a real scalar and the identity matrices have size 1× 1 or Λ =

[
a b
−b a

]
with a, b real and the identity matrices have size 2 × 2. For the latter case we have
Nr(Λ) ∈ C2r×2r.

Theorem 22 (Real Hamiltonian Jordan canonical form) Given a real Hamiltonian
matrix H, there exists a real symplectic matrix U such that

U−1HU =



Rr 0
Re De

Rc Dc

R0 D0

Rd Dd

0 −RT
r

0 −RT
e

0 −RT
c

0 −RT
0

Gd −RT
d



, (40)

where the different blocks have the following structures.
1. The blocks with index r are associated with the pairwise distinct eigenvalues with

nonzero real part. The diagonal blocks have the form Λk, where either Λk is a nonzero real

number, or Λk =

[
ak bk
−bk ak

]
, ak, bk real and nonzero. In the first case Λk and −Λk are

both nonzero real eigenvalues of H, with sizes of Jordan blocks dk,1, . . . , dk,pk . In the second

26



case λk = ak + ibk, together with λ̄k, −λ̄k,−λk, are the eigenvalues of H and each has the
same sizes of Jordan blocks dk,1, . . . , dk,pk . We have

Rr = diag(Rr
1, . . . , R

r
µ),

Rr
k = diag(Ndk,1(Λk), . . . , Ndk,pk

(Λk)), k = 1, . . . , µ.

2. The blocks with indices e, c, d are associated with the pairwise distinct, nonzero, purely
imaginary eigenvalues iαk, −iαk, k = 1, . . . , ν. For each k = 1, . . . , ν the associated
structure inertia indices are

IndeS(iαk) = (βek,1, . . . , β
e
k,qk

),

IndcS(iαk) = (βck,1, . . . , β
c
k,rk

,−βck,1, . . . ,−βck,rk),
InddS(iαk) = (βdk , . . . , β

d
k︸ ︷︷ ︸

sk

),

IndeS(−iαk) = (βek,1, . . . , β
e
k,qk

),

IndcS(−iαk) = (−βck,1, . . . ,−βck,rk , β
c
k,1, . . . , β

c
k,rk

),

InddS(−iαk) = (−βdk , . . . ,−βdk︸ ︷︷ ︸
sk

),

and (with the notation Σk =

[
0 αk
−αk 0

]
, αk 6= 0,) for k = 1, . . . , ν the substructures are

Re = diag(Re
1, . . . , R

e
ν), De = diag(De

1, . . . , D
e
ν),

Re
k = diag(Nlk,1(Σk), . . . , Nlk,qk

(Σk)),

De
k = diag(βek,1

[
0 0
0 I2

]
2lk,1×2lk,1

, . . . , βek,qk

[
0 0
0 I2

]
2lk,qk×2lk,qk

),

Rc = diag(Rc
1, . . . , R

c
ν), Dc = diag(Dc

1, . . . , D
c
ν),

Rc
k = diag(Bk,1, . . . , Bk,rk), Dc

k = diag(Ck,1, . . . , Ck,rk),

Rd = diag(Rd
1, . . . , R

d
ν), Dd = diag(Dd

1, . . . , D
d
ν), Gd = diag(Gd

1, . . . , G
d
ν),

Rd
k = diag(R̃k,1, . . . , R̃k,sk), D

d
k = diag(D̃k,1, . . . , D̃k,sk), G

d
k = diag(G̃k,1, . . . , G̃k,sk),

where for k = 1, . . . , ν and j = 1, . . . , rk

Bk,j =


Nmk,j(Σk) 0

[
0

−
√

2
2
I2

]

0 Nnk,j(Σk)

[
0

−
√

2
2
I2

]
0 0 Σk

 ,
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Ck,j =

√
2

2
βck,j


0 0

[
0
J1

]

0 0

[
0
−J1

]
[

0 −J1

] [
0 J1

]
0

 ,

and for j = 1, . . . , sk

R̃k,j =

[
Ntk,j(Σk) −e2tk,j−1

0 0

]
, D̃k,j = βdk

[
0 −e2tk,j

−eT2tk,j αk

]
,

G̃k,j = βdk

[
0 0
0 −αk

]
.

3. The blocks with index 0 are associated with the eigenvalue zero, which has the structure
inertia indices IndeS(0) = (βe1, . . . , β

e
q0

) and IndcS(0) = (βc0, . . . , β
c
0︸ ︷︷ ︸

r0

,−βc0, . . . ,−βc0︸ ︷︷ ︸
r0

). The

substructure of the blocks is

R0 = diag(Re
0, R

c
0), D0 = diag(De

0, D
c
0),

Re
0 = diag(Nu1(0), . . . , Nuq0

(0)), De
0 = diag(βe1eu1e

T
u1
, . . . , βeq0euq0e

T
uq0

),

Rc
0 = diag(

[
Nv1(02) −e2v1−1

0 0

]
, . . . ,

[
Nvr0

(02) −e2vr0−1

0 0

]
),

Dc
0 = −βc0 diag(

[
0 e2v1

eT2v1
0

]
, . . . ,

[
0 e2vr0

eT2vr0 0

]
).

Proof. For every eigenvalue λk := ak + ibk with nonzero real part, by Lemma 5, there
exists a matrix Ûk = [Ûk,1, Ûk,2], such that

HÛk = Ûk

[
R̂r
k 0

0 −(R̂r
k)
H

]
:= ÛkR̂k, ÛH

k JÛk = J.

If bk = 0, i.e., λk is real, Lemma 5 yields that Ûk can be chosen real and we then set
Uk := [Uk,1, Uk,2] := [Ûk,1, Ûk,2]. If bk 6= 0, since H is real, we also have

H ¯̂
Uk =

¯̂
Uk

¯̂
Rk, ÛT

k J
¯̂
Uk = J. (41)

Set Ũk = [Ûk,1,
¯̂
Uk,1, Ûk,2,

¯̂
Uk,2]. Then

HŨk = Ũk diag(

[
R̂r
k 0

0
¯̂
Rr

k

]
,

[
−(R̂r

k)
H 0

0 −(R̂r
k)
T

]
) =: ŨkR̃k.

By Lemma 21, there exists Z = diag(ΨΦ,ΨΦ) of appropriate size, such that

Uk := [Uk,1, Uk,2] = ŨkZ
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and Rk := Z−1R̃kZ =:

[
Rr
k 0

0 −(Rr
k)
T

]
are both real and Rr

k is in the block form described

in (40). It remains to prove that UT
k JUk = J . From (41) we get that the columns of JH

¯̂
Uk,1,

JH
¯̂
Uk,2 form the left invariant subspaces corresponding to −λk, and λ̄k, respectively. Since

the four eigenvalues λk, λ̄k, −λk and −λ̄k are pairwise distinct, we get ÛT
k,jJÛk,l = 0 for

j, l = 1, 2, i.e., ÛT
k JÛk = 0. Using this fact and that ÛH

k JÛk = J , we obtain ŨH
k JŨk = J .

Note that Z is symplectic and since Uk is real, we obtain UT
k JUk = J . Setting

U := [U1, U2] = [U1,1, . . . , Uµ,1, U1,2, . . . , Uµ,2],

we have that U is real, UTJU = J and HU = U

[
Rr 0
0 −RT

r

]
.

Since H is real, it follows for the blocks in

[
Re De

0 −RT
e

]
and

[
Rc Dc

0 −RT
c

]
correspond-

ing to the nonzero purely imaginary eigenvalues iα1, . . . , iαν that also −iα1, . . . ,−iαν are
eigenvalues of H. For any block associated with an eigenvalue iαk let Vk be such that

V H
k JVk = J, HVk = Vk

[
R̂k D̂k

0 −R̂H
k

]
= VkR̂,

where R̂ contains the Jordan blocks corresponding to IndeS(iαk) and IndcS(iαk). Conjugat-
ing this equation we obtain the analogous equation for −iα. Using again Lemma 21, as
before, we obtain a real matrix V = [V1, V2], such that V TJV = J and

HV = V


Re 0 De 0
0 Rc 0 Dc

0 0 −RT
e 0

0 0 0 −RT
c

 .

The next step will be the construction of a real matrix W = [W1,W2], such that

W TJW = J and HW = W

[
Rd Dd

Gd −RT
d

]
. Unlike the complex case we have some re-

strictions on how to group the matrix pairs, which affects the choice of the couples cor-
responding to IndcS(iα). Note that since H is real, if (πP2r+1, N2r+1(iα)) is a matrix pair
with the corresponding index (−1)riπ = β ∈ InddS(iα), then (π̄P2r+1, N2r+1(−iα)) is a
matrix pair with −β ∈ InddS(−iα). Let X = [X1, X2, X3], where X1, X3 have r columns
and X2 is a vector, such that HX = XN2r+1(iα) and XHJX = πP2r+1. Set X̂ = [X, X̄],
Pc := diag(πP2r+1, π̄P2r+1), Nc := diag(N2r+1(iα), N2r+1(−iα)). Then by Lemma 16

ϕc(Pc, Nc) =: (ZH
c PcZc, Z

−1
c NcZc)

29



=


J2r+1,



Nr(iα) 0 −
√

2
2
er 0 0 i

√
2

2
βer

0 Nr(−iα) −
√

2
2
er 0 0 −i

√
2

2
βer

0 0 0 −i
√

2
2
βeHr i

√
2

2
βeHr βα

0 0 0 −Nr(iα)H 0 0
0 0 0 0 −Nr(−iα)H 0

0 0 −βα
√

2
2
eHr

√
2

2
eHr 0




,

and
X̂Zc = [X1, X̄1,−

√
2 ReX2, Y3, Ȳ3,−β

√
2 ImX2],

where Y3 = X3(πPr)
−1. Let Z = diag(Ψ2rΦ2r, 1,Ψ2rΦ2r, 1) and Σ =

[
0 α
−α 0

]
. By

Lemma 21 we have that ZHZH
c PcZcZ = J and

Z−1Z−1
c NcZcZ =


Nr(Σ) −e2r−1 0 −βe2r

0 0 −βeT2r βα
0 0 −Nr(Σ)T 0
0 −βα eT2r−1 0


is real. Furthermore X̃ := X̂ZcZ is also real and X̃TJX̃ = J . By properly arranging the
columns we obtain a real matrix W = [W1,W2] such that W TJW = J and

HW = W

[
Rd Dd

Gd −RT
d

]
.

Note that this construction is also valid for α = 0, since ZH
c P̂cZc = J implies that the

columns of X and X̄ are linearly independent, i.e., if H has a Jordan block N2r+1(0) with a
chain of principal vectors given by the columns of the matrix X, it must have an additional
Jordan block of the same size with a chain of principal vectors given by the columns X̄.

For even size Jordan blocks corresponding to the eigenvalue 0 we still need to find a real

matrix V0 with V T
0 JV0 = J and HV0 = V0

[
Re

0 De
0

0 −(Re
0)T

]
. Such a matrix is obtained via

Lemma 13 and ρe in Lemma 15 by initially choosing a real chains of principal vectors. Hence

there also exists a matrix V0 = [V 0
1 , V

0
2 ], such that V T

0 JV0 = J andHV0 = V0

[
R0 D0

0 −RT
0

]
.

Setting U = [U1, V1, V
0

1 ,W1, U2, V2, V
0

2 ,W2], it follows by Proposition 2 that U is real
symplectic and we have obtained (40).

Note that for a given Hamiltonian matrix not all types of blocks associated with a purely
imaginary have to appear in the forms (37) and (40). We clearly allow all the occurring
blocks to have dimension zero in which case the associated structure inertia index is void,
too.

Remark 4 Usually the terminology canonical form refers to a form which displays all
the invariants of an equivalence relation, is essentially unique, and gives the most simple
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representative of every equivalence class. A typical example is the Jordan canonical form
which is the canonical form under similarity. If we use plain similarity then the classical
Jordan canonical form is also the canonical form for Hamiltonian matrices. But it usually
does not represent a Hamiltonian matrix again. Thus we have derived the forms (37) and
(40) which are condensed forms under symplectic similarity. They are more complicated
than the classical Jordan canonical forms and they are not really canonical in the usual
sense, since there is some nonuniqueness in the combination of blocks in the construction
of those parts with index c and d. However, all the eigenvalues, the number of blocks and
the block sizes and also the structure inertia indices are displayed. But, since the matrix is
not block diagonal, not all eigenvectores and principal vectors are displayed directly. From
every classical Jordan block only half of the principal vectors can be obtained directly from
the transformation matrix, but the remaining ones are easily constructed. We nevertheless
call (37) and (40) Hamiltonian Jordan canonical forms.

Remark 5 The eigenvalue 0 leads to some further nonuniqueness for a real Hamiltonian
matrix. There are many different ways to couple the odd size Jordan blocks corresponding
to IndcS(0). When coming from the complex case and treating 0 as a complex purely
imaginary eigenvalue, we have obtained the real form from a coupling of matrix pairs
(πP2r+1, N2r+1) and (−πP2r+1, N2r+1). But we can also use different combinations and
the transformations ϕ1 or ϕ2 to get a real form. Using ϕ1 (or ϕ2) for above coupled
matrix pairs the final Hamiltonian structure would be diag(N2vk+1,−NT

2vk+1) which looks
somewhat simpler than what we have given in the Theorem.

As we have already discussed in the introduction we are interested in Hamiltonian trian-
gular forms under symplectic similarity transformations, since from these we can read off
the eigenvalues and the associated Lagrangian invariant subspaces. We will now present
necessary and sufficient conditions for the existence of Hamiltonian triangular forms. In
some situations, where such triangular forms do not exist, there exist Hamiltonian trian-
gular forms under nonsymplectic similarity transformations. We will also give necessary
and sufficient conditions for this case. Our first two results give necessary and sufficient
conditions for the existence of Hamiltonian triangular forms. The equivalence of parts ii)
and iii) in the following two theorems was first stated and proved in [17]. Here they are
obtained as simple corollaries of our canonical forms.

Theorem 23 (Hamiltonian triangular Jordan canonical form)
Let H be a complex Hamiltonian matrix, let iα1, . . . , iαν be its pairwise disjoint purely

imaginary eigenvalues and let the columns of Uk, k = 1, . . . , ν, span the associated invariant
subspaces. Then the following are equivalent.

i) There exists a symplectic matrix U , such that U−1HU is Hamiltonian triangular.

ii) There exists a unitary symplectic matrix U , such that UHHU is Hamiltonian trian-
gular.

iii) UH
k JUk is congruent to J for all k = 1, . . . , ν.
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iv) InddS(iαk) is void for all k = 1, . . . , ν.

Moreover, if any of the equivalent conditions holds, then the symplectic matrix U can be
chosen such that U−1HU is in Hamiltonian triangular Jordan canonical form

Rr 0 0 0 0 0
0 Re 0 0 De 0
0 0 Rc 0 0 Dc

0 0 0 −RH
r 0 0

0 0 0 0 −RH
e 0

0 0 0 0 0 −RH
c


, (42)

where the blocks are defined as in (37).

Proof. i) ⇒ ii) follows directly from Lemma 3. ii) ⇒ iii) follows from Proposition 3.
iii) ⇒ iv) follows from the relation between the inertia index of UH

k JUk and the structure
inertia index IndS(iαk) discussed in the proof of Theorem 20. iv) ⇒ i) follows directly
from Theorem 20.

We also have the analogous result for the real case.

Theorem 24 (Real Hamiltonian triangular Jordan canonical form)
Let H be a real Hamiltonian matrix, let iα1, . . . , iαν be its pairwise distinct nonzero purely

imaginary eigenvalues and let Uk, k = 1, . . . , ν, be the associated invariant subspaces. Then
the following are equivalent.

i) There exists a real symplectic matrix U such that U−1HU is real Hamiltonian trian-
gular.

ii) There exists a real orthogonal symplectic matrix U such that UTHU is real Hamilto-
nian triangular.

iii) UH
k JUk is congruent to J for all k = 1, . . . , ν.

iv) InddS(iαk) is void for all k = 1, . . . , ν.

Moreover, if any of the equivalent conditions holds, then the real symplectic matrix U can
be chosen so that U−1HU is in real Hamiltonian triangular Jordan canonical form

Rr 0 0 0 0 0 0 0
0 Re 0 0 0 De 0 0
0 0 Rc 0 0 0 Dc 0
0 0 0 R0 0 0 0 D0

0 0 0 0 −RT
r 0 0 0

0 0 0 0 0 −RT
e 0 0

0 0 0 0 0 0 −RT
c 0

0 0 0 0 0 0 0 −RT
0


, (43)

where the blocks are defined as in (40).
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Proof. The proof is analogous to the proof Theorem 23, using Lemma 3, Proposition 3
and Theorem 22. For ii) ⇒ iii) we observe that H is orthogonal symplectically similar
to a real Hamiltonian triangular form hence it is also unitary symplectically similar to a
complex Hamiltonian triangular form.

Remark 6 Using the properties of the inertia indices, conditions iii) and iv) in Theorem 23
can be relaxed to hold for ν−1 purely imaginary eigenvalues. Using the fact that eigenvalues
appear in complex conjugate pairs conditions iii) and iv) in Theorem 24 can be relaxed to
hold only for half the number of the nonzero purely imaginary eigenvalues.

Similar remarks hold for Hamiltonian and symplectic pencils below.

We have shown that a Hamiltonian matrix is symplectically similar to Hamiltonian tri-
angular form if and only if InddS(iα) is void for all purely imaginary eigenvalues. But there
are Hamiltonian matrices for which this structure inertia index is not void and there exists
a nonsymplectic similarity transformations to Hamiltonian triangular form. A simple class
of such matrices are the matrices J2p. Unitary symplectic similarity transformations do
not change these matrices. (Hence J2p has no Hamiltonian triangular form under symplec-
tic similarity transformations.) But J2p is similar to a Hamiltonian triangular canonical
form under nonsymplectic transformations. As an example set V = [e1, e3, e2, e4], then

V HJ2V = diag(

[
0 1
−1 0

]
,

[
0 1
−1 0

]
) is Hamiltonian triangular.

In general we have the following necessary and sufficient condition.

Theorem 25 A Hamiltonian matrix H is similar to a Hamiltonian triangular Jordan
canonical form if and only if the algebraic multiplicities of all purely imaginary eigenvalues
are even.

If H is real, then it is similar to a real Hamiltonian triangular Jordan canonical form
if and only if the algebraic multiplicities of all purely imaginary eigenvalues with positive
imaginary parts are even.

Proof. We prove only the complex case. The real case can be obtained from the complex
case by using the same transformations as in the proof of Theorem 22.

The necessity follows directly from the eigenvalue properties of a Hamiltonian triangular
matrix listed in Table 1. So we only need to prove the sufficiency. An eigenvalue has even
algebraic multiplicity if and only if it has an even number of odd size Jordan blocks. So
for a purely imaginary eigenvalue iα its even size Jordan blocks can be transformed to
a Hamiltonian triangular forms with ρe, and its odd size Jordan blocks can be pairwise
coupled and then be transformed to Hamiltonian triangular forms with ϕc or ϕ1, ϕ2. For the
eigenvalues with nonzero real part, by Lemma 5, we always have the Hamiltonian triangular
form. With an appropriate arrangement of columns as in the proof of Theorem 20 we obtain
the Hamiltonian triangular Jordan canonical form.

Note that a similar trick was used in [17] to derive Hamiltonian triangular forms.
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5 Hamiltonian Kronecker canonical forms

In this section we generalize the results for Hamiltonian Jordan canonical forms to the
case of Hamiltonian pencils. We always assume that the pencils we consider are regu-
lar. A treatment of singular pencils is currently under investigation and is not possible in
this already very long paper. Since the pencils are assumed to be regular, the appropriate
canonical forms should be called Hamiltonian Weierstraß canonical forms, since Weierstraß
[24] was the first to derive the canonical forms for regular pencils. The form for general
pencils was developed first by Kronecker [13]. Nevertheless we will call our form Hamilto-
nian Kronecker canonical form in order to avoid confusion when generalizing these results
at a later stage to singular Hamiltonian pencils.

As shown in Table 2 for a regular Hamiltonian pencil Mh − λLh we have similar sym-
metries in the finite spectrum. So most of the analysis in this section has to be devoted to
the part of the canonical form associated with infinite eigenvalues.

Let us first recall the Weierstraß canonical form for regular pencils, e.g. [10]. For an
arbitrary regular matrix pencilM− λL, there exist nonsingular matrices X , Y , such that
[10]

Y(M− λL)X =

[
H 0
0 I

]
− λ

[
I 0
0 N

]
,

where H is in Jordan canonical form and is associated with the finite eigenvalues ofM−λL.
N is a nilpotent matrix in Jordan canonical form and associated with the eigenvalue infinity.
If M− λL is Hamiltonian, i.e., MJLH = −LJMH , then we obtain[

H 0
0 I

]
K
[
I 0
0 NH

]
= −

[
I 0
0 N

]
K
[
HH 0
0 I

]
,

where K = X−1JX−H . If we partition K conformally as a block matrix

[
K1,1 K1,2

K2,1 K2,2

]
,

then we have

HK1,1 +K1,1H
H = 0, HK1,2N

H +K1,2 = 0, K2,2N
H +NK2,2 = 0.

Since N is nilpotent, from the second equation we have K1,2 = 0, see e.g., [5]. Since K
is skew Hermitian we obtain that it is block diagonal. If we partition X conformally as
X = [X1, X2] then

MX1 = LX1H, MX2N = LX2, (44)

i.e., rangeX1 and rangeX2 are the deflating subspaces corresponding to the finite and
infinite eigenvalues, respectively. Moreover, since XHJX = −K−1 = − diag(K−1

1,1 , K
−1
2,2),

we have

(XH
1 JX1)H +HH(XH

1 JX1) = 0, (XH
2 JX2)N +NH(XH

2 JX2) = 0.

These two equations have the same form as (9). It follows that for the eigenvalue infinity,
we also have a structure inertia index IndS(∞), which can be analogously divided into
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three parts

IndeS(∞) = (β∞,e1 , . . . , β∞,eτ ),

IndcS(∞) = (β∞,c1 , . . . , β∞,cφ ;−β∞,c1 , . . . ,−β∞,cφ ),

InddS(∞) = (β∞,d1 , . . . , β∞,dψ ), β∞,d1 = . . . = β∞,dψ (= ±1).

The analysis for the eigenvalue infinity can be carried out analogous to the analysis for the
purely imaginary finite eigenvalues. We can choose an appropriate matrix X2, such that
XH

2 JX2 is block diagonal with diagonal blocks πPr corresponding to a nilpotent matrix
Nr, which is one of the blocks in N .

As in matrix case there is no problem to transform the matrix pairs (πPr, Nr) correspond-
ing to the indices in IndeS(∞) and IndcS(∞) to appropriate Hamiltonian triangular forms.
The difficulty arises for the pairs associated with indices in InddS(∞). In order to obtain
a Hamiltonian canonical form, these pairs have to be combined with pairs associated with
finite eigenvalues. Since Ind(XHJX ) has the same number of elements i and −i and since
Ind(XHJX ) consists of the elements of Ind(XH

1 JX1) followed by those of Ind(XH
2 JX2),

such a coupling is always possible.
For finite eigenvalues we do the reductions in the same way as in the matrix case. The de-

flating subspaces corresponding to the eigenvalues with nonzero real parts are still isotropic.
So the matrix pairs that we couple with the pairs associated with the eigenvalue infinity
must have purely imaginary eigenvalues.

It follows that we obtain the following Hamiltonian Kronecker canonical form for a regular
complex Hamiltonian pencil.

Theorem 26 (Hamiltonian Kronecker canonical form)
Given a regular complex Hamiltonian pencil Mh − λLh. Then there exist a nonsingular

matrix Y and a symplectic matrix U such that

Y(Mh − λLh)U =

[
M11 M12

M21 M22

]
− λ

[
L11 L12

L21 L22

]
, (45)

with

M11 − λL11 =



Rr − λI
Re − λI

Rc − λI
Rd − λI

RM − λRL

I − λR∞


,

M21 − λL21 =



0
0

0
Gd

GM − λGL

0


,
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M12 − λL12 =



0
De

Dc

Dd

DM − λDL

−λD∞


,

M22 − λL22 =



−RH
r − λI

−RH
e − λI

−RH
c − λI

−RH
d − λI

HM − λHL

I + λRH
∞


,

and where Rr, Re, De, Rc, Dc, Rd, Dd, Gd are as in (37). The other blocks have the
structures

RM = diag(RM
1 , . . . , R

M
ψ ), DM = diag(DM

1 , . . . , D
M
ψ ),

HM = diag(HM
1 , . . . , HM

ψ ), GM = diag(GM
1 , . . . , G

M
ψ ),

RL = diag(RL
1 , . . . , R

L
ψ), DL = diag(DL

1 , . . . , D
L
ψ),

HL = diag(HL
1 , . . . , H

L
ψ ), GL = diag(GL

1 , . . . , G
L
ψ),

where for k = 1, . . . , ψ

RM
k =

 Nuk(iξk) 0 −
√

2
2
euk

Ivk 0
1
2
(iξk + 1)

 , DM
k =

√
2

2
iβ∞d

 0 0 −euk
0 0 0

eHuk 0
√

2
2

(iξk − 1)

 ,

HM
k =

 −Nuk(iξk)
H

0 Ivk√
2

2
eHuk 0 1

2
(iξk + 1)

 , GM
k = iβ∞d

 0 0 0
0 0 0
0 0 −1

2
(iξk − 1)

 ,

RL
k =

 Iuk 0 0

Nvk −
√

2
2
evk

1
2

 , DL
k =

√
2

2
iβ∞d

 0 0 0
0 0 evk
0 −eHvk

√
2

2

 ,

HL
k =

 Iuk
0 −NH

vk

0
√

2
2
eHvk

1
2

 , GL
k = iβ∞d

 0 0 0
0 0 0
0 0 −1

2

 .
The remaining blocks have the structure

R∞ = diag(R∞,e, R∞,c), D∞ = diag(D∞,e, D∞,c);

R∞,e = diag(Nx1 , . . . , Nxτ ), D∞,e = diag(β∞,e1 ex1e
H
x1
, . . . , β∞,eτ exτ e

H
xτ ),

R∞,c = diag(B∞1 , . . . , B
∞
φ ), D∞,c = diag(C∞1 , . . . , C

∞
φ ),
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where for k = 1, . . . , φ

B∞k =

 Nyk 0 −
√

2
2
eyk

Nzk −
√

2
2
ezk

0

 , C∞k = i

√
2

2
β∞,ck

 0 0 eyk
0 0 −ezk
−eHyk eHzk 0

 .
We see that Mh − λLh has τ Kronecker blocks associated with the eigenvalue infinity cor-
responding to the structure inertia indices in IndeS(∞) = (β∞,e1 , . . . , β∞,eτ ). It has 2φ Kro-
necker blocks corresponding to the indices in IndcS(∞) = (β∞,c1 , . . . , β∞,cφ ,−β∞,c1 , . . . ,−β∞,cφ );

and ψ blocks corresponding to the indices in InddS(∞) = (β∞d , . . . , β
∞
d︸ ︷︷ ︸

ψ

). The remaining

blocks are associated with ψ purely imaginary eigenvalues iξ1, . . . , iξψ ∈ {iα1, . . . , iαν}.
The associated matrix pair has the corresponding index in InddS(iξk) and is the part that is

left over after the coupling in

[
Rd Dd

Gd −RH
d

]
.

Proof. The analysis that we have given already covers most of the blocks. It remains to
show how we get the blocks in[

RM DM

GM HM

]
− λ

[
RL DL

GL HL

]
.

Suppose that (πP2v+1, N2v+1) is a matrix pair with the corresponding structure inertia index
β ∈ InddS(∞). By our analysis there exists a matrix pair (π1P2u+1, N2u+1(iα)) associated
with an index of opposite sign. For an infinite eigenvalue in the pencil case the pairs
are actually (πP2v+1, I − λN2v+1) and (π1P2u+1, N2u+1(iα) − λI). A transformation on
the direct sum of these two pairs is equivalent to a congruence transformation on Pc =
diag(π1P2u+1, πP2v+1) and an equivalence transformation on the pencil

Nc − λLc := diag(N2u+1(iα), I)− λ diag(I,N2v+1).

If we use the transformation ϕc, then we get that ZH
c PcZc = J , Z−1

c (Nc− λLc)Zc is in the
desired form.

Remark 7 As we see from Theorem 26 the canonical form has several parts, a Hamiltonian
triangular part associated with finite eigenvalues, a Hamiltonian part, also associated with
finite eigenvalues, that cannot be made triangular by transformations with symplectic U
and nonsingular Y , a Hamiltonian triangular part associated with the eigenvalue infinity[
R∞ D∞
0 −RH

∞

]
and one part which results from a mixture of blocks associated with finite

and infinite eigenvalues.

For a real Hamiltonian pencil the real Hamiltonian Kronecker canonical form is simpler,
since there is no part resulting from mixing blocks to finite and infinite eigenvalues. The
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reason is that in the real caseX2 as in (44), the basis of the deflating subspace corresponding
to eigenvalue infinity can be chosen real, i.e., Ind(XH

2 JX2) has an equal number of elements
i and −i. So we can use the same trick that we have used to deal with zero eigenvalues
in the matrix case in the proof of Theorem 22 to get the triangular block for the infinite
eigenvalue.

Theorem 27 (Real Hamiltonian Kronecker canonical form)
Given a real regular Hamiltonian pencil Mh − λLh. Then there exist a real nonsingular

matrix Y and a real symplectic matrix U , such that

Y(Mh − λLh)U =

[
M11 M12

M21 M22

]
− λ

[
L11 L12

L21 L22

]
, (46)

with

M11 − λL11 =



Rr − λI
Re − λI

Rc − λI
R0 − λI

Rd − λI
I − λR∞


,

M21 − λL21 =



0
0

0
0

Gd

0


,

M12 − λL12 =



0
De

Dc

D0

Dd

−λD∞


,

M22 − λL22 =



−RT
r − λI

−RT
e − λI

−RT
c − λI

−RT
0 − λI

−RT
d − λI

I + λRT
∞


,

and where Rr, Re, De, Rc, Dc, R0, D0, Rd, Dd, Gd are as in (40). The blocks associated
with the eigenvalue infinity are

R∞ = diag(R∞,e, R∞,c), D∞ = diag(D∞,e, D∞,c),
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R∞,e = diag(Nx1 , . . . , Nxτ ), D∞,e = diag(β∞,e1 ex1e
T
x1
, . . . β∞,eτ exτ e

T
xτ ),

R∞,c = diag(B∞1 , . . . , B
∞
φ ), D∞,c = diag(C∞1 , . . . , C

∞
φ ),

where for k = 1, . . . , φ

B∞k =

 Nyk(

[
0 0
0 0

]
) −e2yk−1

0 0

 , C∞k = −β∞c

[
0 e2yk

eT2yk 0

]
.

The subpencil I − λ
[
R∞ D∞
0 −RT

∞

]
is the canonical form corresponding to the eigenvalue

infinity. IndeS(∞) = (β∞,e1 , . . . , β∞,eτ ) is the structure inertia index for even size Kronecker
blocks and IndcS(∞) = (β∞c , . . . , β

∞
c︸ ︷︷ ︸

φ

;−β∞c , . . . ,−β∞c︸ ︷︷ ︸
φ

), is the structure inertia index for odd

size Kronecker blocks. The index InddS(∞) is void.

Proof. The proof is obtained analogous to that of Theorem 22.
Analogous to the matrix case we also have necessary and sufficient conditions for the

existence of a Hamiltonian triangular Kronecker canonical form. To obtain such a form we
need the following lemma.

Lemma 28 Given a regular Hamiltonian pencilMh−λLh. Let iα1, . . . , iαν be its pairwise
distinct purely imaginary eigenvalues and let the columns of Uk span the corresponding
deflating subspaces. Let furthermore the columns of U∞ span the deflating subspace to the
eigenvalue ∞. Suppose there exists a nonsingular matrix Ŷ and a symplectic matrix Û
such that Ŷ(Mh − λLh)Û is Hamiltonian triangular. Then for all k = 1, . . . , ν, UH

k JUk is
congruent to J , and UH

∞JU∞ is also congruent to J .

Proof. By hypothesis there is a nonsingular matrix Ŷ and a symplectic matrix Û such
that

Ŷ(Mh − λLh)Û =

[
M1 M3

0 M2

]
− λ

[
L1 L3

0 L2

]
is in Hamiltonian triangular form. Since Mh − λLh is regular, M1 − λL1 and M2 − λL2

are both regular. For the first subpencil there exist nonsingular Y1 and Z1 so that

Y1(M1 − λL1)Z1 =

[
A 0
0 I

]
− λ

[
I 0
0 B

]

is in Kronecker canonical form. Let X1 be nonsingular, such that X1M2Z
−H
1 is lower

triangular, (this is a QL factorization, see [11]), and set Y1 = diag(Y1, X1)Ŷ , U1 =
Û diag(Z1, Z

−H
1 ). Then U1 is symplectic and

Y1(M− λL)U1 =


A 0 M1,3 M1,4

0 I M2,3 M2,4

0 0 M3,3 0
0 0 M4,3 M4,4

− λ

I 0 L1,3 L1,4

0 B L2,3 L2,4

0 0 L3,3 L3,4

0 0 L4,3 L4,4

 .
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Using the Hamiltonian property, we get[
A 0
0 I

] [
L3,3 L3,4

L4,3 L4,4

]H
+

[
I 0
0 B

] [
M3,3 0
M4,3 M4,4

]H
= 0.

Comparing the blocks on both sides, we have L3,4 = 0, and

ALH3,3 +MH
3,3 = 0, LH4,4 +BMH

4,4 = 0, ALH4,3 +MH
4,3 = 0. (47)

By the regularity of the pencil L3,3, M4,4 must be nonsingular. Set

Y2 = diag(I,

[
L−1

3,3 0
−M−1

4,4L4,3L
−1
3,3 M−1

4,4

]
)Y1,

then by (47) it follows that

Y2(M− λL)U1 =


A 0 M1,3 M1,4

0 I M2,3 M2,4

0 0 −AH 0
0 0 0 I

− λ

I 0 L1,3 L1,4

0 B L2,3 L2,4

0 0 I 0
0 0 0 −BH

 .

Since B is nilpotent Λ(B, I) ∩ Λ(I,−AH) = ∅. So the matrix equation

BX + Y = L2,3, X − Y AH = M2,3

has unique solutions X2, Y2, see [5].
Set

Y3 =


I 0 0 AXH

2 −M1,4

0 I −Y2 0
0 0 I 0
0 0 0 I

Y2, U = U1


I 0 0 −XH

2

0 I −X2 0
0 0 I 0
0 0 0 I

 .

Then U2 is symplectic and we can easily verify that

Y3(M− λL)U =


A 0 M1,3 0
0 I 0 M2,4

0 0 −AH 0
0 0 0 I

− λ

I 0 L1,3 0
0 B 0 L2,4

0 0 I 0
0 0 0 −BH

 .

Finally setting

Y =


I 0 −L1,3 0
0 I 0 −M2,4

0 0 I 0
0 0 0 I

Y3,

40



we obtain

Y(M− λL)U =


A 0 DA 0
0 I 0 0
0 0 −AH 0
0 0 0 I

− λ

I 0 0 0
0 B 0 DB

0 0 I 0
0 0 0 −BH

 .
and clearly DA, DB are Hermitian.

Partition
U = [U1,1, U1,2, U2,1, U2,2 ]

conformally. Then V1 = [U1,1, U2,1 ] and V2 = [U1,2, U2,2 ] are the bases of the deflating
subspaces corresponding to the finite eigenvalues and eigenvalue infinity, respectively. Since
U is symplectic, V H

k JVk = J for k = 1, 2. Moreover,

MhV1 = LhV1

[
A DA

0 −AH
]

=: LhV1HA, MhV2HB :=MhV2

[
B DB

0 −BH

]
= LhV2.

Since HA is Hamiltonian triangular, by Proposition 3 and V H
1 JV1 = J we have that

UH
k JUk is congruent to J for all k = 1, . . . , ν. Since HB is also Hamiltonian triangular and

nilpotent, by exchanging the roles ofMh and Lh in the pencil we get that UH
∞JU∞ is also

congruent to J .

Theorem 29 (Hamiltonian triangular Kronecker canonical form)
Let Mh − λLh be a regular complex Hamiltonian pencil , let iα1, . . . , iαν be its pairwise

distinct purely imaginary eigenvalues and let the columns of Uk span the corresponding
deflating subspaces. Let furthermore the columns of U∞ span the deflating subspace to the
eigenvalue ∞. Then the following are equivalent.

i) There exist a nonsingular matrix Y and a symplectic matrix U such that Y(Mh −
λLh)U is Hamiltonian triangular.

ii) There exist a unitary matrix Y and a unitary symplectic matrix U such that Y(Mh−
λLh)U is Hamiltonian triangular.

iii) For all k = 1, . . . , ν, UH
k JUk is congruent to J and UH

∞JU∞ is also congruent to J .

iv) For all k = 1, . . . , ν the structure inertia indices InddS(iαk) and InddS(∞) are void.

Moreover, if any of the equivalent conditions holds, then the matrices Y, U can be chosen
so that Y(Mh − λLh)U is in Hamiltonian triangular Kronecker canonical form

Rr − λI 0
Re − λI De

Rc − λI Dc

I − λR∞ −λD∞
0 −RH

r − λI
0 −RH

e − λI
0 −RH

c − λI
0 I + λRH

∞


,
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where the blocks are as in (45).

Proof. i) ⇒ ii) follows directly from Lemma 3. ii) ⇒ iii) follows from Lemma 28. iii)
⇒ iv) follows from the relation between the inertia index of UH

k JUk and UH
∞JU∞, and the

associated structure inertia index. iv) ⇒ i) follows directly from Theorem 26.

Theorem 30 (Real Hamiltonian triangular Kronecker canonical form)
LetMh−λLh be a regular real Hamiltonian pencil, let iα1, . . . , iαν be its pairwise distinct,

nonzero, purely imaginary eigenvalues and let the columns of Uk span the corresponding
deflating subspaces. Then the following are equivalent.

i) There exist a real nonsingular matrix Y and a real symplectic matrix U such that
Y(Mh − λLh)U is Hamiltonian triangular.

ii) There exist a real orthogonal matrix Y and a real orthogonal symplectic matrix U
such that Y(Mh − λLh)U is Hamiltonian triangular.

iii) For all k = 1, . . . , ν, UH
k JUk is congruent to J .

iv) For all k = 1, . . . , ν the structure inertia indices InddS(iαk) are void.

Moreover, if any of the equivalent conditions holds, then the matrices Y, U can be chosen
so that

Y(Mh − λLh)U =

[
M11 M12

0 M22

]
− λ

[
L11 L12

0 L22

]
,

with

M11 − λL11 =


Rr − λI

Re − λI
Rc − λI

R0 − λI
I − λR∞

 ,

M12 − λL12 =


0

De

Dc

D0

−λD∞

 ,

M22 − λL22 =


−RT

r − λI
−RT

e − λI
−RT

c − λI
−RT

0 − λI
I + λRT

∞

 ,

and where the blocks Rr, Re, Rc, R0, De, Dc, D0 are as in (42) and R∞ and D∞ are as
in (46).
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Proof. The proof is similar to the proof of Theorem 29, using Lemma 3, Lemma 28 and
Theorem 27.

We also have the corresponding result on the Hamiltonian triangular Kronecker canonical
form under nonsymplectic transformations.

Theorem 31 A regular Hamiltonian pencil Mh−λLh has a Hamiltonian triangular Kro-
necker canonical form if and only if the algebraic multiplicities of all purely imaginary
eigenvalues are even.

If Mh − λLh is real it has a real Hamiltonian triangular Kronecker canonical form if
and only if the algebraic multiplicities of all purely imaginary eigenvalues with positive
imaginary parts are even.

Proof. The proof is similar to the proof of Theorem 25. Note that the condition that all
finite eigenvalues have even algebraic multiplicities implies that the algebraic multiplicity
for the eigenvalue infinity is also even. The canonical form for the infinite eigenvalue can
be constructed in the same way as that for the eigenvalue zero by exchanging the roles of
Lh and Mh.

In this section we have shown that there exist canonical forms analogous to the matrix
case for Hamiltonian pencils. In the next sections we will use the generalized Cayley
transformation, to obtain similar results also for symplectic matrices and pencils.

6 Technical lemmas for the symplectic case

In this section we now present some technical results that are needed to derive the canonical
forms for symplectic pencils. The first tool that we will make use of is a generalization of
the Cayley transformation, see [19].

Proposition 5 A matrix pencil Mh − λLh is Hamiltonian if and only if the pencil

χ(Mh − λLh) := (Mh + Lh)− λ(Mh − Lh) =:Ms − λLs

is symplectic. Mh − λLh is regular if and only if Ms − λLs is regular.

The generalized Cayley transformation relates the spectrum of a Hamiltonian pencil Λ(Mh,Lh)
and the spectrum of the associated symplectic pencilMs − λLs as shown in Table 5. The
structure of the associated Jordan blocks and deflating subspaces, however, is not altered
by the generalized Cayley transformation, since for any matrix pencil A − λB we have
χ(Y (A− λB)U) = Y (χ(A− λB))U .

We may apply the generalized Cayley transformation directly to the canonical forms (45)
and (46) and we will obtain an analogous block structure. Unfortunately the Cayley trans-
formation does not produce a form that is as condensed, so some further transformations
are needed. To do this construction we need some more technical lemmas.
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λ
Reλ < 0
λ 6= −1

Reλ = 0
λ 6= 0

Reλ > 0
λ 6= 1

λ = 0 λ =∞ λ = −1 λ = 1

σ = λ+1
λ−1

0 < |σ| < 1
|σ| = 1
σ 6= −1

1 < |σ| <∞ σ = −1 σ = 1 σ = 0 σ =∞

Table 5: Eigenvalue relation under Cayley transformation

Lemma 32 Let T =


0 τ1 . . . τr−1

. . . . . .
...

. . . τ1

0

 be a strictly upper triangular Toeplitz matrix

and τ1 6= 0. Then there exists a nonsingular upper triangular matrix X such that XTX−1 =
Nr.

Proof. It is clear that rankT = r−1 so T is similar to Nr and X exists. Using XT = NrX
the assertion follows by induction.

Lemma 33 Given Nr(λ) with λ 6= 1. Set σ = λ+1
λ−1

. Then there exists a nonsingular upper
triangular matrix Xr, such that

X−1
r (Nr(λ) + I)(Nr(λ)− I)−1Xr = Nr(σ). (48)

Proof. With ϑ := 1
λ−1

= 1
2
(σ − 1) we obtain that

N̂r(σ) := (Nr(λ) + I)(Nr(λ)− I)−1 = (σI + ϑNr)
r−1∑
k=0

(−ϑ)kNk
r

= σI − 2
r−1∑
k=1

(−ϑ)k+1Nk
r .

Thus N̂r(σ) − σI is a nilpotent upper triangular Toeplitz matrix, and since ϑ 6= 0 by
Lemma 32 there exists a nonsingular upper triangular Xr, such that X−1

r N̂r(σ)Xr = Nr(σ).

Lemma 34 Given a vector x = [x1, . . . , xr]
T with xr 6= 0, there exists an upper triangular

Toeplitz matrix T such that T−1x = er.

Proof. Set T =


xr xr−1 . . . x1

. . . . . .
...

. . . xr−1

xr

. Since xr 6= 0, detT 6= 0. It is obvious that

Ter = x. Therefore T−1x = er.
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We will use these lemmas now to transform the pencils that we obtain form the Cayley
transformation applied to the separate blocks in the Hamiltonian Kronecker canonical form.
In the following σ will be an eigenvalue of Ms − λLs.

1. |σ| 6= 0, 1,∞. By Table 5, σ corresponds to an eigenvalue θ of the corresponding
Hamiltonian pencilMh−λLh(= χ−1(Ms−λLs)) and we have θ 6= ±1,∞, 0 and Re θ 6= 0.
For such an eigenvalue from (45) the corresponding subblock in the Hamiltonian Kronecker
canonical form has the form

Hθ − λI =:

[
Rθ 0
0 −RH

θ

]
− λI,

where Rθ = diag(Nr1(θ), . . . , Nrp(θ)). The Cayley transformation leads to a block

Mσ − λLσ = (Hθ + I)− λ(Hθ − I)

in Ms − λLs.
If we multiply from the left by (Hθ − I)−1 (which exists by assumption) we get a block

Ŝσ − λI =

[
R̂ 0

0 R̂−H

]
− λI,

where R̂ = (Rθ + I)(Rθ − I)−1 = diag(N̂r1(σ), . . . , N̂rp(σ)) and N̂rk(σ) = (Nrk(θ) +
I)(Nrk(θ)− I)−1. Applying (48) to each of these blocks, we obtain a symplectic matrix

U = diag(Xr1 , . . . Xrp , X
−H
r1

, . . . , X−Hrp )

and

Sσ − λI := U−1(Ŝσ − λI)U =

[
Rσ 0
0 R−Hσ

]
− λI,

with Rσ = diag(Nr1(σ), . . . , Nrp(σ)).
2. σ = 0,∞. The associated eigenvalues in Mh − λLh are ±1, and the corresponding

subpencil is

H1 − λI =

[
R1 0
0 −RH

1

]
− λI,

where we may assume without loss of generality that R1 = diag(Nr1(−1), . . . , Nrp(−1)).
Applying the generalized Cayley transformation the corresponding subpencil inMs−λLs
is

M̃1−λL̃1 = (H1 +I)−λ(H1−I) =

[
R1 + I 0

0 −(R1 − I)H

]
−λ

[
R1 − I 0

0 −(R1 + I)H

]
.

Multiplying from the left by diag((R1 − I)−1,−(R1 − I)−H) we obtain

M̂1 − λL̂1 =

[
R̂0 0
0 I

]
− λ

[
I 0

0 R̂H
0

]
.
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Then let U = diag(X,X−H) and X−1R̂0X = R0, where R0 = diag(Nr1 , . . . , Nrp). It follows
that U is symplectic and

M1 − λL1 := U−1(M̂1 − λL̂1)U =

[
R0 0
0 I

]
− λ

[
I 0
0 RH

0

]
.

3. |σ| = 1 and σ 6= 1. In this case the corresponding eigenvalue in the Hamiltonian pencil
is iα with α real. We will go back to the construction of the blocks in the Hamiltonian case.
Consider a pair associated with πPr and the pencil Nr(iα) − λI. The corresponding pair
for the symplectic pencil is (πPr, (Nr(iα)+ I)−λ(Nr(iα)− I)). Multiplying the associated
subpencil from the left with (Nr(iα) − I)−1 (note that πPr is not affected) we obtain an
associated pair (πPr, N̂r(σ)), where

N̂r(σ) = (Nr(iα) + I)(Nr(iα)− I)−1.

We now use the transformations ρe in (28) and ρo in (30).
i) For an even size matrix pair the matrix N̂2r(σ) can be rewritten as

N̂2r(σ) =

[
N̂r(σ) 1

2
(I − N̂r(σ))ere

H
1 (N̂r(σ)− I)

0 N̂r(σ)

]
.

Here we have used the fact that (Nr(iα) − I)−1 = 1
2
(N̂r(σ) − I), which follows from the

definition of N̂r(σ). Then ρe(πP2r, N̂2r) = (J, Ŝ), where

Ŝ =

[
N̂r(σ) β

2
(I − N̂r(σ))ere

H
r (N̂r(σ)−H − I)

0 N̂r(σ)−H

]

and β = (−1)rπ. By Lemma 33 there exists a nonsingular upper triangular matrix Xr such
that X−1

r N̂r(σ)Xr = Nr(σ). Since I−N̂r(σ) commutes with N̂r(σ), with V = (I−N̂r(σ))Xr

and U1 = diag(V, V −H) we obtain

U−1
1 ŜU1 =

[
Nr(σ) β

2
ttHNr(σ)−H

0 Nr(σ)−H

]
,

where t = X−1
r er. By the triangular structure of Xr the last component of t is nonzero

and by Lemma 34 there exists an upper triangular Toeplitz matrix T , such that T−1t = er.
Set U = U1 diag(T, T−H) which is symplectic. Since Nr(σ) commutes with all triangular
Toeplitz matrices of the same size, we finally get

S = U−1ŜU =

[
Nr(σ) β

2
ere

H
r Nr(σ)−H

0 Nr(σ)−H

]
.

In summary, we obtain a transformation ρ̂e similar to ρe by replacing Ze by

Ẑe = diag(I, (πPr)
−1)U = diag(V T, ((V T )HπPr)

−1),
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which transforms (πP2r, N̂2r(σ)) to (J, S).
ii) For an odd sized pair (πP2r+1, N̂2r+1(σ)), we set V = 1−σ̄

2
(I − N̂r(σ))XrT , where Xr

and T are defined as in the even case and

Ẑo := diag(V, 1, (πV HPr)
−1).

Then one can easily verify that

ρ̂o(πP2r+1, N̂2r+1(σ)) = (ẐH
o (πP2r+1)Ẑo, Ẑ

−1
o N̂2r+1(σ)Ẑo) =

=


 0 0 I

0 iβ 0
−I 0 0

 ,
 Nr(σ) σer

σ
σ−1

iβere
H
r Nr(σ)−H

0 σ iβeHr Nr(σ)−H

0 0 Nr(σ)−H


 ,

where β = (−1)riπ.
4. σ = 1. Then the corresponding eigenvalue in Mh − λLh is infinity and the pair is

constructed from πPr and I−λNr which leads to the pair πPr and (I +Nr)−λ(I−Nr) in
Ms−λLs. In matrix form the associated pair is (πPr, N̂r(1)), where N̂r(1) := (I+Nr)(I−
Nr)

−1. (Note that the form of N̂r(1) is slightly different from that of N̂r(σ) for σ 6= 1).
We still have a nonsingular upper triangular matrix X̂r, such that X̂−1

r N̂r(1)X̂r = Nr(1).
Using this X̂r to replace Xr above and changing T appropriately, we get for even size pairs

ρ̂e(πP2r, N̂2r(1)) =

(
J,

[
Nr(1) β

2
ere

H
r Nr(1)−H

0 Nr(1)−H

])

which is the same as in the case σ 6= 1. For odd size pairs we obtain

ρ̂o(πP2r+1, N̂2r+1(1)) =


 0 0 I

0 iβ 0
−I 0 0

 ,
 Nr(1) er

iβ
2
ere

H
r Nr(1)−H

0 1 iβeHr Nr(1)−H

0 0 Nr(1)−H


 .

For even size matrix pairs the condensed form already is in symplectic triangular canon-
ical form. It remains to perform a coupling for the odd size pairs. Similar to the Hamil-
tonian case we construct a transformation ϕ̂c, just using Ẑo instead of Zo, and apply it to
(Pc, Nc), where Pc = diag(π1P2r1+1, π2P2r2+1), Nc = diag(N̂2r1+1(σ1), N̂2r2+1(σ2)) with the
corresponding β1 = −β2. Then

ϕ̂c(Pc, Nc) =


Jr1+r2+1,



Nr1(σ1) 0 −
√

2
2
σ1er1

0 Nr2(σ2) −
√

2
2
σ2er2

0 0 1
2
(σ1 + σ2)

0 0 0
0 0 0

0 0 iβ1

2
(σ1 − σ2)
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iβ1f(σ1)er1e
H
r1
Nr1(σ1)−H 0

√
2

2
iβ1σ1er1

0 −iβ1f(σ2)er2e
H
r2
Nr2(σ2)−H −

√
2

2
iβ1σ2er2

−
√

2
2
iβ1e

H
r1
Nr1(σ1)−H

√
2

2
iβ1e

H
r2
Nr2(σ2)−H − iβ1

2
(σ1 − σ2)

Nr1(σ1)−H 0 0
0 Nr2(σ2)−H 0√

2
2
eHr1Nr1(σ1)−H

√
2

2
eHr2Nr2(σ2)−H 1

2
(σ1 + σ2)




,

where

f(σ) =
σ

σ − 1
for |σ| = 1, σ 6= 1; f(1) =

1

2
. (49)

7 Symplectic Kronecker canonical forms

Using these basic technical results and the obtained matrix block forms we can now as-
semble the symplectic Kronecker canonical form.

Theorem 35 (Symplectic Kronecker canonical form) Given a regular complex sym-
plectic pencil Ms−λLs. Then there exist a nonsingular matrix Y and a symplectic matrix
U such that

Y(Ms − λLs)U =

[
M11 M12

M21 M22

]
− λ

[
L11 L12

L21 L22

]
, (50)

with

M11 − λL11 =


Rr − λI

Re − λI
Rc − λI

Rd − λI
R0 − λI

 ,

M21 − λL21 =


0

0
0

Gd

0

 ,

M12 − λL12 =


0

De

Dc

Dd

0

 ,

M22 − λL22 =


R−Hr − λI

R−He − λI
R−Hc − λI

Sd − λI
I − λRH

0

 ,
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where the blocks are as follows.
1. The blocks with index r are associated with the pairwise distinct eigenvalues σ1, . . . , σµ,

σ̄−1
1 , . . . , σ̄−1

µ , such that |σk| 6= 1. The blocks have the structure

Rr = diag(Rr
1, . . . , R

r
µ),

Rr
k = diag(Ndk,1(σk), . . . , Ndk,pk

(σk)), k = 1, . . . , µ.

2. The blocks with indices e and c are associated with unimodular eigenvalues θ1, . . . , θν.
The associated parts of the structure inertia indices are IndeS(θk) = (βek,1, . . . , β

e
k,qk

), and
IndcS(θk) = (βck,1, . . . , β

c
k,rk

,−βck,1, . . . ,−βck,rk). The structures of the blocks are

Re = diag(Re
1, . . . , R

e
ν), De = diag(De

1, . . . , D
e
ν),

Re
k = diag(Nlk,1(θk), . . . , Nlk,qk

(θk)),

De
k =

1

2
diag(βek,1elk,1e

H
lk,1
Nlk,1(θk)

−H , . . . , βek,qkelk,qke
H
lk,qk

Nlk,qk
(θk)

−H),

Rc = diag(Rc
1, . . . , R

c
ν), Dc = diag(Dc

1, . . . , D
c
ν),

Rc
k = diag(Bk,1, . . . , Bk,rk), Dc

k = diag(Ck,1, . . . , Ck,rk),

where for k = 1, . . . , ν and j = 1, . . . , rk we have

Bk,j =

 Nmk,j(θk) 0 −
√

2
2
θkemk,j

Nnk,j(θk) −
√

2
2
θkenk,j
θk

 ,

Ck,j = iβck,j


f(θk)emk,je

H
mk,j

Nmk,j(θk)
−H 0

√
2

2
θkemk,j

0 −f(θk)enk,je
H
nk,j

Nnk,j(θk)
−H −

√
2

2
θkenk,j

−
√

2
2
eHmk,jNmk,j(θk)

−H
√

2
2
eHnk,jNnk,j(θk)

−H 0

 ,
and f(θk) is as in (49).

3. The blocks with index d are associated with two disjoint sets of unimodular eigenvalues
{γ1, . . . , γη} and {δ1, . . . , δη} with the corresponding structure inertia indices (βd1 , . . . , β

d
η)

and (−βd1 , . . . ,−βdη), respectively, where βd1 = . . . = βdη . The corresponding Kronecker
blocks have the following block structures.

Rd = diag(Rd
1, . . . , R

d
η), Dd = diag(Dd

1, . . . , D
d
η),

Sd = diag(Sd1 , . . . , S
d
η), Gd = diag(Gd

1, . . . , G
d
η),

where for k = 1, . . . , η we have

Rd
k =

 Nsk(γk) 0 −
√

2
2
γkesk

Ntk(δk) −
√

2
2
δketk

1
2
(γk + δk)

 ,
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Dd
k = iβdk


f(γk)eske

H
sk
Nsk(γk)

−H 0
√

2
2
γkesk

0 −f(δk)etke
H
tk
Ntk(δk)

−H −
√

2
2
δketk

−
√

2
2
eHskNsk(γk)

−H
√

2
2
eHtkNtk(δk)

−H −1
2
(γk − δk)

 ,

Sdk =

 Nsk(γk)
−H

0 Ntk(δk)
−H

√
2

2
eHskNsk(γk)

−H
√

2
2
eHtkNtk(δk)

−H 1
2
(γk + δk)

 ,

Gd
k = iβdk

 0 0 0
0 0 0
0 0 1

2
(γk − δk)

 .
4. The blocks with index 0 are associated with zero and infinite eigenvalues and have the

structure
R0 = diag(Nz1 , . . . , Nzτ ).

Proof. Using the above construction, the proof follows from the Hamiltonian case.
Again analogous to the Hamiltonian case, we have a result for real symplectic pencils. We

use the following notation. Either Σk =

[
σk,1 σk,2
−σk,2 σk,1

]
, with σk,2 6= 0 and σ2

k,1 + σ2
k,2 6= 1,

or Σk is a real number and Σk 6= ±1. Blocks ∆k have the form

[
ak bk
−bk ak

]
, a2

k + b2
k = 1

and ak 6= 1. Furthermore we have blocks F (∆k) = 1
2

[
fk 1
−1 fk

]
with fk = bk

1−ak
, and

F (I2) = 1
2
J1.

Theorem 36 (Real symplectic Kronecker canonical form) Given a real regular sym-
plectic pencilMs−λLs. Then there exist a real nonsingular matrix Y and a real symplectic
matrix U such that

Y(Ms − λLs)U =

[
M11 M12

M21 M22

]
− λ

[
L11 L12

L21 L22

]
, (51)

with

M11 − λL11 =



Rr − λI
Re − λI

Rc − λI
Ru − λI

Rd − λI
R0 − λI


,

M21 − λL21 =



0
0

0
0

Gd

0


,
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M12 − λL12 =



0
De

Dc

Du

Dd

0


,

M22 − λL22 =



R−Tr − λI
R−Te − λI

R−Tc − λI
R−Tu − λI

Sd − λI
I − λRT

0


,

and where we have the following structure for the different blocks.
1. If Σk is a nonzero real number, Σk and Σ−1

k are both real eigenvalues of Ms−λLs. If
σk,2 6= 0, then σk = σk,1 +iσk,2, together with σ̄k, σ̄−1

k , and σ−1
k are eigenvalues ofMs−λLs

and the associated blocks have the structure

Rr = diag(Rr
1, . . . , R

r
µ),

Rr
k = diag(Ndk,1(Σk), . . . , Ndk,pk

(Σk)),

2. The blocks with indices c, e and d are associated with unimodular eigenvalues θk :=

ak + ibk and θ̄k contained in ∆k =

[
ak bk
−bk ak

]
with θk 6= ±1. The associated structure

inertia indices are

IndeS(θk) = (βek,1, . . . , β
e
k,qk

),

IndcS(θk) = (βck,1, . . . , β
c
k,rk

,−βck,1, . . . ,−βck,rk),
InddS(θk) = (βdk , . . . , β

d
k︸ ︷︷ ︸

sk

),

IndeS(θ̄k) = (βek,1, . . . , β
e
k,qk

),

IndcS(θ̄k) = (−βck,1, . . . ,−βck,rk , β
c
k,1, . . . , β

c
k,rk

),

InddS(θ̄k) = (−βdk , . . . ,−βdk︸ ︷︷ ︸
sk

),

and the blocks have the following form.

Re = diag(Re
1, . . . , R

e
ν), De = diag(De

1, . . . , D
e
ν),

Rc = diag(Rc
1, . . . , R

c
ν), Dc = diag(Dc

1, . . . , D
c
ν),

where for k = 1, . . . , ν,

Re
k = diag(Nlk,1(∆k), . . . , Nlk,qk

(∆k)),
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De
k =

1

2
diag(βek,1

[
0 0
0 I2

]
Nlk,1(∆k)

−T , . . . , βek,qk

[
0 0
0 I2

]
Nlk,qk

(∆k)
−T ),

Rc
k = diag(Bk,1, . . . , Bk,rk), Dc

k = diag(Ck,1, . . . , Ck,rk),

and for k = 1, . . . , ν, j = 1, . . . , rk

Bk,j =


Nmk,j(∆k) 0

[
0

−
√

2
2

∆k

]

Nnk,j(∆k)

[
0

−
√

2
2

∆k

]
0 0 ∆k

 ,

Ck,j = βck,j



[
0 0
0 F (∆k)

]
Nmk,j(∆k)

−T 0

[
0√

2
2
J1∆k

]

0 −
[

0 0
0 F (∆k)

]
Nnk,j(∆k)

−T
[

0

−
√

2
2
J1∆k

]
[

0 −
√

2
2
J1

]
Nmk,j(∆k)

−T
[

0
√

2
2
J1

]
Nnk,j(∆k)

−T 0

 .

The blocks with index d have the form

Rd = diag(Rd
1, . . . , R

d
ν), Dd = diag(Dd

1, . . . , D
d
ν),

Sd = diag(Sd1 , . . . , S
d
ν ), Gd = diag(Gd

1, . . . , G
d
ν),

Rd
k = diag(Tk,1, . . . , Tk,sk), Dd

k = diag(Xk,1, . . . , Xk,sk),

Sdk = diag(Zk,1, . . . , Zk,sk), Gd
k = diag(Yk,1, . . . , Yk,sk),

where for k = 0, 1, . . . , ν, j = 1, . . . , sk

Tk,j =

 Ntk,j(∆k)

 0
−ak
bk


0 ak

 , Xk,j = βdk


[

0 0
0 F (∆k)

]
Ntk,j(∆k)

−T

 0
−bk
−ak


−eT2tk,jNtk,j(∆k)

−T bk

 ,

Zk,j =

[
Ntk,j(∆)−T 0

eT2tk,j−1Ntk,j(∆k)
−T ak

]
, Yk,j = βdk

[
0 0
0 −bk

]
.

3. The blocks with index u are associated with the eigenvalues ±1. In particular the
blocks with index + are associated with the eigenvalue 1. Here InddS(1) is void and the
other structure inertia indices are

IndeS(1) = (βe+1 , . . . , βe+q+ ), IndcS(1) = (βc+, . . . , β
c
+︸ ︷︷ ︸

r+

,−βc+, . . . ,−βc+︸ ︷︷ ︸
r+

).

The blocks with index − are associated with the eigenvalue −1. Here InddS(−1) is void and
the other structure inertia indices are

IndeS(−1) = (βe−1 , . . . , βe−q− ), IndcS(−1) = (βc−, . . . , β
c
−︸ ︷︷ ︸

r−

,−βx−, . . . ,−βc−︸ ︷︷ ︸
r−

).
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The block structures are

Ru = diag(R+, R−), Du = diag(D+, D−),

R+ = diag(Re
+, R

c
+), D+ = diag(De

+, D
c
+),

R− = diag(Re
−, R

c
−), D− = diag(De

−, D
c
−);

Re
+ = diag(Nu1(1), . . . , Nuq+

(1)),

De
+ =

1

2
diag(βe+1 eu1e

T
u1
Nu1(1)−T , . . . , βe+q+ euq+e

T
uq+

Nuq+
(1)−T );

Rc
+ = diag(

[
Nv1(I2) −e2v1−1

0 1

]
, . . . ,

[
Nvr+

(I2) −e2vr+−1

0 1

]
),

Dc
+ = βc+ diag(


[

0 0
0 F (I2)

]
Nv1(I2)−T −e2v1

−eT2v1
Nv1(I2)−T 0

 ,

. . . ,


[

0 0
0 F (I2)

]
N2vr+

(I2)−T −e2vr+

−eT2vr+Nvr+
(I2)−T 0

);

Re
− = diag(Nx1(−1), . . . , Nxq−

(−1)),

De
− =

1

2
diag(βe−1 ex1e

T
x1
Nx1(−1)−T , . . . , βe−q− exq−e

T
xq−

Nxq−
(−1)−T );

Rc
− = diag(

[
Ny1(−I2) e2y1−1

0 −1

]
, . . . ,

[
Nyr−

(−I2) e2yr−−1

0 −1

]
),

Dc
− = βc− diag(


[

0 0
0 F (−I2)

]
Ny1(−I2)−T e2y1

−eT2y1
Ny1(−I2)−T 0

 ,

. . . ,


[

0 0
0 F (−I2)

]
N2yr−

(−I2)−T e2yr−

−eT2yr−Nyr−
(−I2)−T 0

).

4. The zero and infinite eigenvalues of Ms − λLs are depicted in the block

R0 = diag(Nz1 , . . . , Nzτ ).

Proof. The proof is similar to the proof of Theorem 22, observing that by Table 5 the
eigenvalues 1 and −1 of a symplectic pencil are related to the eigenvalues ∞ and 0 for the
corresponding Hamiltonian pencil.

We also have necessary and sufficient conditions for the existence of a symplectic trian-
gular Kronecker canonical form and a generalized symplectic Schur form, etc. The results
are analogous to the Hamiltonian case and we list them without proof.

Theorem 37 (Symplectic triangular Kronecker canonical form)
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LetMs−λLs be a regular complex symplectic pencil, let θ1, . . . , θν be its pairwise distinct
unimodular eigenvalues and let the columns of Uk span the deflating subspaces corresponding
to θk. Then the following are equivalent.

i) There exists a nonsingular matrix Y and a symplectic matrix U , such that Y(Ms −
λLs)U is symplectic triangular.

ii) There exists a unitary matrix Y and a unitary symplectic matrix U , such that Y(Ms−
λLs)U is symplectic triangular.

iii) For all k = 1, . . . , ν, UH
k JUk is congruent to J .

iv) For all k = 1, . . . , ν, InddS(θk) is void.

Moreover, if any of the equivalent conditions holds, then the matrices Y, U can be chosen
so that Y(Ms − λLs)U is in symplectic triangular Kronecker canonical form

Rr − λI 0
Re − λI De

Rc − λI Dc

R0 − λI 0
0 R−Hr − λI

0 R−He − λI
0 R−Hc − λI

0 I − λRH
0


,

where the blocks as in (50).

Theorem 38 (Real symplectic triangular Kronecker canonical form)
Let Ms−λLs be a regular real symplectic pencil and let θ1, . . . , θν be its pairwise distinct

unimodular eigenvalues and let the columns of the matrix Uk span the deflating subspaces
corresponding to θk. Then the following are equivalent.

i) There exist a real nonsingular matrix Y and a real symplectic matrix U , such that
Y(Ms − λLs)U is symplectic triangular.

ii) There exist a real orthogonal matrix Y and a real orthogonal symplectic matrix U ,
such that Y(Ms − λLs)U is symplectic triangular.

iii) For all k = 1, . . . , ν, UH
k JUk is congruent to J .

iv) For all k = 1, . . . , ν, InddS(θk) is void.

Moreover, the matrices Y, U can be chosen so that Y(Ms − λLs)U is in real symplectic
triangular Kronecker canonical form

Y(Ms − λLs)U =

[
M11 M12

0 M22

]
− λ

[
L11 L12

0 L22

]
, (52)
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with

M11 − λL11 =


Rr − λI

Re − λI
Rc − λI

Ru − λI
R0 − λI

 ,

M12 − λL12 =


0

De

Dc

Du

0

 ,

M22 − λL22 =


R−Tr − λI

R−Te − λI
R−Tc − λI

R−Tu − λI
I − λRT

0

 ,

and where the blocks are as in (51).

Our final result in this section is the symplectic triangular Kronecker form under non-
symplectic transformations.

Theorem 39 A regular symplectic pencilMs−λLs has a symplectic triangular Kronecker
canonical form if and only if the algebraic multiplicities of all unimodular eigenvalues are
even.

IfMs−λLs is real it has the corresponding real symplectic triangular Kronecker canonical
form if and only if the algebraic multiplicities of all unimodular eigenvalues with positive
imaginary parts are even.

Remark 8 We have seen that the symplectic canonical form is more complicated than
the Hamiltonian canonical form. One reason for this is that in the symplectic case inverses
occur in the canonical form. These can actually be moved to the other side of the pencil,
which would be the approach in numerical methods, see [18]. Another complication is that
the chains of principal vectors are difficult to retrieve. However as in Hamiltonian case for
each Kronecker block the first half chain of the corresponding principal vectors is explicitly
displayed in the canonical form. Also in the triangular canonical form under symplectic
similarity transformations we obtain Langrangian deflating subspaces.

In the next section we will discuss the case of symplectic matrices.

8 Symplectic Jordan canonical forms

A symplectic matrix S is a special symplectic pencil S − λI. So the canonical forms are
already included in the previous section. The only thing we need to do is to leave out the
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subblocks in the canonical forms corresponding to the zero and infinite eigenvalues. For
completeness we also display all these results without proof.

Theorem 40 (Symplectic Jordan canonical form) Given a complex symplectic ma-
trix S. Then there exists a symplectic matrix U such that

U−1SU =



Rr 0
Re De

Rc Dc

Rd Dd

0 R−Hr
0 R−He

0 R−Hc
Gd Sd


,

where the matrix blocks are as in (50).

In the real case we also have the corresponding canonical form.

Theorem 41 (Real symplectic Jordan canonical form) Given a real symplectic ma-
trix S. Then there exists a real symplectic matrix U such that

U−1SU =



Rr 0
Re De

Rc Dc

Ru Du

Rd Dd

0 R−Tr
0 R−Te

0 R−Tc
0 R−Tu

Gd Sd



,

where the blocks are as in (51).

Based on these two results we have the following necessary and sufficient conditions for
the existence of symplectic triangular Jordan canonical forms.

Theorem 42 (Symplectic triangular Jordan canonical form) Let S be a complex
symplectic matrix, let θ1, . . . , θν be its pairwise distinct unimodular eigenvalues and let the
columns of Uk span the associated invariant subspaces. Then the following are equivalent.

i) There exists a symplectic matrix U , such that U−1HU is in symplectic triangular
form.

ii) There exists a unitary symplectic matrix U , such that UHHU is symplectic triangular.

56



iii) UH
k JUk is congruent to J for all k = 1, . . . , ν.

iv) InddS(θk) is void for all k = 1, . . . , ν.

Moreover, if any of the equivalent conditions holds, then the matrix U can be chosen so
that U−1SU is in symplectic triangular Jordan canonical form

U−1SU =



Rr 0
Re De

Rc Dc

0 R−Hr
0 R−He

0 R−Hc


, (53)

where the blocks are as in (50).

Theorem 43 (Real symplectic triangular Jordan canonical form) Let S be a real
symplectic matrix, let θ1, . . . , θν be its pairwise distinct unimodular eigenvalues and let the
columns of Uk span the associated invariant subspaces. Then the following are equivalent.

i) There exists a real symplectic matrix U , such that U−1HU is in symplectic triangular
form.

ii) There exists a real orthogonal symplectic matrix U , such that UTHU is symplectic
triangular.

iii) UH
k JUk is congruent to J for all k = 1, . . . , ν.

iv) InddS(θk) is void for all k = 1, . . . , ν.

Moreover, if any of the equivalent conditions hold, then the matrix U can be chosen so
that U−1SU is in real symplectic triangular Jordan canonical form

U−1SU =



Rr 0
Re De

Rc Dc

Ru Du

0 R−Tr
0 R−Te

0 R−Tc
0 R−Tu


, (54)

where the blocks are defined in (51).

The final result is again the existence of the symplectic triangular form under nonsym-
plectic transformations. Note that although the symplectic matrices form a group, there
exist nonsymplectic similarity transformations that map a symplectic matrix to another
symplectic matrix.
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Theorem 44 Let S be a symplectic matrix. Then S has a symplectic triangular Jordan
canonical form if and only if the algebraic multiplicities of all its unimodular eigenvalues
are even.

If S is real it has the corresponding real symplectic triangular Jordan canonical form if
and only if the algebraic multiplicities of all unimodular eigenvalues with postive imaginary
parts are even.

9 Conclusion

We have presented structured canonical forms for Hamiltonian and symplectic matrices
and pencils under structured similarity and equivalence transformations. These result give
a complete picture on the invariants and the structured forms and they give necessary
and sufficient conditions for the existence of triangular canonical forms. Although some
of these forms were partly known in the literature, we have provided simple proofs and
constructions, that are the first steps towards numerical methods for these problems.
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