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Abstract

The classical singular value decomposition for a matrix A € C"™*" is a canonical form
for A that also displays the eigenvalues of the Hermitian matrices AA* and A*A. In
this paper, we develop a corresponding decomposition for A that provides the Jordan
canonical forms for the complex symmetric matrices AA” and AT A. More generally,
we consider the matrix triple (A4, G, G), where G € C™*™ (G € C™ " are invertible and
either complex symmetric or complex skew-symmetric, and we provide a canonical form
under transformations of the form (4, G, G) — (XTAY, XTGX,YTGY), where X,Y are
nonsingular.

Keywords singular value decomposition, canonical form, complex bilinear form, complex
symmetric matrix, complex skew-symmetric matrix, Hamiltonian matrix, Takagi factoriza-
tion.
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1 Introduction

In [3] Bunse-Gerstner and Gragg derived an algorithm for computing the Takagi factorization
A = UTXU, U unitary, for a complex symmetric matrix AT = A € C"™". The Takagi
factorization is just a special case of the singular value decomposition and combines two
important aspects: computation of singular values (i.e., eigenvalues of A*A and AA*) and
exploitation of structure with respect to complex bilinear forms (here, the symmetry of A is
exploited by choosing U and U as unitary factors for the singular value decomposition).
These two aspects can be combined in a completely different way. Instead of computing
the singular values of a general matrix A € C™*" and thus revealing the eigenvalues of AA*
and A*A, we may ask for a canonical form for A that reveals the eigenvalues of the complex
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symmetric matrices AAT and ATA. In this paper, we compute such a form by solving a
more general problem: instead of restricting ourselves to the matrix A, we consider a triple of
matrices (A, G, @) with A € C™*", G € C™ ™ and G € C"*™, where G and G are nonsingular
and either complex symmetric or complex skew-symmetric. Then we derive canonical forms
under transformations of the form

(A, G,G) — (Ack, Ger, Ger) == (XTAY, XTGX,YTGY), (1.1)

with nonsingular matrices X € C™*™ and Y € C™*". This canonical form will allow the
determination of the eigenstructure of the pair of structured matrices

H=G'ATG'4, H=GTAG AT,
because we find that
Y'HY = (YW D (vTATX) (X1 IX 1) (XTAY) = GoLAL Gt Acr,  (1.2)
XX = (X'eIX T XTAY)(Y LGy TY(YTATX) = Gl A GoEAL. (1.3)
For the special case G = I, and G = I,,, we obtain H = ATA and H = AAT and thus,
an appropriate canonical form (1.1) will display the eigenvalues of AT4 and AAT via the
identities (1.2) and (1.3). In the general case, if GT = (-1)*G and GT = (-1)!G with
s,t € {0,1}, then the matrices H and H satisfy
HIG = (-1)°ATG 1A = (-1)*GH, HTG = (-1)'AG1AT = (-1)'GH, (1.4)

i.e., H and H are either selfadjoint or skew-adjoint with respect to the complex bilinear form
induced by G or G, respectively. Indeed, setting

<x7y>G = yTGl', <x7y>é = yTéx (15)
for z,y € C", the identities (1.4) can be rewritten as
(Hz,y)e = (~1)*(x,Hy), and  (Hz,y)e = (—1)"(x,Hy)g for all z,y € C".

Indefinite inner products and related structured matrices have been intensively studied in
the last few decades with main focus on real bilinear or complex sesquilinear forms, see
[1, 5, 12, 15] and the references therein and, in particular, [6]. In recent years, there has also
been interest in matrices that are structured with respect to complex bilinear forms, because
such matrices do appear in applications such as the frequency analysis of high speed trains
8, 13].

Besides revealing the eigenstructure of the matrices H and H, the canonical form (1.1)
also allows to determine the eigenstructure of the double-sized structured matrix pencil

G 0 0 A
Ag_A:A[o G}_{AT 0]’

because we have that



The idea of generalizing the concept of the singular value decomposition to indefinite
inner products by considering transformations of the form (1.1) is not new and has been
considered in [2] for the case of complex Hermitian forms. The canonical forms presented
here are the analogue in the case of complex bilinear forms. This case is more involved,
because one has to make a clear distinction between symmetric and skew-symmetric bilinear
forms, in contrast to the sesquilinear case, where Hermitian and skew-Hermitian forms are
closely related. Indeed, an Hermitian matrix can be easily transformed into a skew-Hermitian
matrix by scalar multiplication with the imaginary unit ¢, but this is not true for complex
symmetric matrices. Therefore, we have to treat the three cases separately that G and G
are both symmetric, both skew-symmetric, or that one of the matrices is symmetric and the
another skew-symmetric.

A canonical form closely related to the form obtained under the transformation (1.1) has
been developed in [11], where transformations of the form

(B,C) — (X~'BY,Y"'CX), BeC™" CecC™™

have been considered. Then a canonical form is constructed that reveals the Jordan structures
of the products BC and CB. In our framework, this corresponds to a canonical form of the
pair of matrices (G 1A, G_IAT) rather than for the triple (4, G, G) In this case our approach
is more general, because the canonical form for the pair (G~! A, G_lAT) can be easily read off
the canonical form for (4, G, G), but not vice versa. The approach in [11], on the other hand,
focusses on different aspects and allows to consider pairs (B, C) where the ranks of B and C'
are distinct. This situation is not covered by the canonical forms obtained in this paper.

The remainder of the paper is organized as follows. In Section 2 we recall the definition
of several structured matrices and review their canonical forms. In Section 3 we develop
structured factorizations that are needed for the proofs of the results in the following sections.
In Sections 4-6 we present the canonical forms for matrix triples (A4, G, G) In Section 4 we
consider the case that both G and G are complex symmetric, in Section 5 we assume that
G is complex symmetric and G is complex skew-symmetric, and Section 6 is devoted to the
case that both G and G are complex skew-symmetric.

Throughout the paper we use the following notation. I,, and 0,, denote the n x n identity
and n X n zero matrices, respectively. The m X n zero matrix is denoted by 0,,x, and e; is
the jth column of the identity matrix I,, or, equivalently, the jth standard basis vector of
C™. Moreover, we denote

A1 0
0 1 I, 0 0 I A
il ’E’”’”::[ 0 —In:|7Jn:[_In 0 ]"7”@): 1

1 0
0 A

The transpose and conjugate transpose of a matrix A are denoted by A7 and A*, respectively.
We use A1 & --- @ Ay to denote a block diagonal matrix with diagonal blocks Aq,..., Ag. If
A = [a;] € C™™ and B € C™*, then A® B = [a;;B] € C"*™* denotes the Kronecker
product of A and B.

2 DMatrices structured with respect to complex bilinear forms

Our general theory will cover and generalize results for the following classes of matrices.



Definition 2.1 Let G € C™*" be invertible and let H, K € C™**™ such that
(GH)T =GH and (GK)T = -GK.
1. If G is symmetric, then H is called G-symmetric and K is called G-skew-symmetric.

2. If G is skew-symmetric, then H is called G-Hamiltonian and K is called G-skew-
Hamiltonian.

Thus, G-symmetric and G-skew-Hamiltonian matrices are selfadjoint in the inner prod-
uct induced by G, while G-skew-symmetric and G-Hamiltonian matrices are skew-adjoint.
Observe that transformations of the form

(M,G) — (P*MP,PTGP), P e C™" invertible

preserve the structure of M with respect to G, i.e., if, for example, M = ‘H is G-Hamiltonian,
then P~'HP is PTG P-Hamiltonian as well. Thus, instead of working with G directly, one
may first transform G to a simple form using the Takagi factorization for complex symmetric
and complex skew-symmetric matrices, see [3, 9, 16]. This factorization is a special case of
the well-known singular value decomposition.

Theorem 2.2 (Takagi’s factorization) Let G € C"*" be complex symmetric. Then there
exists a unitary matriz U € C™*™ such that

G = Udiag(oy,...,0,)UT,  where oq,...,0, > 0.

There is a variant for complex skew-symmetric matrices (see [9]). This result is a just a
special case of the Youla form [18] for general complex matrices.

Theorem 2.3 (Skew-symmetric analogue of Takagi’s factorization) Let K € C"*"
be complex skew-symmetric. Then there exists a unitary matriz U € C™*™ such that

IC-U([ _21 o ] @@ [ _(ik N } @0n2k> T,
where r1,...,r, € R\ {0}.
As immediate corollaries, we obtain the following well-known results.
Corollary 2.4 Let G € C™"*" be complex symmetric and let rank G = r. Then there exists a

nonsingular matriz X € C™*"™ such that

v [ I 0
XGX_[OO.

Corollary 2.5 Let G € C™ ™ be complex skew-symmetric and let rank G = r. Then r is
even and there exists a nonsingular matriz X € C"*" such that

T _ J’I"/QO
XGX—[O e



Next, we review canonical forms for the classes of matrices defined in Definition 2.1. These
canonical forms are closely related to the well-known canonical forms for pairs of matrices
that are complex symmetric or complex skew-symmetric, see [17] for an overview on this
topic. Proofs of the following results can be found, e.g., in [14].

Theorem 2.6 (Canonical form for G-symmetric matrices) Let G € C"*" be symmet-
ric and invertible and let H € C™*" be G-symmetric. Then there exists an invertible matrizc
X € C™™™ such that

X "MX=T,M)@...0Te,,(An), X'GX=Re, ®...0R;,,
where A\1,..., A\m € C are the (not necessarily pairwise distinct) eigenvalues of H.

For the next two results, we need additional notation. By I, we denote the matrix with
alternating signs on the anti-diagonal, i.e.,

0 (—-1)°

Theorem 2.7 (Canonical form for G-skew-symmetric matrices) Let G € C™™ be
symmetric and invertible and let K € C™" be G-skew-symmetric. Then there exists an
invertible matriz X € C™*™ such that

X KX =K. oK,, XTGX=G.®G,,
where

ICC:,CC,I@"'@K:C,WLU Gc:Gc,l@"'@GC,mcv
ICz = ’Cz,l ®---b ,Cz,moerea Gz = Gz,l D---D Gz,moerea

and where the diagonal blocks are given as follows:

1) blocks associated with pairs (Aj, —\;) of nonzero eigenvalues of IC:

| T (A) 0 _| 0 Ry
S Y AC N A S

where A\j € C\ {0} and § € N for j =1,...,m, when me > 0;
2) blocks associated with the eigenvalue A =0 of K:
ICZ,j - ‘-777j (0)) Gz,] - Fnja

where nj € N is odd for j =1,...,m, when my, > 0, and

Tn: (0) 0 0 R,
K., . = 3 ., G,i= "5 ,
S50 a0 T R, 0
where n; € N is even for j =m, +1,...,m, + me when me > 0.
The matriz K has the non-zero eigenvalues A1, ..., Ay, —A1y. .., —Am, (not necessarily pair-

wise distinct), and the additional eigenvalue 0 if my, + me > 0.



Theorem 2.8 (Canonical form for G-Hamiltonian matrices) Let G € C*"**" be com-
plex skew-symmetric and invertible and let H € C2"*2" be G-Hamiltonian. Then there exists
an invertible matriz X € C**2" sych that

X "HX=H.oH., X'GX=G.dG.,

where
HCZHC,I@"'@HC,mcy Gc:Gc,l®"'@Gc,mC’

Hz — Hz,l S---D Hz,mo—&—mey Gz — Gz,l b---D Gz,mo—o—me,
and where the diagonal blocks are given as follows:

1) blocks associated with pairs (Aj,—\;) of nonzero eigenvalues of H:

L jﬁj ()‘J) 0 L 0 Rfj
Hleg = [ 0 _jﬁj()‘j) + Cei = —jo 0 7

where A\j € C\ {0} with arg(\;) € [0,7) and § € N for j =1,...,m, when m > 0;
2) blocks associated with the eigenvalue A =0 of H:

- jgj(O) 0 o 0 Ry,
=J 0 3 0) |’ = —Re;, 0 )7
where n; € N is odd for j =1,...,m, when m, >0, and
Heg = Tn;(0), Goj =1y,
where n; € N is even for j =m, +1,...,m, + me when me > 0.

The matriz H has the non-zero eigenvalues A1, ..., Apm., =M1y, —Am, (not necessarily pair-
wise distinct), and the additional eigenvalue 0 if my, + me > 0.

Theorem 2.9 (Canonical form for G-skew-Hamiltonian matrices) Let G € C?**2n

be complex skew-symmetric and invertible and let I € C*"*?" be G-skew-Hamiltonian. Then
there exists an invertible matriz X € C*"*?" such that

X KX=Ki®-dK,, XIGX=GC® - @Gy,

where )
Te; (A 0 ] [ 0 Re. ]
K;= N , G;= 7.
J 0 Te; (Aj) J —Re, 0
The matriz K has the (not necessarily pairwise distinct) eigenvalues A, ..., \p,.

The following lemma on existence and uniqueness of structured square roots of structured
matrices will frequently be used.

Lemma 2.10 Let G € C™™ be invertible and let H € C" "™ be invertible and such that
HTG = GH.
1. If G € C™*™ is complex symmetric (i.e., H € C"*" is G-symmelric), then there exists
a square root S € C"*™ of H that is a polynomial in H and that satisfies o(S) C {z €
C : arg(z) € [0,m)}. The square root is uniquely determined by these properties. In
particular, S is G-symmetric.



2. If G € C™" if complex skew-symmetric (i.e., H € C"*" is G-skew-Hamiltonian), then
there exists a square root S € C" ™ of H that is a polynomial in H and that satisfies
o(S) C {z € C : arg(z) € [0,m)}. The square root is uniquely determined by these
properties. In particular, S is G-skew-Hamiltonian.

Proof. By the discussion in Chapter 6.4 in [10], we obtain for both cases that a square root
S of H with ¢(S) C {z € C: arg(z) € [0,7)} exists, is unique, and can be expressed as a
polynomial in H. It is straightforward to check that a matrix that is a polynomial in H is
again G-symmetric or G-skew-Hamiltonian, respectively. 0O

3 Structured factorizations

In this section, we develop basic factorizations that will be needed for computing the canonical
forms in the Sections 4-6. We start with factorizations for matrices B € C™*"™ satisfying
BTB=Tor BTB=0.

Lemma 3.1 If B € C™*" satisfies BT B = I,,, then m > n and there exists a nonsingular
matriz X € C™*™ such that

I

Tp _
XB_[O

] ., XTX =1,.

Proof. By assumption B has full column rank. So there exists B € Cm™x(m=n) guch that
X =] B B ]eC™™is invertible. Then

o~ I, BTB
X'x=| o =2 =
BB BTB |’
and with .
X, — [ I, —-BTB } 7
0 Imfn
we have
XX (Xx) = | 0
! Y=l o BTU-BBTB |’

Since XX, is nonsingular, so is the complex symmetric matrix ET(I — BBT)E . By Corol-
lary 2.4, there exists a nonsingular matrix X such that

XI(B™(I - BBT)B)Xa = In—n.
With

X:)?Xl[% )?2]

we then obtain X7 X = I,,,. Note that

I, —BTEHIn 0

X:[BEHO Ln—n 0 X,

] ~| B (I-BB")BX; |,
and hence X7 X = I,,, implies that

XTB:[%]. O



Lemma 3.2 If B € C™*" satisfies rank B = n and BT B = 0, then m > 2n and there exists
a unitary matriz X € C"™*™ such that

By 0 I, 0
X'p=10, |, X'X=|1, 0 0 )
0 0 0 Im—2n

where By € C™*"™ is upper triangular and invertible.

Proof. We present a constructive proof which allows to determine the matrix X numerically.
We may assume that m > 2, otherwise the result holds trivially. Let

Bei = uy +1ivy, uy,v; € R™.

Then (using e.g. a Householder transformation, see [7]) there exists an orthogonal matrix
Q1 € R™*™ guch that QlTul = aqe; and 0 < a3 € R. Let v; be the vector formed by the
trailing m — 1 components of QT v;. Then (using e.g. a QR-decomposition, see [7]) there
exists an orthogonal matrix Qy € R(™~1x(m=1) gych that QT%; = By and 0 < B, € R. With
Up =Q1(1 Q2), then
ap +iv by
Ul'B = i3 by |,
0 B

where By € Cm=2)x(n=1 p b, e C1*(=1) and vy, € R. Since Uj is real orthogonal, we
have

(U B)"(U{ B) = B"B =0,
and hence,

(Oq + iU11)2 - ﬂ% =0, (a1 -+ ivll)bl 4+ i61b2 = 0, B?Bl + b,{bl + bgbg = 0p_9. (31)

From the first identity in (3.1), it follows that v1; = 0 and «; = ;. Since aq, 51 > 0,
we have that oy = 1 > 0, because otherwise we would have that rank B < n — 1, which is
a contradiction. With this, the last two identities in (3.1) imply that by = —iby, BI By = 0,
and thus,

a1 —iby
U'B=|ioq by |, BpecCm2xm-l
0 B

One can easily verify that rank By =n — 1.
Applying the same procedure inductively to By we obtain the existence of a real orthogonal
matrix Us such that

a9 —ibg
UyBi=|iay by |,  ByeCm4x(n=2),
0 B

Similarly as above, we can show that as > 0 and rank Bo = n — 2.



Continuing the procedure, we finally obtain a real orthogonal matrix U such that

(05} —iblg e —ibln
’iOq b12 e bln
a9 e —ib2n
iag e bgn
UB =
(79
—i0u,
0
0

and from this we obtain that m > 2n. Moreover, we see that every other row of UB is a
multiple by ¢ of the preceding row. Thus, setting

211 —
Zl — { |: 1 /L_Z :| , Y/ —Zl@-.-@ZI@Im—Qna
—_————

letting P be a permutation matrix for which premultiplication has the effect of re-arranging
the first 2n rows of a matrix in the order of 1,3,...,2n —1,2,4,...,2n, and introducing the
unitary matrix X = (PZU)’, we then have

i aq —’iblg —ibln ]
a9 . —ibgn
XTB=v2 an
0
L 0
and we obtain furthermore that
0o I, 0
ZZT:[O 1]@.__@[0 1]@Im_2n and XTX=|1, 0 o |,
1 0 10
0 0 Im—2n

n

using the fact that U is real orthogonal, i.e., UTU =1. 0O

Proposition 3.3 Let B € C™*" and suppose that rank B = n, rank B'B = ng < n, and

that 6o = n — ng is the dimension of the null space of BT B. Then there exists a nonsingular
X € C"™™ such that

T 0 m-—n T 0 0 150
X'B=| , , X'X=I,®| 0 I, 0 |,
orm Is,. 0 0

where By € C™*"™ is nonsingular and np =m —n — dg.



Proof. Since BT B is complex symmetric, by the assumption and by Corollary 2.4, there
exists a nonsingular matrix Y € C"*" such that

YT'BTBY = Loy 0
0 0s |

Let B € C™*"0 be the matrix formed by the leading ng columns of BY. By Lemma 3.1 there
exists Xy € C"™*™ guch that

XI'B= [ 180 } . XIXx, =1,
and we obtain that

XlTBY:[ISO 1;112].

Since

(xTBY)'(XI'BY) =Y"B"BY = [ Igo 00 ] :
)

we have that
Bi2 =0, BT B;=0s,.

By assumption, B has full column rank, so this also holds for B; € C("~"0)%% By Lemma 3.2
there exists a nonsingular matrix X, € C(m=70)x(m=n0) guch that

T 0 I, O
XIBi=|05 |, XZXo=1|15, 0 0 |,
0 0 0 I,

where T' € C%*% js nonsingular and n; = m—ng—28y = m—n—7y. With X3 = X1(Iny ®X2)
we then have

ng 0
0 T 0 I
T o T _ 4o
X3 BY = 0 05 | X3 Xs=1,,@ [ I, 0 :| @ Iy, .
0 0

Let P be the permutation that rearranges the block rows of X3T BY in the order 4, 3,1,2 and
let X = X3PT. Then

0 0
1
T O 050 T O 0 %
X" BY = I 0 , X' X=1I,,® 0 I, O
- I, 0 0

Post-multiplying Y ! to the first of these two equations and setting

By = |: ISO ;)_,:|Y—1,

we have the asserted form. 0O

In the previous results we have obtained factorizations for matrices B such that BT B is
the identity or zero. We get similar results if BT J,.B=J, or BI'.J,B =0.

10



Lemma 3.4 If B € C*™X2" satisfies BT J,,B = J,, then m > n and there exists a nonsin-
gular matriz X € C>™*2™ sych that

I, 0
XTh, = 8 IO . XTI, X = Jn.
n
0 0

Proof. The proof is similar to that for Lemma 3.1 and is hence omitted. 0O
Lemma 3.5 Let b € C*™. Then there is a unitary matriz X € C*™*2™ sych that
XTh = aey, XTJ,. X = Jp.

Proof. We again present a constructive proof that can be implemented into a numerical
algorithm. Let b = [b, 02T with by,be € C™ and let Hy € C™*™ be a unitary matrix ( e.g.
a Householder matrix) such that

HgbZ = 561.
With Hy'by = [b11,. .., bm1]” one then can determine (e.g. via a QR factorization) a unitary
matrix
1 [ b —ﬁ] ~ T[bn} [,511}
G = ) ) b = b 2 + 27 h th t G — )
b11 [ B b u b11* + (B such tha f !

Note that GTJ,G = Jy. Next, determine a unitary matrix H; € C™*™ such that
Hir[bn, 521, ey bml]T = weq.

Finally, let
Hy" 0 ][ H 0
X = 2 G
5 m el mr ]

where G € C2M*2M 5 the unitary matrix obtained by replacing the (1, 1), (1, m+1), (m+1,1),
and (m+ 1, m+ 1) elements of the identity matrix I3, with the corresponding elements of G,
respectively. It is easily verified that X is unitary and satisfies X Th = aey and XTJ,, X = J,,,.
0

Lemma 3.6 If B € C*™*" satisfies rank B = n and B”J,,B = 0, then m > n and there
exists a unitary matric X € C*™*2™ sych that

By

T —
0 ], X2 I X = Jm,

XTB:[

where By € C™*™ is upper triangular invertible.

Proof. By Lemma 3.5, there exists a unitary matrix X; such that

b b7

XTB = 8 %? o XTI Xy = T,
3
0 DBy

11



where by, b3 € C"!. Since rank B = n, we have by # 0 and from
(X1B)' J(X1B) = BT J,,B =0,
it follows that

T
Bas Bas
by = 0, T — 0.

. . : B . . :
Applying the same procedure inductively to [ 322 } , we obtain a unitary matrix X such that
24
XTB:[BO] " v XT T X = T,
0 2m —n

where By € C™*™ is upper triangular and invertible. 0O

Proposition 3.7 Let B € C*™*". Suppose that rank B = n, rank BT .J,,B = 2ng < n, i.e.,
8o = n — 2ng is the dimension of the null space of BT J,,B. Then there exists an invertible
matriz X € C*™X2™ sych that

T 0 2m —n T 0 0 150
X'B=| o . XTI, X =J,, ® 0 Ju 0 |,
ol m —Is, 0 0

where By € C™*"™ is nonsingular and n, = m — ng — dg.

Proof. Since BT J,, B is complex skew-symmetric, by the assumption and Corollary 2.5 there
exists a nonsingular matrix Y € C"*" such that

T T | Jne O
YBJmBY—[ 0 0 .

Let By € C?*™*210 be the matrix formed by the leading 2ng columns of BY. By Lemma 3.4
there exists a nonsingular X; € C?™*2™ such that

I, O
T 0 0 T
xXI'p, = . XTI, X, = Jn.
0 I,
0 0
We have
I.,, 0 B
0 0 B
XTRy =

1 0 I, Bss
0 0 Bus

Since X{ J;nX1 = Jp, also implies X1J,, X = Jp, from

(XTI BY) J(XTBY) =YTB"J,,BY = [ ‘]30 00 } :
do

12



we obtain that

T
_ _ Bag Bas |
Bl3 - 05 B33 - 07 |: B43 :| Jm—no |: B43 :| - 050

Bas

Since B has full column rank, so does {
Bys

} By Lemma 3.6, there exists an invertible

Xy € C2m=2n0)x(2m=2n0) gych that

Bos B
X [ Bis ] B [ 0 ] e

where EO € C%*% is invertible. Let P; be a permutation that interchanges the second and
third block rows of X{ BY and set X3 = X1 P! (I2p, ® X2). Then

I2n0 0 2ng
0 Eo 0o
XI'By=1 0 0| mn , XIJ.X3=1Ju® Jnno,
0 0 00
0 0 n1

where ny = m — nyg — dp. (For convenience, we have split the zero block row of XST BY into
three block rows.) Let P be a permutation that changes the block rows of Xg BY to the
order 3,5,4, 1,2 by pre-multiplication, and let X = X3P (I3, ® (=Is,) ® Iang+s,). Then

0 0 2n1
. o o | . 0 0 I
X BY - I2n0 0 20 ) X JmX - Jn1 @ 0 Jno 0
0 By | o o 00

Post-multiplying Y ! to the first equation and setting By = (I2,, ® EO)Yfl, we have the
asserted form. 0O

In this section we have presented preliminary factorizations that will form the basis in
determining the canonical forms in the following sections.

4 Canonical form for G, G complex symmetric

We start with the case that the matrix A under consideration is square and nonsingular. If
Y = U*AV is the standard singular decomposition of A, then U*AA*U = V*A*AV = X2,
i.e., the canonical forms for both AA* and A*A are just the square of the canonical form for
A. Th1s fact has a generalization in the case of a matrix triple (4, G, ), where G and G are
complex symmetric. To start from a square root of the G-symmetric matrix H = G1ATG 1A
will be the key strategy in the derivation of the canonical form in the following result.

Theorem 4.1 Let A € C™*™ be nonsingular and let G, G € C™" be complex symmetric and
nonsingular. Then there exist nonsingular matrices X, Y € C"*™ such that

XTAY = T, (1) @@ Te,, (ftm),
XTGX = Ry @@ R, (4.1)
YTqy = R& ®---P Réma
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where p; € C\ {0}, argp; € [0,7), and & € N for j = 1,...,m. Moreover, for the G-
symmetric matrizc H = GLATG™A and for the G-symmetric matrzx H =G 1AG AT we
have that A
YORY = Fi(m) @ ® T2 (km),
XTHX = J2(m)"@ 0T ()"
Moreover, the form (4.1) is unique up to the simultaneous permutation of blocks in the right
hand side of (4.1).

(4.2)

Proof. By Lemma 2.10, H has a unique G-symmetric square root S € C"*™ satisfying
o(S) € {p € C\ {0} : arg(u) € [0,7)}. Then by Theorem 2.6, there exists a nonsingular
matrix Y € C™*" such that
Ser 1= }:7151: = \751 (/“) DD jﬁm(um)v
Ger :=YTGQY = Rey, @©---® Ry,
Her =Y THY = j§21 ()@ @jgzm(/‘m),
where p; € C\ {0}, argp; € [0,7), and § € N for j = 1,...,m. (Here, the third line
immediately follows from H = S?). Using G~'AH = HG~'A and the fact that G4 is
nonsingular, we find that H and H are similar. Since the canonical form of G-symmetric
matrices in Theorem 2.6 is uniquely determined by the Jordan canonical form, we obtain

from Theorem 2.6 that the canonical forms of the pairs (7{,@) and (H,G) coincide. In
particular, this implies the existence of a nonsingular matrix X € C™*™ such that

Her = X:lH):( = u7§21 (Nl)@ e @ng (Mm)v
Gor =XT'GX = Ry, @@ Ryg,.
Finally setting X = G !XT and Y = A~ 'GX Ser, we obtain

XTAy = ~—1G—1AA—1G)?SCF = Sep
XTGX = X'G'GGIX T = (XTGX) ' =G, =
YTGy = SLXTGATGA'GXSer

= SEXTGXX"H ' XSer

- SgFGCF(HCF)_lsCF = GCFSCF(HCF)_15CF = Gep

= Gor

as desired, where we used that Scp is Gep-symmetric and that S2, = Hcp. It is now easy
to check that Y ™1HY and X 1HX have the claimed forms. Concerning uniqueness, we note
that the form (4.1) is already uniquely determined by the Jordan structure of H and by the
restriction p; € C\ {0}, argp; € [0,7). O

The canonical form for the case that A is singular or rectangular is more involved, because
then the matrices H and H may be singular as well. The key idea in the proof of Theorem 4.1
was the construction of a G-symmetric square root of H, but if H is singular, then such a
square root need not exist. (For example, the R,,-symmetric nilpotent matrix 7,(0) does not
have any square root let alone a R,-symmetric one.) A second difficulty comes from the fact
that the Jordan structures of H and H may be different. For example, if

0000 0100 1000
1000 1000]| - 000 1
A=lg o001 | G=of=4 g [ G=mOR=,,
0010 0010 0100
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then we obtain that

0000 0000
i T, |00 10  iAiar 1000
H=GATG A= | 0 o o || ®=GTrAGAT=| O

0000 0010

Here H has a 1 x 1 and a 3 x 3 Jordan block associated with the eigenvalue zero, while H has
two 2 x 2 Jordan blocks associated with zero. In general, we obtain the following result.

Theorem 4.2 Let A € C™ " and let G € C™™ G € C™™ be complex symmetric and
nonsingular. Then there exist nonsingular matrices X € C™*™ and Y € C™*"™ such that

XTAY = AP Az71 @ Az,? b Az,3 S3) AZ,47
XTGX = Gc S¥ Gz,l > Gz,2 &® Gz,3 @ Gz,47 (43)
YIGYy = G.0G.10G.00G. 380G,

Moreover, for the @—symmetm’c matric H = G1ATG1A € C™" and for the G-symmetric
matriz H = G"TAG™1AT € C™*™ we have that

YUHY = HeoHo) ®Hoo®Hoz®Hou,
X_lHX == Hc @ Hz}l @ Hz72 @ Hz’,?, @ Hz74-

The diagonal blocks in these decompositions have the following forms:

0) blocks a§socz’ated with nonzero eigenvalues E)f'):{ and H:
Ac, Ge, G have the forms as in (4.1) and H., H. have the forms as in (4.2);

1) one block corresponding to ng Jordan blocks of size 1 x 1 0f7:l and mqy Jordan blocks of
size 1 x 1 of H associated with the eigenvalue zero:

~ ~

Az,l = Omoxnoa GZ 1= Imoa Gz,l = Inoa Hz 1= 0n0> HZ 1= 0m07

) ) )

where mo,ng € NU{0};

2) blocks corresponding to a pair of j x j Jordan blocks of H and H associated with the
eigenvalue zero:

71 2 e
A2 = @D %R(0) @ Galj4(0) O D D Ju(0),
i=1 i

=1

71 2 e
GZ72: @Rz &5, @R;; b---D @R%,
=1 =1 =1

. 7 72 Ye
G.o = DR & PR & DRy,
i=1 i=1 i=1
R ! 9 72 9 e 9
H.o = @ J50) @ IO &---d P Ty(0),
i=1 i=1 i=1
A 22T 2D 72 (T AN 22 (T
H.p = D IF0) @D Ii(0) @ &P Tg0),
i=1 i=1 i=1

where y1,...,7v € NU{0}; thus, 7:(272 and H. 2 both have each 2v; Jordan blocks of size
jxgforjg=1,...4;
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3) blocks corresponding to a j x j Jordan block of H and a (j + 1) x (j + 1) Jordan block
of H associated with the eigenvalue zero:

m1 I m2 I me—1 I_
ra=8[ 5] e85 oo ||
i=1 2x1 =1 3x2 i=1 £x(6-1)
mi m2 me—1
G.3= DR & @R & @D R,
i=1 i=1 i=1
~ mi m2 me—1
G.s3= @GR @® DR & - ® R,
i=1 i=1 i=1
~ mi m2 my—1
H.3= P70 & SR o--& @ J-1(0),
i=1 i=1 i=1
mye—1

Hos = BROT & @HOT &0 @ 507,
=1 =1 =1

where my,...,my_1 € NU{0}; thus, 7:(273 has mj Jordan blocks of size j x j and H, 3
has m; Jordan blocks of size (j +1) x (j+1) forj=1,...,0—1;

4) blocks corresponding to a (j + 1) x (j + 1) Jordan block of H and a j % j Jordan block
of H associated with the eigenvalue zero:

Ne—1

ni n2
Aca = 6_91 [0 Il]lx2@§91 [0 IQ]zxs@'”@@ [O Ie_l](f—l)xf’

ni n2 Ty—1

G.a= Dl & DR o8 D Re-1,
=1 =1 =1

N ni n2 ne—1

Gea = DR & HR @D D Ry,
i=1 i=1 i=1

Ne—1

Hot= BRO) o OHO o0 @ 50,
=1 =1 =1

ne—1

Hoa= @AO07T & RO &6 @ Ja(0)
i=1 i=1 i=1

where ny,...,ny_1 € NU{0}; thus, 7:(2,4 has n; Jordan blocks of size (j + 1) x (j + 1)
and H. 4 has nj Jordan blocks of size j X j for j=1,...,0—1;

For the eigenvalue zero, the matrices H and H have 27yj+m;+n;_1 respectively 2v;+mj_1+n;
Jordan blocks of size j x j for j =1,...,L, where my =ny = 0 and where £ is the mazximum of
the indices 0f7:[ and ‘H. (Here, index refers to the size of the largest Jordan block associated
with the eigenvalue zero.)

Moreover, the form (4.3) is unique up to simultaneous block permutation of the blocks in
the diagonal blocks of the right hand side of (4.3).

Proof. The proof is very long and technical and is therefore postponed to the Appendix. O

We highlight that the numbers mg and ng in 1) of Theorem 4.2 are allowed to be zero.
This has the effect that there may occur rectangular matrices with a total number of zero
rows or columns in the canonical form. We illustrate this phenomenon with the following
example.

16



Example 4.3 Consider the two non-equivalent triples

mzwlLQZUL@:Hé]

and @_mlL@_pL@_H?}

The first example is just one block of type 4) in Theorem 4.2. Indeed, forming the products

0 1

Hy = GrATG A = { 0 0 } , Hi=GrlAGT'AT =[0],
we see that, as predicted by Theorem 4.2, H, has only one Jordan block of size 2 associated
with the eigenvalue A = 0 whereas H; has one Jordan block of size 1 associated with A = 0.

The situation is different in the second case. Here, we obtain

0 0

ﬂgzéglAQTG;lA:{o 1

} . Ho=Gy'AG AT =[1],

ie., Hs has two Jordan blocks of size 1, one associated with A = 0 and a second one associated
with A =1, while Hy has one Jordan block of size 1 associated with A = 1. Here, the triple
(A2, G2, G>) is in canonical form consisting of one block of type 1) and size 0 x 1 and of one

block of type 0):
@ﬁoﬁk@zﬁL@:“$ﬂ.

Remark 4.4 Theorem 4.2 in particular covers the special case G = I,,, and G = I, ie.,
the case that H = ATA and H = AAT. In comparison to the standard singular values of
a matrix A € C™*" which are o1,...,0yin(mn) = 0 and which are the square roots of the
eigenvalues of AA* and A*A, we now obtain the “transpose singular values” of A according
to Theorem 4.2 as

1
j&(,u,l),...,Omoxno,jgpl(()),..., |: 81 ] R [ 0 I, ] s een

where p; # 0, arg(p;) € [0,7) and &j,pj,q;,7; € N. Theorem 4.2 displays how thee blocks
are related to the eigenvalues and Jordan structures of AAT and AT A.

The canonical form of A in Theorem 4.2 together with the canonical forms for AA” and
AT A in the special case G = I,,,, G = I, can also be deduced from Theorem 5 in [11], where
the canonical form for a pair (B,C), B € C™*" C € C™*™ under the transformation

(B,C) — (X7'BY,Y~'CX), X,Y nonsingular

is given. Setting then B = A and C' = AT then yields the desired form. The result of
Theorem 4.2, however, gives additional information on the transformation matrices X and
Y, because we also have a canonical form for X7X = XTGX and YTY = YTGy.

A well known result by Flanders [4] completely describes the Jordan structures of the
products BC' and C'B, where B € C™*™ and C' € C™*™. Recall that the partial multiplicities
of an eigenvalue A of a matrix M € C™*"™ are just the sizes of the Jordan blocks associated
with A in the Jordan canonical form for M.
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Theorem 4.5 ([4]) For M € C"™*™ and N € C™*" the following conditions are equivalent:
1) There exist matrices B € C™*" and C' € C"*™ such that M = BC and N = CB.
2) M and N satisfy the Flanders condition, i.e.,

i) M and N have the same nonzero eigenvalues and their algebraic, geometric, and
partial multiplicities coincide.

i) If (13)ien is the monotonically decreasing sequence of partial multiplicities of M
associated with the eigenvalue zero, made infinite by adjunction of zeros, and if
(Gi)ien s the corresponding sequence of N, then |1, — (;| < 1 for all i € N.

With the canonical form of Theorem 4.2, we are now able to prove a specialization of
Theorem 4.5 for the case of complex symmetric matrices.

Theorem 4.6 For M € C™*™ agnd N € C™ "™ the following conditions are equivalent:

1) There exists a matriv A € C™ ™ such that M = AAT and N = AT A.

2) M and N are symmetric and satisfy the Flanders condition, i.e., i) and ii) in Theo-
rem 4.5, as well as

ili) Let ¢, be the number of indices j for which 7; = (; = k, where (7;)ien and (()ien
are the sequences as in Theorem 4.5, and let ky > --- >k, be the numbers k € N
for which ¢y is odd. If v is even, then for j =1,...,[§] we have that ¢p # 0 for
all k with kaj—1 > k > koj. (Here, [k] denotes the smallest integer larger or equal
to k and we set ky41 := 1 in the case that v is odd.)

Proof. ‘1) = 2): Let H = M = AAT and H = N = ATA and let wj and w; denote
the number of Jordan blocks of size j x j associated with the eigenvalue zero of H and H,
respectively. Using the same notation as in Theorem 4.2, we obtain that

wj:2'yj+nj+mj,1 and d)j:2'yj+mj—|—nj,1, jZl,...,f.

Assume without loss of generality that my,_; > ny_1. Since my = ny = 0, we find that
the first 2y 4+ ny_1 entries in the sequences (7;);en and ({;)ien are given by ¢ which implies
¢¢ = 2v¢+ny—_1. The sequence (7;) has my_1 —ny_1 more entries equal to ¢ that are paired to
my_1 — ng—1 entries £ — 1 in (¢;). Since then there are 2,1 + ny_1 + ny_o more entries £ — 1
in (¢;) and 2,1 + ng_1 + my_o entries £ — 1 in (73), we obtain that ¢y_1 = 2,1 + ny_1 +
min(my_9,n¢_2). Continuing the counting in the way just described finally yields

¢j = 2v; + min(m;, n;) + min(mj_1,n;-1), j=1,...,¢ (4.4)

If v = 0 then there is nothing to prove, so assume v > 1. Since 0 = min(my, ny) is even

as well as ¢y, ..., P, +1, we obtain from (4.4) that min(m;_q,nj_1) is even for j > k; and

min(mpg,—1, Nk, —1) is odd. Clearly, we must then have that min(my_1,nx_1) is odd for all k

satisfying k1 > k > ko. In particular, this implies ¢y # 0 for all such £k as well as ¢, # 0 and

¢r, # 0. If v < 2 we are done. Otherwise, min(my,_1,nk,—1) is even and we can repeat the
|14

argument for koj 1 > k> kgj for j =2,...,[5].
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‘2) = 1): Let ¢ be the largest entry that appears in one of the sequences (7;);en and
(Ci)ien. First, let us assume that v = 0 or k; = 1, i.e., ¢; is even for j = 2,...,¢. Then we
build up a matrix triple (g, G, G) as a direct sum of blocks as follows: for the ¢ indices j
with 7; = (; = k, k # 1, we take ¢;/2 blocks as in 2) of Theorem 4.2 and for each index
J with |7, — (| = 1, 75,(; # 0, we take a block as in 3) respectively 4) of Theorem 4.2.
Finally, if there are, say, mq indices in (7;) left with 7; = 1 and ng indices in (¢;) left with
¢; = 1, then we take a block of size my X ng as in 1) of Theorem 4.2. Then, by construction
and Theorem 4.2, the matrices H = G 1AG1AT and H = G~1ATG~1A have the same
Jordan canonical form as M and N, respectively. Let Z,Z be such that Z'GZ = I,, and
ZTGZ = I,. Then setting A = ZTAZ, we find that AAT = Z-YHZ and ATA = Z-'HZ
are symmetric. Thus, there exist orthogonal matrices S and T such that SAATS1 = M
and TATAT-! = N. (This well-known fact is a direct consequence of Theorem 2.6.) Then
A = SAT! satisfies M = AAT and N = AT A.

Next, assume that k; > 1. Then 2) guarantees that for each k with kgj_1 > k > ko,

j=1,...,[5] we have that ¢, > 2. This allows us to modify the sequences (7;) and (¢;) to

(not necessarily monotonically decreasing) sequences (7;) and (¢;) such that the number of
indices j with 7; = (; = k is even for all £ > 1. In order to avoid too complicated notation,
we explain the modification only for the case v < 2. The general case is analogous. Thus, if

(’7‘1') = ..k, k. k=1, k=1 ke, ko + 1. ke, ke,
——— — -
Phey Py —1 Plg+1 Pley
(CZ) = ..k, ok, k=1, k=1 ke + 1, ko + 1. ke, ke,
N——— ~- —_—
Pky Py —1 Pho+1 Py

then the corresponding parts in the sequences (7;) and (ZZ) take the forms

(73) = .k, ko k=1 k=1 ke + 1, ko + 1. ke, ke, S
~~ SN————
_ ¢, —1 Pry—1—2 Phg+1—2 Py —1
(CZ) = ...,kl,...,kl,...,kl—1,...,]{}1—1...,]452—{—1,...,](32—}—1...,k2,...,k52,5€,...,
$ry—1 Pry—1—2 Phy+1—2 Py —1
where
= = k1, ki—1, k1—1, k1 —2, ..., ko+1, ko;
E< = k-1, k1, ki —2, kt—1, ..., ko, ko + 1.

When the sequences (7;) and (@) have been constructed, we can apply the strategy of the
previous paragraph to construct A such that M = AAT and N = ATA. 0O

Example 4.7 Let

L 1 1 i 0 ~1 i 0
MI:[Z__J, le[i 1}, My=|i -1 0|, No=| i 1 0],
0 0 0 0 00

i.e., My and N; are similar to a Jordan block of size 2 x 2 associated with zero. Then
(T-(l))ieN = (Ci(l))ieN = (2,0,0,...) and (T@)ieN = (Ci@))ieN = (2,1,0,...) are the sequences

(3 K3
as in Theorem 4.5 associated to Mi, N1 and My, Ny, respectively. In both cases, we have

¢2 = 1 which is odd. The sequences associated to M; and N; do not satisfy condition iii)
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in Theorem 4.6, while the sequences associated with Ms and Ny do. Indeed, there does not
exist a matrix Ay such that M, = AlAlT and N1 = AlTAl, because setting

a b
m=10 4]

gives

a?+b> ac+bd 1 and a’+c* ab+cd e

ac+bd A+d* | | i -1 ab+cd b24+d*> || i 1
which implies d = +a. If d = —a then ¢ = ac — ba = ab — ca a contradiction. But d = a
implies a? = bc, because det A1 = det M; = 0. Moreover, we then have be+b%> =1 = —c?> —bc

which implies (b + ¢)? = 0, i.e., ¢ = —b, contradicting a® + > = 1 # a® + c?. On the other
hand, we have

0 01
My, =AAT and N, =ATA, where A=|0 0 i
1 1 0
Here, the canonical form for the triple (A, I3, I3) is given by
0 1]0 1/0 0 0 10
olt|.|0ofo 1],[1 0]o0
0 00 0|1 0 0 0|1

5 Condensed forms for G complex symmetric, G complex
skew-symmetric

In this section we study the canonical forms for the case that G is complex symmetric and
G complex skew-symmetric. Again, we start with the canonical form for the case that A
is quadratic and nonsingular. We cannot directly use our key strategy from the proof of
Theorem 4.2 and construct a square root of 7:(, because now H is G-Hamiltonian. A G-
Hamiltonian matrix can neither have a G-Hamiltonian nor a G-skew-Hamiltonian square root,
because the squares of matrices of such type are always G-skew-Hamiltonian. T herefore, we
will start from the fourth root of the G-skew-Hamiltonian matrix H? instead.

Theorem 5.1 Let A, G, G € C**2" pe nonsingular and let G be complex symmetric and G
be complex skew-symmetric. Then there exists nonsingular matrices X,Y € C?™*?" such that

Je(pa) 0 ] Tem (m) 0
XTAY — &1 D@ m 7
I: 0 ‘751 (Nl) 0 «7§m (Mm)
T — 0 Rgl . 0 Rém
XTGX = Re 0 O @ Re, 0| (5.1)
TAy 0 R 0 Re,
Y'GY = [—R& 0 S5 S¥ _Rém 0 )

where p; € C\ {0}, argp; € [0,7/2), and {§ € N for j = 1,...,m. Moreover, for the G-
Hamiltonian matriz H = GTYATG™ 1A and the G-skew-symmetric matric H = G- AG—1AT
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we have that

19 _j§21 (1) o —\7§2m (k) 0
Yy = [ 0 T2(m) L@ ¢ { 0 T2 () ]T’ )
- [ T2 (m) 0 TE (bm) 0 '
X YHX = I: 3 0 —jgl('ul) ] @...@|: i3 0 _%%n(um) ] )

Proof. By Theorem 2.8, there exists a nonsingular matrix Y € C™*" such that

y—lﬂyz[jﬁlw 0 ]@...@[Jsm(km) 0 ]

0 —JTe, (M) 0 ~Tep (Am)
T ANy _ 0 Re 0 Re,
y Gy B |:_R£1 O @ EB _Rgm O ’
where \; € C\ {0}, arg(\;) € [0,7), and & € N for j = 1,...,m. Next construct the matrix
S such that
y—lgy: |: *751()‘1) 0 ] DB [ t7§m(>‘m) 0 :|

It is easily verified that S is @—skeW—Hamﬂtonian, that it satisfies S2 = 7:(2, and that we have
o(S) C {z € C\ {0} : arg(z) € [0,7)}. Thus, by the uniqueness property of Lemma 2.10,
we obtain that S is a polynomial in H2. Moreover, applying Lemma 2.10 once more, we
obtain that S has a unique square root S € C"*" being a polynomial in S and satisfying
o(S) C{zeC\{0}:arg(z) € [0,7)}, namely

y lsy _ &1
[ 0 \751 ()\1)

[NIE

N|=

jﬁm()‘m)% 0
0 Jeu(m)? |
In fact, we must have
o(S) C{zeC\{0}:arg(z) € [0,7/2)},

because otherwise S would have eigenvalues Aj with arg(\;) € [m,27). Let ,u? = )\, and
arg(u;) € [0,7/2). By Theorem 2.9 we then obtain that there exists a nonsingular matrix
Y € C™™ such that

Scp:sz—ls?:[j&(“l) 0 ]@...@[ng(um) 0 ]

0 Je(m) 0 e (pm)
N L TTAY _ 0 Rg 0 Re,
Gop = YTGY = {_R& o | #e |Lp. 0|

Moreover, using G Y AH = HG A and the fact that G~'A is nonsingular, we find that H
and H are similar. Thus, by Theorem 2.7 there exists a nonsingular matrix X € C™*" such
that

AR ~J2 (m) ] [ ~J2 (pm) 0 ]
— X—1nx = &1 Em
Hor = X0 [ o 22w [T 0 2 |
Gor = XTGX = [ Re 0 @@ Re. 0
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Indeed, since H is similar to ﬂ, it has the eigenvalues \; = ,ujz with partial multiplicities
&, J = 1,...,m. Since the canonical form of G-skew-symmetric matrices in Theorem 2.7
is uniquely determined by the Jordan canonical form, we find that the pairs (H,G) and
(Her, Geop) must have the same canonical form. Observe that Sqr is Gep-symmetric, but not
a square root of Her. Instead, it is easy to check that

_ -1, 0 -1, 0
Sorler) 15“2[ 0 1. }@”'@[ 0" I ]
1 m

Using this identity and setting X = G X TandY = A_IG;(SCF, we obtain that

XTAy = X 'G'AAT'GXSer = Sor,

XTex = X'¢7'GG'X T = (XTGX) ™' = (Gex) ™" = Gor,
YTGy = SLXTGATGA'GXSer
SEXTGXX"H ' X Ser

ST.Gor(Hor) ' Ser = GorSor(Her) ™ Sor = Gor.

It is now straightforward to check that Y 1HY and X 'HX have the claimed forms. Con-
cerning uniqueness, we note that the form (5.1) is already uniquely determined by the Jordan
structure of H and by the restriction pu; € C\ {0}, arg pu; € [0,7/2). O

Theorem 5.2 Let A € C™*?", let G € C™ ™ be complex symmetric and nonsingular and
let G € C?™X2" be complex skew-symmetric and nonsingular. Then there exists nonsingular
matrices X € C™*™ and Y € C*™ 2" such that

XTAY = Ac ) Az,l b Az,2 D Az,?) ) Az,4 ©® Az,5 S5 AZ,65
XTGX = Ge®G.1®G.00G.38G.40G.50 G, (5.3)
YTGY == CA;'c & éz,l @ éz,Z 5% éz,3 & GZ,4 s> GZ,5 2 éz,ﬁ-

Moreover, for the G-Hamiltonian matriz H = G 1ATG™1A € C22n gnd for the G-skew-
symmetric matric H = GTTAG™TAT € C™ ™ we have that

Y_]-’}:[Y == 7:(5 @ ’):[z,l @ 7:(272 @ Hz73 @ 7:(,314 @ 7:[,2’5 @ 7:{2767
X_lHX - HC @ Hz,l @ Hz}Q @ Hz73 @ Hz’4 @ Hz,5 @ HZ76

The diagonal blocks in these decompositions have the following forms:

0) blocks assoctated with nonzero eigenvalues 9f7:[ and H:
Ac, G, G have the forms as in (5.1) and H., H. have the forms as in (5.2);

1) one block corresponding to 2ng Jordan blocks of size 1 x 1 0f7:[ and mg Jordan blocks
of size 1 x 1 of H associated with the eigenvalue zero:

A~

Az,l = 0m0><2n07 Gz,l = Im07 Gz 1= Jnoa Hz,l = 02noa Hz,l = Omoa

)

where my,n, € NU{0};
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2) blocks corresponding to a pair of 7 x j Jordan blocks of H and H associated with the
eigenvalue zero:

Y1 Y2 Y2041
A.o= @D R0 & &b J4(0) S D Tu4+2(0),
=1 =1 =1
Y1 Y2 Y2041
G.o= D R &) D Ra G- P D Rart2,
i=1 =1 =1
. 1l 0 R 21 0 R V2241 0  Rorp
Go= :
? @@1[310]@@[ 20] G 1@1—3%1 0
~ Y2 Y2041
H.o= EB 02 ®P(—202)T70) D d D (—Zors1,2041)Tfr15(0)
i=1 =1 i=1
Y1 Y2 T Y2041 9 T
H.2= @ 02 EB D1 TEO)T @ P Do Tf 00T
~ =1 =1

where v1,...,v € NU{0}; thus, 7:[@2 and H 2 both have each 2v; Jordan blocks of size
jxjforj=1,...,204+1;

3) blocks corresponding to a 2j x 2j Jordan block of H and a (2§ + 1) x (2j + 1) Jordan
block of H associated with the eigenvalue zero:

ma [ T. my [T mop [T,
Ay = 69[02] @EB[S‘] @"'@@[oﬂ :
i=1 3x2 i=1 5x4 i=1 (204+1)x2¢
mo maq maoy
G.3 = @D Rs ® D Rs ®---® D Roer1,
i=1 i=1 i=1
A 2 0 R ma 0 Ry 20 Ry
G L5 0] e 8L e gl
. ma
H.3 = B(=211)70) @ EB( Y2)J1(0) &--- & @( Y0)T2(0)
i=1
mo m2£
Hes = D X1 T300)07 & @ Y30T5(0)0 @& @ Zor10T2041(0)7,
i=1 i=1 i=1
where ma, my, ..., mgy € NU{0}; thus, 7:[2,3 has maj; Jordan blocks of size 2j x 2j and

H. 3 has moj Jordan blocks of size (2j +1) x (2 +1) for j=1,...,¢;

4) blocks corresponding to two (25 —1) x (25 —1) Jordan blocks of H and two 2j x 2§ Jordan
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blocks of H associated with the eigenvalue zero:

0 I 0 I3 0 Ippq
ml 0 ms | 0 maei| g
Az — ) D---P ,
4 1@1 I 0 ziq I3 0 g 12571 0
00 4x2 00 8x6 0 0 40x (40—-2)
mi m3 moe—1
G.u = @R4 ® @Rg G---PD @ Ry,
. om0 Ry ms [0 Ry et 0 Rop
Gt = ﬁal [_Rl 0 ] @ i=1 [_Ri’) 0 ] e 1@1 [_R%—l 0 ’
N m ms3 _j3(0) 0 } moe—1 [_\722_1(0) 0 ]
Hoq = 0 D DD ,
a 1@1 ? il[ 0 J5(0) 1@1 0 J2-1(0)
T T T
mi _j2( ) 0 } m3 {—j4(0) 0 ] mae—1 [—524(0) 0 ]
HZ = @ @ tee @ 9
= 870 %0)° 87050 10 o
where my,ms,...,moy—1 € NU{0}; thus, 7:(274 has 2maj_1 Jordan blocks of the size

(25 —1) x (2§ — 1) and H. 4 has 2mgj_1 Jordan blocks of size 2j x 2j for j=1,...,¢;

5) blocks corresponding to a 2j x 2j Jordan block of H and a (2§ — 1) x (2 — 1) Jordan
block of H associated with the eigenvalue zero:

ni n3 Nno2e—1

Az = 1@1[0 Il]l><2 b 1@1[0 I3]3><4 @"'@2@1 [0 124_1](2671)><2€’
ni n3 nae—1
G.5 = @Rl & @D Rs @D D Ro—1,
; =1 i=1
- 0 Ry 210 R "1 () Ry,
oo 85 e 8L ee @R
~ ni n20—1
H.s = @(=211)7(0) @ GB( 202)J1(0) & D (—Xee)T2(0) ,
i=1 i=1
noe—1
H.5 = @01 & @22,153(0)T © B D Xie-1T2-1(0)T,
=1 i=1 i=1

where ny,ng ... ,ng—1 € NU{0}; thus, 7:[215 has naj—1 Jordan blocks of size 2j x 2j and
H.5 has naj—1 Jordan blocks of size (2j —1) x (25 —1) for j=1,...,¢;

6) blocks corresponding to two (2j+1) x (2j+1) Jordan blocks of H and two 2j x 2j Jordan
blocks of H associated with the ez’genvalue Z€er0:

210001y 0001 n2e 10 0 0 Iy
=1 (0120 0], 110140 0]g 01200 40 (4042)
nay
G.6 = ®R4 ® @Rs DD @RM,
i=1
. n2 O Rs e 0  Ror
G = Bs| [ O @ [ } ;
0 691 [ 0 ] @ Rs 0 1@1 Rogyr 0
» jB(O) 0 ] [ 5(0) 0 :| nae [ jgg_;,_l( ) 0 :|
H.6 = ® @D ,
o= 8700 ﬁ‘? 75(0) Sl 70 2o

j4((]0)]T@"'@ 9[ j(z)e( )j2€()(0)r7

X
N
>
Il

D3 1

[ V)

|

o R

—~

o

S—
R

/\o
(e}
S—

I—l
EB

|

Y oo

e

o
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where ng, Ny, . .., nge € NU{0}; thus, ﬂz’ﬁ has 2na; Jordan blocks of size (2j+1)x (2j+1)
and H. 6 has 2ng; Jordan blocks of size 25 x 2j for j =1,...,¢;

For the eigenvalue zero, the matrices H and ‘H have 279, + maj + noj—1 respectively 279, +
2maj_1 + 2ng; Jordan blocks of size 2j x 25 for j = 1,...,4 and 22511 + 2majy1 + 2ny;
respectively 2y2j41 + maj + ngjr1 Jordan blocks of size (2j + 1) x (25 + 1) for j =0,...,L.
Here magyr1 = ngpyr1 = 0 and 20 + 1 is the smallest odd number that is larger or equal to the
mazximum of the indices Of'):( and H. (Here index refers to the mazimal size of a Jordan
block associated with zero.)

Moreover, the form (4.3) is unique up to simultaneous block permutation of the blocks in
the diagonal blocks of the right hand side of (4.3).

Proof. The proof is presented in the Appendix. 0O

6 Canonical forms for G,G complex skew-symmetric
In this section we finally treat that case that both G and G are complex skew-symmetric.

Theorem 6.1 Let A € C**2" be nonsingular and let G,G e C2nx2n pe nonsingular and
complex skew-symmetric. Then there exists nonsingular matrices X,Y € C22" such that

XTAY — [J&(Ml) Oﬂl)] S {jgm(um) 0 ]

0 Te ( 0 Tt (Him)
0 R 0 R
T _ €1 Em
XTGX = [_R& 0 D@ [—Rgm A (6.1)
A 0 —R 0 —-R
T _ & &m
YTay = [R& 0} D@ [Rgm 0],

where p; € C\ {0}, argp; € [0,7), and { € N for j = 1,...,m. Furthermore, for

the G-skew-AHamiltonian matric H = GYATG 1A and for the G-skew-Hamiltonian matriz
H =G TAG AT we have that

\7521 (1) 0 o ~752m (£m) 0
0 ngl)]@ @[ 0 Jga(um>]’

. Few) o 7" T2 () 01"
X IHX — |: & :| e |: Em :| .
o Fw) ] T o Z2 ()

= [ (6.2)

Proof. The proof proceeds completely analogous to the proof of Theorem 4.1. Starting with
a skew-Hamiltonian square root S of H that is a polynomial in H (such a square root exists
by Lemma 2.10) and reducing the pair (S; G) to the canonical form

(Ser, Ger) = (17_1537, ?Téf/)
of Theorem 2.9, we obtain the existence of a transformation matrix X such that
(X"HX, XTGX) = (5%, —Ger).

Here, it is used that by Theorem 2.9 the canonical form of all three pairs (H, G) (H G),
and (H,—G) is the same, because ‘H and H are similar. Then setting X = G'X~7 and
Y = A 'GXSer yields the desired result. O
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We mention that the choice of the transformation matrices X,Y in Theorem 6.1 so that
XTGX = —YTQGY rather than XTGX = YTGY is just a matter of taste. A canonical
form (with modified values instead of j1,...,um in XTAY) with XTGX = YTGY can
be constructed as well, but this would lead to the occurrence of distracting minus signs in
the forms for H and H. Therefore, we prefer to represent the canonical form as we did in
Theorem 6.1.

Theorem 6.2 Let A € C2™*2" gnd let G € C2m¥2m G e C2%2" pe complex skew-symmetric
and nonsingular. Then there exists nonsingular matrices X € C*™?™ qnd Y € C**2" such
that

XTAY = Ac D Az’l D Az,2 D Az,3 D Az,4a
XTGX = G.®G,190G.20GC.33G,4, (6.3)
YIGY = Ge0G.i ®G.00G.50G,

Moreover, for the (A;-skew—Hamz'ltoniaAn matric H = G 1ATG™1A € C*2n gpd for the G-
skew-Hamiltonian matriz H = G"YAG™TAT € C?™*2m ye have that

YYHY = H. @ Hor @Hoo ®Haz @ He,
X_lHX — Hc @ Hz,]_ @ sz? @ Hz73 @ sz4-

The diagonal blocks in these decompositions have the following forms:

0) blocks a§soc7jated with nonzero eigenvalues 9f7:[ and H:
Ac, G, G have the forms as in (6.1) and H., H. have the forms as in (6.2);

1) one block corresponding to 2ng Jordan blocks of size 1 x 1 0f7:l and 2mg Jordan blocks
of size 1 x 1 of H associated with the eigenvalue zero:

Az,l = 02m0><2n07 Gz,l = Jm07 Gz,l = Jno’ Hz,l = 02n07 Hz,l = OZmo;

2) blocks corresponding to a pair of j X j Jordan blocks of H and H associated with the
eigenvalue zero:

71 Y2 Ve
Ap= DBRO) & BAN0O) &---& @ I0),
i=1 i=1 i=1

a0 R 2[00 R [0 R
o @l o]e @l hv]o e & k]
. om0 R 2 [ 0 Ry w0 Ry
G- @lnv)e @l h oo 8k
R Y1 Y2 . 9 v . 9
Hz,QZ @02 57 @F4j4 (0> D---D @F%jgg(o) )
i=1 i=1 i=1
g 72 2 /T Ve 9 T
Hoo= Do e PIruIi0) @ - P Inuds(0)",
i=1 i=1 i=1
where v1,...,7v € NU {AO}, ﬁgj = (_Ij—l) e D (—Ij), and ng = (—Ij) e (_Ij—l)
for g =2,...,¢; thus, H.2 and H.2 both have each 2v; Jordan blocks of size j x j for

j=1,....0;
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3) blocks corresponding to two j x j Jordan blocks 0f7:{ and two (j + 1)

x (j +1) Jordan

blocks of H associated with the eigenvalue zero:

0 L
mir 0 0
A, =
3 g I; O
0 0 4x2
mi 0 Ry
G,3 =
= &
A mi 0 Ry
G.3 =
o= &0
~ mi
H.3 = @ 0,
i=1
mi [ 75(0) 0 }
Hz -
3 6291[ 0 J(0)

@

S

)

T
S2)

0 I 0

Blhs| By
o i g
i=1 [—%3 03] e z@l [_RZ Oﬁ] |
ECR (]
m ‘D

;‘51 [@0(0)@?0)] G- @ ;911 [j“ol(o)ye?(o)} ’
m ; ® T
g[jgo(mjg(()o)]@“‘@ E:Bl [%(O)Je?o)] ’

where my,...,my_1 € NU{0}; thus, 7%273 has 2m; Jordan blocks of size j x j and H. 3

has 2m; Jordan blocks of size (j +1) x (j+1) forj=1,...,0—

1 .

7

4) blocks corresponding to two (j + 1) x (j + 1) Jordan blocks of H and two j x j Jordan
blocks of H associated with the eigenvalue zero:

ta=Blonoo] 8Ll e8],
Goa = 32 [_%1 %1] ® 5291 [_232 }Eﬂ Gre né:él [_R(l—l Rg_l]
e BN BN e B[ E]
Foa= @ [‘720(0) jg?o)] > & {j?b(o)jg?o)] Gl n@ [ﬂo(o)ﬂ?m]’
Hen = z‘g—él[jl()(O)Jf()O)]T@ z‘g—‘%[jQ()(O)j;()O)]T@ o té—a: [%_01(0)‘7’5?(0)]:?

where ny, ...,ng_1 € NU{0}; thus, H..4 has 2n; Jordan blocks of size (j +1) x (j + 1)

and H. 4 has 2n; Jordan blocks of size j X j for j=1,...,4 —

1;

Then for the eigenvalue zero, the matrices H and H have 27 + 2m; + 2nj_1 respectively
27; 4+ 2mj_1 + 2n; Jordan blocks of size j x j for j =1,...,£. Here £ is the maximum of the
indices of H and H. (Here, index refers to the maximal size of a Jordan block associated with

the eigenvalue zero.)

Moreover, the form (6.3) is unique up to simultaneous block permutation of the blocks in

the diagonal blocks of the right hand side of (6.3).

Proof. The proof is presented in the Appendix.

0
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7

Conclusion

We have presented canonical forms for matrix triples (A4, G, G’) where G, G are complex sym-
metric or complex skew-symmetric and nonsingular. The canonical form for A can be inter-
preted as a variant of the singular value decomposition, because the form also displays the
Jordan canonical forms of the structured matrices H = G 'ATG 14 and H = G 1AG AT,
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Appendix: Proofs of the main theorems

In the appendix, we present a constructive and recursive proof of Theorem 4.2. Then, we
explain the necessary changes to be made in the proof to obtain the proofs of Theorems 5.2
and 6.2.

Proof of Theorem 4.2

The proof proceeds in four well-separated steps. First, we present a reduction towards a
staircase-like form by repeatedly applying Proposition 3.3. In the second step, we further
reduce this staircase-like form towards a form that can be considered as a canonical form. In
the third step, we show how single Jordan blocks can be extracted from the form. Finally,
uniqueness is proved in the fourth step.

Step 1) Reduction to a stair-case-like form

Applying appropriate congruence transformations to G and G otherwise, we may assume that
G =1, and G = I,,. Let
A= B CT

be a full rank factorization of A, ie., By € C™*", Cy € C"*", rank By = rankC; = r.
Applying Proposition 3.3 to By and C1, respectively, we can determine nonsingular matrices
X1 e C™*™ and Y, € C"*" such that

0 o 0 0 Is
X', = 0| &, XiXs=I,®| 0 I, 0 |,

| Bio | -+ I, 0 0

0 1 # 0 0 I
vic, = 0 5, YIVi=L,@| 0 I 0 |,

_CIO_ T 131 0 0
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where Big, Chg € C™%" are both invertible, p1,d1, p1,01 > 0, and

pL+o=p1+o=r

Partition
D1 01
T m [Ass A34}
310010_61 [A43 Ay 1V
then
00 O 0
00 O 0
T _ T
vy, =

I, 0 0 0
0 0 0 Iy
0 0 I, 0
0 I, 0 0 |
Ly 0 0 0 ]
0 0 0 I
0 0 Iy, 0
0 I; 0 0 |

Applying the same procedure to the triple (Ass, Ip,, I, ), we can construct nonsingular ma-

trices Xo, Yo such that

0 0 O 0
v~ oo 0o o0 .
Xy Ass¥e = 0 0 Ass Ase |’ KXo X2 =
0 0 Ags Aes
Y)Y, =

where p, 82, 2,02 > 0, Agg € F2X%2 Agsg € FP2X2 Ags

p2 + 09 = po + do = rank Asz, and where the matrix

Iy, 0 0 0
0 0 0 I
0 0 I, O
0 I, 0 0

Iy 0 0 0
0 0 0 I
0 0 Iy O
0 I, 0 0

€ Fo2xP2 A €

[ Ass  Asg ] € F(P2+52)x(p2-+32)

Aes  Ass
is nonsingular. Letting

Xo = X1(Ing1s, ©® Xo ® I,), Yo=Yi(L.
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we then have

00 0O 0 O 0 0] (I, 0 0 O O O O
Oo0 0 0 o0 0 O 0 0 0 0 0 0 Iy
00 0 0 0 0 As 0 0 I, 0 0 0 O
XFAY, =100 0 0 0 0 Ap|, XIXo=|0 0 0 0 0 I 0 |,
00 0 0 As5 Asg Asy 0 0 0 01, 0 0
0 0 0 0 Ags Ass Ae7 0 0 0 Iz, 0 0 O
0 0 A7z A7y A7s Az A7 L 0 I, 0 0 0 0 0|
(I, 0 0 0 0 0 0 |
00 0 0 0 0 I
0 0L, 0 0 0 0
Y= 0 0 0 0 O I“Q 0 1,
00 0 0 Iy 0 0
00 0L 0 0 0
_0 131 0 0 0 O 0_

where the matrix XQT AY5 has been partitioned conformably with Xg X (row-wise) and Y2TY2
(column-wise). The submatrix of X AY; that is obtained by deleting the leading two rows
and columns is then nonsingular, because it is equivalent to Blono. Thus, [437] has full row

A
rank and [A73 A74] has full column rank. 7
We can repeat the procedure for the triple (Ass, Ip,, I5,) which finally yields nonsingular
matrices X3 and Y3 such that (after renaming some blocks in A and using the canonical
notation corresponding to the notation in the previous step), we have

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 As 10
0 0 0 0 0 0 0 0 0 Ao
T 0 0 0 0 0 0 0 0 Aso Asio
XAs=1" 0 0 0 0 0 0 0 Ago Aswo|> TV
0 0 0 0 0 0 A7z Ars Arg Ao
0 0 0 0 0 0 Ag7 Ags Asgo Asio
0 0 0 0 Ags Age Ag7r Ags Agg Aogio
| 0 0 A3z Aroa Aros Aroe Aoz Aros Aroe Atoo
L, 0 O o0 0 0 0 0 0 0 ]
0 0 0 0 0 0 0 0 0 Is,
0 0 I, 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 15, 0
T _ 0 0 0 0 I, 0 0 0 0 0
X Xa=1| 0 0 0 0 0 0 Is, 0 0o |’ (7:2)
0 0 0 0 0 0 Ip, 0 0 0
0 0 0 0 0 Is, 0 0 0 0
0 0 0 Is, 0 0 0 0 0 0
0o I, 0o o0 o0 0 0 0 0 0 |
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[ Iz, 0 0 0 0 0 0 0 0 0 7
0 0 0 0 0 0 0 0 0 131
0 0 Iz, 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 152 0
0 0 0 0 I; 0 0 0 0 0
T _ T2
BY%=1 9 o 0o o o o o 15, o o |+ T3
0 0 0 0 0 0 Iy, 0 0 0
0 0 0 0 0 153 0 0 0 0
0 0 0 152 0 0 0 0 0 0
. o I, 0o 0O 0 0 ©0 0 0 0
where [A193 Ai04] and [Ags Ag ] have full column rank,
As 10 ] [ } [ A7r Ars ] : -
’ have full row rank, and is nonsingular.
[ As 10 A6 9 Agr  Ass &

Continuing recursively, the process clearly has to stagnate after finitely many steps. Using
the canonical notation corresponding to the notation in the first two steps of the process, we
find that stagnation occurs after the /th step either when Aspyq 9,41 is nonsingular or when
pe = p¢ = 0. In both cases we obviously have that py = py, and we end up with a nonsingular
matrix

[ Agpyre11 Aze412042 ] c FPetd0)x (bete) (7.4)

Agpioo041 Azey22042 ’

full row rank matrices

A o ~
AL 32—k | o pmeter)x0k 1 g1,
Aokio 3042k

and full column rank matrices [Agryo—k 2k+1 Aset2—k2k+2] € ok X (R t0r41) for = 1,...,0—1.
Also, we have R

d¢ = e, (7.5)

because pp+ 6y = pp+ 35. Finally, we obtain that due to the full rank properties, we have that

1 > Fpo1 + 0k,  Op—1 > Tpo1 + Ok (7.6)

for k = 2,...,£. On the other hand, the nonsingularity of the submatrices in (7.4) implies
that

Pr + 0% = i + O (7.7)
for k=1,2,...,¢ —1. We also have
Pk—1 = Tg—1+ 20k + pr,
Pk—1 = Tp—1+ 20k + Pr,
for k =2,...,1. The latter two equations can be rewritten as
Ph—1+0k—1 = Tk_1+ 0k +0k_1+ (Pr+ k),
Pe-1+0k-1 = Tg_1+0k+ 01+ Dk + k)

By using (7.7) we then obtain
Thot + Ok + Op—1 = Fp—1 + O + Op_1,

or, equivalently, R R
Op—1 — Th—1 — O = Op—1 — Tp—1 — 0, > 0 (7.8)

for k = 2,...,¢, where the nonnegativity follows from (7.6).
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Step 2) Further reduction of the staircase form

We now isolate the nonsingular block Ag/yq 2,41 from the other blocks and compress the
remaining part of XETAYZ to more condensed form. We set mp = py, 7y = pp and

| o if k is even | if k is odd
Mk = Tk if kisodd * T L if k£ is even

for k =0,...,¢. Moreover, (using (7.5) and (7.8)), we define ~; := &, = §; and
Ve 1= O — Mg — Oky1 = O — g — Opy1, k=1,...,0—1.

For the sake of readability of the paper, we will not carry out the proof for the general case,
but we will illustrate the procedure for the special case that £ = 3, where we have the matrices
as in (7.1)- (7.3). The general case proceeds completely analogous, but the tedious details
are left to the reader.

If not void then A7 7 in Xg AY3 in (7.1) is nonsingular, and hence, we can annihilate A7 g
by post-multiplying X;;F AYs3 with the matrix

I —A;}Am

21::Ino@fsl@Iml@fsg@fm@fﬁs@[0 1

:| eI 5 el IR
Correspondingly updating Y3TY3 this leads to a fill-in in the (7,8) and (8, 7) block positions in
ZTYI'Y37, given by —A; %Azg and —A%SAE ?, respectively. We can annihilate these two fill-
ins by using the (8,6) block entry I 5, Asa pivot, i.e., by applying a congruence transformation
to Z1Y'Y3Z, with

-7
I A{SAW

:| ® 133 @152 ) ISI'
It is then easy to check that ZI Z{ Y}sTYng Zy = Y3TY3 and that the correspondingly updated
matrix XgAYngZQ has no further fill-ins. Finally, we update Y3 « Y321 Z5.

Similarly, we can annihilate Ag7 by working on the rows of X;;F AY3 and applying congru-
ence transformations to X;;F X3. Then, we can proceed and annihilate the blocks A7 9, Ag 7,
A7.10, and Ajp7 in XgAY},. Since originally the matrix

[ A7r7 Arg ]
Ag7 Agg

is nonsingular, we find that after the above reductions the updated block Ag g is nonsingular
(or even void). With Agg as the pivot, we can then annihilate Agg, Ags, Ag 10, A10,s and
recover XST X3 and Y3TY3. Observe that this does not change the zero blocks in XST AYs.
Finally post-multiplying X7 AY3 with the matrix

Zg :InO 69181 @Iml @ISQ @Inz @A§:8@Iﬂ'3 @A;é@ISQ @1517
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(and updating Y3 < Y3Z3) we then obtain

0 O 0 0 0 0 0 0 0 0
0 O 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 As 10
0 0 0 0 0 0 0 0 0 Aso
. 00 0 0 0 0 0 0 Asg Asio
NAVs=1 4 ¢ ¢ 0 0 0 0 0 Asg Asio |’
0 O 0 0 0 0 A7z7 O 0 0
0 0 0 0 0 0 0 Is, 0 0
0 0 0 0 A9’5 A976 0 0 Ag’g A9710
| 0 0 A3z Aioa Awos Awoe 0 0 Ao Aioo0]

while X7 X5 and Y{'Y3 are as in (7.2) and (7.3). (Indeed, observe that the congruence
transformation with Z3 leaves Y3 Y3 invariant.) Since the original block [Ag5 Agg] has full
column rank, it easily follows that the corresponding updated entry

[ Aos Ags ] — [ Aoy Agodss ]

has full column rank as well. Then there exists a nonsingular matrix Wj such that

I, O
[ Aoy Agg | — W [ Ags Agg]=| 0 I |. (7.9)
0 0

Transforming then X g AY3 and X;;F X3 with a pre-multiplication and congruence transforma-
tion, respectively, with a block diagonal matrix having T/Vl_1 in the (4, 4)-block position and
Wi in the (9,9)-block position, we obtain the desired update in the block [Ag5 Agg] while
X3T X3 and zero block-structure of X3T AYj3 are invariant under that transformation. We then
continue by taking this updated block [Ag 5 Ag ] as a pivot to annihilate [A105 A106]. Again,
this can be done without changing X7 X3.

Similarly, due to a full row rank argument, there exists a nonsingular matrix W5 such that

As g } [ As9 } [ Iy, 0 0 ]
’ = ’ Wy = 2 . 7.10
[ Ag. Agg 2 0 Is, 0 (7.10)

and applying appropriate transformation matrices, the corresponding change in X3T AY3 can
be made without changing Y3TY3_ Then, As 10 and Ag 10 can be annihilated.

Also, we use the pivots [22’3} and [ Ags Age ], respectively, to annihilate the leading

ma + d3 columns of Agg and Ajpyg, and the leading no + b3 rows of Ag g and Ag 10. So these
three blocks become

0 0 O 0
Agg— [ 00 0 |, Aggo—| 0 |, Ao |0 0 Ao |,
0 0 Agg Ag 10

where ;19,9 € Fr2x7z, gg’lo € Fr2xon glO,Q e F% %72 Since originally the submatrix

0 0 0 0 Asg
0 0 0 0 Ag
0 0 A7z Azs Arg
0 0 Agy Agg Asyg
Ags Age Agr Agg Agg

)
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was nonsingular, we have that levg,g is nonsingular. We then use gg,g as pivot block to
annihilate Ag 19 and Ajgg, and transform Agg to I,,.
In a similar way we can perform the reductions

I 0
A3.10 } { I, 0 0 ] iy
) — bl A A “«— 0 IA 7
{ Ag0 0 Iy, O [ Aoz Aioa | ! 82

and use them as pivots to reduce A 19 to

where glo,lo € F"*"M and finally transform 210710 to I,,. After all this, the matrix Xg AYs
has the form

roo 0o 0o 0O 0 o o|lo o o|lO0 0 07
00 0O O O O O 0|0 O O0]0 0 0
o0 o o0 o 0O O o|O0O O 0| 0 0
o0 0 0 0 0 O 0|0 O 0|0 I, 0
00 0 0O O 0 0 0 |L, O 0|0 0 O
00 0 0 0 0O O 0|0 I, 0]0 0 O
00 0 O O O A2 O] 0O O O0]O0 0 0
T _ 5
X3A¥%=190 0 0 0 0o 0 L,Jo 0o o|o0o 0o o0 |
00 0 0 I, 0 O 0] 0 0 O0]0 0 0
00 0 0 0 L, 0O 0[]0 0 0[O0 0 0
00 0 0 0 0 O 0|0 0 I,|/0 0 0
001, 0 0 O O O0]O0O O O0]O0O 0 o0
00 0 I 0 0 0 0[]0 0 0|0 0 0
oo o 0 0 0O O OO0 O 0|0 0 I, |
while XJ' X3 and Y3'Y3 are still as in (7.2) and (7.3). We partition
151 = Iml @ ImQ @ I’Y3 @ 1’72 @ 1’717 152 = In2 @ 1’73 D I’Yz»
I =L ® I, @ L, ® L, @ Ly, Iy, = Iy @ Ly & Ly,

and replace Is,, Is,, I I and [ 3 in the matrix triple with these partitions. We then get

X3T AY3, X3T X3, and Y3TY3 partitioned in 22 block rows and columns. Let Pr be the block
permutation that re-arranges the block columns of X;;F AYj3 in the order

13,1,6,22,5,10,17,21,4,9,12, 14, 16,20, 2,7, 18, 3,8, 11, 15, 19.

Let P, be another block permutation such that PLT re-arranges the block rows of X;;F AYs in
the same order. Set B _
X :=X3P;, Y :=Y3P5.

Then we obtain that
XTAY = Aus® Ao (A1 Ay @ A3) @ (A1 ® Ags),
XTX = Gu®Go® (G1®G2®Gs) @ (G2 ® Gay),
YTy = gns % ng ¥ (Q1 ® QQ ¥ Qg) ¥ (Ql,z b Q2,3)>
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where

Ans = A2€+1,2£+1) gns = Iﬂg = Inga gns = I’fl’g = I’I‘I’L[u =3 (711)
Ao = Omgxng, G0 = Ing = Img,  Go = Iy = Iny, (7.12)
0 0 0 0O 0 0]
0 0 0 O 0 0 0 0 0 I,
o o 00 0 I, 00 0 0 L, 0
AL O A& Ay [0 IM]@ 00 2L, 0|9loo0o 01,0 0
0L, 0 0 00 I, 0 0 0
(07, 0 0 0 0
G12G®G=012G00;
000 0 0 0 I,
0 0 0 I, 0 0 0 0 I, O
:[0171}@001720@00017300
L, 0 0 L, 0 0 0 01, 0 0 0|
I, 0 0 O 0 ,, 0 0 0 O
(L, 0 0 0 0 0
0 O 0 0 0
[0 0 0 0 O 0 0 I,
A1o@Asz3= |0 0 I, |@&] 0 0 0 I, O
(0 I, O 0 0 I, 0 0
0 Imy, 0 0 0
0 0 0 0 I,
C 0 0 I, 0 0 0 I, 0
Gio®Gz=1| 0 I, 0 |@® 0 0 In, 0 O
| 1., 0 0 0 I, 0 0 0
I, 0 0 0 0 |
0 0 0 0 Iy
0 0 In, 0 0 0 Ip, O
G2 ®Gos = 0 In, O @ 0 0 I, 0 0
I,, 0 0 0 Ipm, 0 O 0
I, 0 0 0 O |

Step 3) Extraction of Jordan blocks from the staircase-like-form

Completely analogous to the case £ = 3, we proceed in the case ¢ # 3 and obtain the staircase-

like-form as
/-1

¢
XTAy = Ans@Ao@@Aj @@Aj,j-H,

j=1 j=1

o ¢ -1

XTX = G @QO@@Q]‘ @@Qj,jﬂ,
j=1 j=1

o ¢ -1

Yy = Gns © Go @ @ gj 2] @gj}j-l—l?
Jj=1 Jj=1
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where Ays, Gns, Gns are as in (7.11), Ao, Go, Go are as in (7.12),

0 0 0 0
0 0 0 I,
Aj = (R2j~72j(0)> ®Ly=1, o 0 : (7.13)
0 IVJ' 0 0 (24) % (24) blocks
0 O I,y].
gj = Qj = jo ® Iﬁfj = o .- 0 , (7.14)
IWJ' 0 0 (27)x(25) blocks

and Aj i1, QAMH, and QAMH are (27 + 1) x (2§ + 1) block matrices, where the block rows
have alternating sizes n;, m; and the forms

[0 0] [0 I,
0 I, I,
R .
Ajjr1 = LT . Gijr1 = ' I , (7.15)
0 In, I,
_0 Im] 0 ] _Imj 0 ]
[0 I, |
g
Gl = Ly : (7.16)
I,
| In, 0 ]

(Indeed, recall that 7;,7; € {m;,n;}, where the actual definition depends on j being odd or
even.) The blocks Ay, Go, and Go are already in the form as indicated in Theorem 4.2 and
we can apply Theorem 4.1 to the blocks A,s, Gns, and Qns. Next, let us investigate in detail
the blocks of the form (7.13)-(7.14). Let P; be the permutation such that premultiplication
with P]T reorders the rows of 4; in the order

2j7j_17 (2]_1)’}/]_17 ceey 7]_17

2jvi — v + 1, (2j—1)’yj—'yj+1, ey 1;

and let ﬁj be the permutation such that postmultiplication with ]Sj reorders the columns of
Aj in the order
Vs S (25 — s 277,
YL (27 =)y — 1, 2575 — 1,
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Then it is easily verified that
_ Vi L i
PIAP = 7i(0), PGP = P} G;P; = (D Ray.
i=1 i=1

which is exactly the form of the blocks of type 2 in Theorem 4.2.
Finally, let us return to the blocks of the forms (7.15)—(7.16). Let Z; be the permutation
such that premultiplication with Z]-T reorders the rows of A; ;11 in the order

(7 + L)ym; + jn;, gmj + (j — )n;, e 2m;j + nj, m;,
(j—i—l)mj—l—{—jnj, jmj—l—i—(j—l)nj, ce 2mj—1+nj, mj—l,
gm; + 1+ jn;, G=Dmj+1+(G—1ns, ..., mj+1+n, 1,

jm;j + jn;, (G—Dmy+ (G —ng, ..., myj+mny,
jmj—i—jnj—l, (j—l)mj—i-(j—l)nj—l, RN mj—i-nj—l,
gmi+ (G —Dn;+1, (G—my+(G—2)n;+1, ..., mj +1,

and let ZjH be the permutation such that postmultiplication with §j+1 reorders the columns
of A; 41 in the order

m; + nj, 2mj + nj, cey jm]‘ —l—jnj,
m; —1+n;, 2m;—1+n; ..., Jmj — 1+ jny,
1+mny, mj+1+n;, ..., (j—l)mj—l—l-i—jnj,
nj —1, mj+2n;—1, ..., (j—1)m;+jn;—1, jm;+ (j+1)n;—1,
1, m; +nj + 1, ...,(j—l)mj—l-(j—l)nj—i-l, Jjmj +jn; + 1.

Then it is easily verified that

my L]
T —
Z; Ajjr1Zjn —@[ 0 ] OD0 L ]
i=1 G+Dxj =1
mj nj
Z}GjjnZi = (PRin @ L (7.17)
=1 =1
m; nj
211G Zin= DR ® P R,
=1 =1

and we have obtained the blocks as in 3) and 4) of Theorem 4.2.
Up to this point, we have proved the existence of the canonical form for the triple

(4, G, G). The corresponding forms for H and ‘H then immediately from forming the products
G 1ATG 1A and G~TAG—1 AT,
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Step 4) Uniqueness of the form

Concerning uniqueness, in view of Theorem 4.1 it remains to show that the numbers £;,m;, n;
are uniquely determined. Note that there exists a unique sequence of subspaces

Eig,(H,0) C Eig,_1(H,0) C --- C Big1(H,0) = ker H

where Eig j('l:(, 0) consists the zero vector and of all eigenvectors of H associated with zero that
can be extended to a Jordan chain of length at least j. Define x, = dim (Eig v(H,0) Nker A)
and

r; = dim (Eig ;(H,0) Nker A) — dim (Eigj11(H,0) Nker 4), j=1,...,v—1.

Then any eigenvector of H that is associated with a Jordan block of size J X j in the
canonical form and that is also in the kernel of A contributes to x;. Similarly, we define
%y = dim (Eig, (H,0) Nker AT) and

#; = dim (Eig j(H,0) Nker AT) — dim (Big j+1(H,0) Nker A7), j=1,...,v—1.
Then elementary counting yields
IijzfjJrnj,l and l%jzfijmj,l, jzl,...,V.

If p; respectively p; denote the number of Jordan blocks of size j X j in the canonical form
of H and H, respectively, we also have that

pj=20;+mj+mnj_1 and p;=20;+m;_1+n; j=1,...,v

Hence, we obtain

pj—lij—l%j:mj—mj,l, and ﬁj—nj—/%j:nj—nj,l, jzl,...,l/,
from which we can successively compute m;,n;, j = v —1,...,0 using m, = n, = 0. We
furthermore obtain that ]
bty =5 —mj —nj-1)
for j = 1,...,v. Thus, the numbers /;, m;,n; are uniquely determined by the invariant

numbers p;, pj, kj, K, j=1,...,v.
This concludes the proof of Theorem 4.2. 0O

Proof of Theorem 5.2

Applying appropriate congruence transformations to G and G otherwise, we may assume that
G =1, and G = J,. Let
A= B CcT

be a full rank factorization of A, i.e., By € C™*" C; € C?>*", rank By = rankC; = r.
Repeatedly applying Proposition 3.3 to By and Proposition 3.7 to ', respectively, we can
determine a staircase-like form that can be further reduced to canonical form. The proof
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follows the same lines as in the steps 1) and 2) of the proof of Theorem 4.2 and yields the
reduced staircase-like form

l -1

XTAy = Ans@Ao@@Aj @@Aj,j+1a
j=1 7=1
o l /-1
j=1 j=1
B B l /-1
j=1 7j=1

where
Ans = A2€+1,2€+17 gns = Img = 127?[7 gns = Jfrga

with Agpiq2041 € C™*™ being nonsingular,

AO - Omo><2n07 gﬂ - Imoa gAO - Jn07

N O R
Aj = (szjzj(o)) @ Ly, Gj=Ry;®l, ,G;= [ _R, o ] ® Iy,

and Aj i1, QAJ‘JH, and Qj,j+1 are (25 + 1) x (24 + 1) block matrices, where, if j is odd, the
block rows have alternating sizes n;,2m; and the forms

K 0] [0 Lo,
0 I Iy,
RN '
Ajj1 = LA o Gige1 = Iy, , (7.18)
0 Inj Inj
_O I2mj 0 _ _Iij 0 i
o Inj_
IZm]
Gij+1 = Iy : (7.19)
_IQmj
_I”j O_
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or, if j is even, then the block rows have alternating sizes 2n;, m; and the forms

0 0
0 Ian
Jj+1l = E . ) J.J+1 =
0 IQn]
_O Imj 0 i
[ 0 Lo,
Gijt1 = . In; ,
— I,
__12"1 0 |

0

I,

J
Ian

,(7.20)

J

(7.21)

The blocks AO, Go, and go are already in the form as indicated in Theorem 5.2, for the

blocks Apns, Gns, Gns, We can apply Theorem 5.1, and for the blocks A;, QJ, and g] we
can apply an analogous permutation as it has been done for the corresponding blocks in
the proof of Theorem 4.2. Moreover, if j is odd, then let Z; be the permutation such that

premultiplication with Z]T reorders the rows of A; ;11 in the order

2(j + 1)m; + jny,

2jm; + mj + Jjn;,

2(j + 1)m; =1+ jn;,
2jm; +m] -1+ gn;,

2jmj +m; +1 +jnj,
Qjmj +1+ ]"I’Lj7
2jmj —|—jnj,

Qjmj +]77,J — 1,

2jmj + (j — Vn; + 1,

2jmj

+ (.7 - 1)nja
2(] — 1)mj +mj + (] -

Dny,

2jmj —1 + (] — 1)nj,

2(] — 1)mj + m;

2(j — Dmj +m;

2(j — )my; +

2(j — Dmy + (j — Dny,

2(j — Dmy

2(j — 1)m;

+(‘771)n] 717

.y 4mj+nj, 2mj,
o 2m; + mj + n;, my,
.y 47’77,] —1—|—7’Lj, 2’[7’1,] —17
.y 2mj+my—14n;, my;—1,
.oy 2mj+mj +1+mn;, mj+1,
ey 2mj+1+nj, 1,

.y 2m; + ny,

cey Qijrnjfl,

ey 2mj+1,

and let ZjH be the permutation such that postmultiplication with Z j4+1 reorders the columns

of A; 41 in the order

mj+nj7 2mj+mj—|—2nj,
2m; +ny, dm; +ny,
m; —1—|—7’lj, 2mj+mj—1+2nj,
2m; —1 4 ny, dmj —1+4ny,
1+’I7,j, 2mj+1+nj,
m; +1—|—nj, ij+mj —|—1—|—nj,
le, ij+2nj,
nj 71, 2mj+2njfl,
1, 2mj +n; + 1,

41

Cey 2(j—1)mj +mj+jnj,
BN 2jm; + jn;,
R Q(j—l)mj—l—mj—l—I-jnj,
vey 2jm]‘

ey 2(j—1)mj+1+jnj7
RN 2(j—1)mj—|—mj +1+gn,,

2(j — 1)ymj + jn;, 2jm; + (j + Dny,
oy 20— Dmy+gn;—1,  2jm;+ (j+1)n; — 1,
20 -Dmi+(j—Dn; +1, 2jm; + gn; + 1.



(Notice the slight difference in the way how the permutation matrices Z; and Zj are build
up compared to the way in the proof of Theorem 4.2. In this way, we can group together two
paired blocks of equal size into one block.) Then it is easily verified that

0 I
. 2lo oo £
TA. . p— ;
25 Ajjr1Zj1 —G? I 0 © EBI[ 0L ]J’X(H—l)’
= i=
L0 0 Do N
J J
0 R (7.22)
TG, . B J+1 .
Z'GiinZ = P [ Rix 0 ] ® PR,
i=1 i=1
mj 5 .
- . - 0 R 0 Rijn
T G.. - J
Zj9j5+1Zj41 = e?[ —R; 0 } @G? —Rjn 0
1= 1= 2

i.e., we obtain blocks as in 4) and 5) in Theorem 5.2. Similarly, an analogous permutation
extracts blocks as in 3) and 6) in Theorem 5.2 for the case that j is even, i.e., if we consider
the blocks (7.20)—(7.21). (In the theorem, for cosmetic reasons we changed the meaning of ¢
by letting £ be such that 2¢ 4 1 is the smallest odd number that is larger than or equal to the
maximum of the indices of H and H.)

Concerning uniqueness, as in the proof of Theorem 4.2 it remains to show uniqueness
of the numbers /;, 2m;, and n;. This is done exactly in the same way as in the proof of
Theorem 4.2. Note that the paired blocks in 4) and 6) in Theorem 5.2 cannot be decomposed
into two smaller blocks of equal size, because of the fact that nonsingular skew-symmetric
matrices must have even size. 0O

Proof of Theorem 6.2

Applying appropriate congruence transformations to G and G otherwise, we may assume that
G = Jp, and G = J,,. Again, we then compute a staircase-like form for A by considering the
full rank factorization

A= B,cT

of A, ie., By € C**" (C, € C* rankB; = rank(C; = r, and repeatedly applying
Proposition 3.7 to B; and C;. Then continuing as in step 2) of the proof of Theorem 4.2
yields the reduced staircase-like form

¢ (-1
XTAY = Ansd Ao @@Aj ®@Aj7j+17
j=1 i=1
N B l -1
XTI X = Gus®Go&® @gj @ @gj,jﬂv
j=1 i=1
N B l -1
YTJnY == gns & gO 52 @ g] D @ gjaj""]-’
j=1 i=1

where

Aps = A2£+1,2£+1a Gns = Jﬂ'ev Gns = Jfrp, = J7r¢>
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with Agpi19041 € C?mex27™ heing nonsingular,

Aj = <sz«72j(0)) ©L,, G =0;= [

AO = 02m0 X210

gO = Jm07

gAO = Jno»
0 R
“R; 0

]®Iw

and Aj;11, Gjjr1, and G i1 are (25 + 1) x (2§ + 1) block matrices, where the block rows
have alternating sizes 2n;, 2m; and the forms

Ajjr1 =

Gjj+1 =

0

[0 Tom,
)

_IQmj
[~ L2n;

0 Ian

T

0

* ) IQmj

1 2m;

J

0
I2nj

0

I2nj

0

)

Gjj+1 =

_I2mj

[~ 12n;

. Jﬂ-.

J

. I2nj

I2mj

,(7.23)

(7.24)

The remainder of the proof then proceed as the proof of Theorem 4.2 by adapting the per-
mutation used on the blocks of the forms (7.23)—(7.24) similarly as in the proof of Theorem 6.2
in order to allow to group together paired blocks.

Concerning uniqueness, as in the proof of Theorem 4.2 it remains to show uniqueness
of the numbers ¢;, 2m;, and 2n;. This is done exactly in the same way as in the proof of
Theorem 4.2. 0
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