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Abstract

The classical singular value decomposition for a matrix A ∈ Cm×n is a canonical form
for A that also displays the eigenvalues of the Hermitian matrices AA∗ and A∗A. In
this paper, we develop a corresponding decomposition for A that provides the Jordan
canonical forms for the complex symmetric matrices AAT and ATA. More generally,
we consider the matrix triple (A,G, Ĝ), where G ∈ Cm×m, Ĝ ∈ Cn×n are invertible and
either complex symmetric or complex skew-symmetric, and we provide a canonical form
under transformations of the form (A,G, Ĝ) 7→ (XTAY,XTGX,Y T ĜY ), where X,Y are
nonsingular.

Keywords singular value decomposition, canonical form, complex bilinear form, complex
symmetric matrix, complex skew-symmetric matrix, Hamiltonian matrix, Takagi factoriza-
tion.
AMS subject classification. 65F15, 65L80, 65L05, 15A21, 34A30, 93B40.

1 Introduction

In [3] Bunse-Gerstner and Gragg derived an algorithm for computing the Takagi factorization
A = UTΣU , U unitary, for a complex symmetric matrix AT = A ∈ Cn×n. The Takagi
factorization is just a special case of the singular value decomposition and combines two
important aspects: computation of singular values (i.e., eigenvalues of A∗A and AA∗) and
exploitation of structure with respect to complex bilinear forms (here, the symmetry of A is
exploited by choosing U and UT as unitary factors for the singular value decomposition).

These two aspects can be combined in a completely different way. Instead of computing
the singular values of a general matrix A ∈ Cm×n and thus revealing the eigenvalues of AA∗

and A∗A, we may ask for a canonical form for A that reveals the eigenvalues of the complex
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symmetric matrices AAT and ATA. In this paper, we compute such a form by solving a
more general problem: instead of restricting ourselves to the matrix A, we consider a triple of
matrices (A,G, Ĝ) with A ∈ Cm×n, G ∈ Cm×m and Ĝ ∈ Cn×n, where G and Ĝ are nonsingular
and either complex symmetric or complex skew-symmetric. Then we derive canonical forms
under transformations of the form

(A,G, Ĝ) 7→ (ACF, GCF, ĜCF) := (XTAY,XTGX,Y T ĜY ), (1.1)

with nonsingular matrices X ∈ Cm×m and Y ∈ Cn×n. This canonical form will allow the
determination of the eigenstructure of the pair of structured matrices

Ĥ = Ĝ−1ATG−1A, H = G−1AĜ−1AT ,

because we find that

Y −1ĤY = (Y −1Ĝ−1Y −T )(Y TATX)(X−1G−1X−T )(XTAY ) = Ĝ−1
CFA

T
CFG

−1
CFACF, (1.2)

X−1HX = (X−1G−1X−T )(XTAY )(Y −1Ĝ−1Y −T )(Y TATX) = G−1
CFACFĜ

−1
CFA

T
CF. (1.3)

For the special case G = Im and Ĝ = In, we obtain Ĥ = ATA and H = AAT and thus,
an appropriate canonical form (1.1) will display the eigenvalues of ATA and AAT via the
identities (1.2) and (1.3). In the general case, if GT = (−1)sG and ĜT = (−1)tĜ with
s, t ∈ {0, 1}, then the matrices Ĥ and H satisfy

ĤT Ĝ = (−1)sATG−1A = (−1)sĜĤ, HTG = (−1)tAĜ−1AT = (−1)tGH, (1.4)

i.e., Ĥ and H are either selfadjoint or skew-adjoint with respect to the complex bilinear form
induced by Ĝ or G, respectively. Indeed, setting

〈x, y〉G = yTGx, 〈x, y〉Ĝ = yT Ĝx (1.5)

for x, y ∈ Cn, the identities (1.4) can be rewritten as

〈Ĥx, y〉Ĝ = (−1)s〈x, Ĥy〉Ĝ and 〈Hx, y〉G = (−1)t〈x,Hy〉G for all x, y ∈ Cn.

Indefinite inner products and related structured matrices have been intensively studied in
the last few decades with main focus on real bilinear or complex sesquilinear forms, see
[1, 5, 12, 15] and the references therein and, in particular, [6]. In recent years, there has also
been interest in matrices that are structured with respect to complex bilinear forms, because
such matrices do appear in applications such as the frequency analysis of high speed trains
[8, 13].

Besides revealing the eigenstructure of the matrices Ĥ and H, the canonical form (1.1)
also allows to determine the eigenstructure of the double-sized structured matrix pencil

λG −A = λ

[
G 0
0 Ĝ

]
−
[

0 A
AT 0

]
,

because we have that [
X 0
0 Y

]T (
λ

[
G 0
0 Ĝ

]
−
[

0 A
AT 0

])[
X 0
0 Y

]
= λ

[
GCF 0

0 ĜCF

]
−
[

0 ACF

ATCF 0

]
.
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The idea of generalizing the concept of the singular value decomposition to indefinite
inner products by considering transformations of the form (1.1) is not new and has been
considered in [2] for the case of complex Hermitian forms. The canonical forms presented
here are the analogue in the case of complex bilinear forms. This case is more involved,
because one has to make a clear distinction between symmetric and skew-symmetric bilinear
forms, in contrast to the sesquilinear case, where Hermitian and skew-Hermitian forms are
closely related. Indeed, an Hermitian matrix can be easily transformed into a skew-Hermitian
matrix by scalar multiplication with the imaginary unit i, but this is not true for complex
symmetric matrices. Therefore, we have to treat the three cases separately that G and Ĝ
are both symmetric, both skew-symmetric, or that one of the matrices is symmetric and the
another skew-symmetric.

A canonical form closely related to the form obtained under the transformation (1.1) has
been developed in [11], where transformations of the form

(B,C) 7→ (X−1BY, Y −1CX), B ∈ Cm×n, C ∈ Cn×m

have been considered. Then a canonical form is constructed that reveals the Jordan structures
of the products BC and CB. In our framework, this corresponds to a canonical form of the
pair of matrices (G−1A, Ĝ−1AT ) rather than for the triple (A,G, Ĝ). In this case our approach
is more general, because the canonical form for the pair (G−1A, Ĝ−1AT ) can be easily read off
the canonical form for (A,G, Ĝ), but not vice versa. The approach in [11], on the other hand,
focusses on different aspects and allows to consider pairs (B,C) where the ranks of B and C
are distinct. This situation is not covered by the canonical forms obtained in this paper.

The remainder of the paper is organized as follows. In Section 2 we recall the definition
of several structured matrices and review their canonical forms. In Section 3 we develop
structured factorizations that are needed for the proofs of the results in the following sections.
In Sections 4–6 we present the canonical forms for matrix triples (A,G, Ĝ). In Section 4 we
consider the case that both G and Ĝ are complex symmetric, in Section 5 we assume that
G is complex symmetric and Ĝ is complex skew-symmetric, and Section 6 is devoted to the
case that both G and Ĝ are complex skew-symmetric.

Throughout the paper we use the following notation. In and 0n denote the n×n identity
and n × n zero matrices, respectively. The m × n zero matrix is denoted by 0m×n and ej is
the jth column of the identity matrix In, or, equivalently, the jth standard basis vector of
Cn. Moreover, we denote

Rn :=

 0 1
. .
.

1 0

 , Σm,n :=
[
Im 0
0 −In

]
, Jn =

[
0 In
−In 0

]
, Jn(λ) =


λ 1 0

λ
. . .
. . . 1

0 λ

 .
The transpose and conjugate transpose of a matrix A are denoted by AT and A∗, respectively.
We use A1 ⊕ · · · ⊕ Ak to denote a block diagonal matrix with diagonal blocks A1, . . . , Ak. If
A = [aij ] ∈ Cn×m and B ∈ C`×k, then A ⊗ B = [aijB] ∈ Cn`×mk denotes the Kronecker
product of A and B.

2 Matrices structured with respect to complex bilinear forms

Our general theory will cover and generalize results for the following classes of matrices.
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Definition 2.1 Let G ∈ Cn×n be invertible and let H,K ∈ Cn×n such that

(GH)T = GH and (GK)T = −GK.

1. If G is symmetric, then H is called G-symmetric and K is called G-skew-symmetric.

2. If G is skew-symmetric, then H is called G-Hamiltonian and K is called G-skew-
Hamiltonian.

Thus, G-symmetric and G-skew-Hamiltonian matrices are selfadjoint in the inner prod-
uct induced by G, while G-skew-symmetric and G-Hamiltonian matrices are skew-adjoint.
Observe that transformations of the form

(M, G) 7→ (P−1MP, P TGP ), P ∈ Cn×n invertible

preserve the structure ofM with respect to G, i.e., if, for example,M = H is G-Hamiltonian,
then P−1HP is P TGP -Hamiltonian as well. Thus, instead of working with G directly, one
may first transform G to a simple form using the Takagi factorization for complex symmetric
and complex skew-symmetric matrices, see [3, 9, 16]. This factorization is a special case of
the well-known singular value decomposition.

Theorem 2.2 (Takagi’s factorization) Let G ∈ Cn×n be complex symmetric. Then there
exists a unitary matrix U ∈ Cn×n such that

G = Udiag(σ1, . . . , σn)UT , where σ1, . . . , σn ≥ 0.

There is a variant for complex skew-symmetric matrices (see [9]). This result is a just a
special case of the Youla form [18] for general complex matrices.

Theorem 2.3 (Skew-symmetric analogue of Takagi’s factorization) Let K ∈ Cn×n

be complex skew-symmetric. Then there exists a unitary matrix U ∈ Cn×n such that

K = U

([
0 r1
−r1 0

]
⊕ · · · ⊕

[
0 rk
−rk 0

]
⊕ 0n−2k

)
UT ,

where r1, . . . , rn ∈ R \ {0}.

As immediate corollaries, we obtain the following well-known results.

Corollary 2.4 Let G ∈ Cn×n be complex symmetric and let rankG = r. Then there exists a
nonsingular matrix X ∈ Cn×n such that

XTGX =
[
Ir 0
0 0

]
.

Corollary 2.5 Let G ∈ Cm×m be complex skew-symmetric and let rankG = r. Then r is
even and there exists a nonsingular matrix X ∈ Cn×n such that

XTGX =
[
Jr/2 0

0 0

]
.
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Next, we review canonical forms for the classes of matrices defined in Definition 2.1. These
canonical forms are closely related to the well-known canonical forms for pairs of matrices
that are complex symmetric or complex skew-symmetric, see [17] for an overview on this
topic. Proofs of the following results can be found, e.g., in [14].

Theorem 2.6 (Canonical form for G-symmetric matrices) Let G ∈ Cn×n be symmet-
ric and invertible and let H ∈ Cn×n be G-symmetric. Then there exists an invertible matrix
X ∈ Cn×n such that

X−1HX = Jξ1(λ1)⊕ . . .⊕ Jξm(λm), XTGX = Rξ1 ⊕ . . .⊕Rξm ,

where λ1, . . . , λm ∈ C are the (not necessarily pairwise distinct) eigenvalues of H.

For the next two results, we need additional notation. By Γη we denote the matrix with
alternating signs on the anti-diagonal, i.e.,

Γη =


0 (−1)0

(−1)1

. .
.

(−1)η−1 0

 .
Theorem 2.7 (Canonical form for G-skew-symmetric matrices) Let G ∈ Cn×n be
symmetric and invertible and let K ∈ Cn×n be G-skew-symmetric. Then there exists an
invertible matrix X ∈ Cn×n such that

X−1KX = Kc ⊕Kz, XTGX = Gc ⊕Gz,

where
Kc = Kc,1 ⊕ · · · ⊕ Kc,mc , Gc = Gc,1 ⊕ · · · ⊕Gc,mc ,
Kz = Kz,1 ⊕ · · · ⊕ Kz,mo+me , Gz = Gz,1 ⊕ · · · ⊕Gz,mo+me ,

and where the diagonal blocks are given as follows:

1) blocks associated with pairs (λj ,−λj) of nonzero eigenvalues of K:

Kc,j =
[
Jξj (λj) 0

0 −Jξj (λj)

]
, Gc,j =

[
0 Rξj
Rξj 0

]
,

where λj ∈ C \ {0} and ξj ∈ N for j = 1, . . . ,mc when mc > 0;

2) blocks associated with the eigenvalue λ = 0 of K:

Kz,j = Jηj (0), Gz,j = Γηj ,

where ηj ∈ N is odd for j = 1, . . . ,mo when mo > 0, and

Kz,j =
[
Jηj (0) 0

0 −Jηj (0)

]
, Gz,j =

[
0 Rηj

Rηj 0

]
,

where ηj ∈ N is even for j = mo + 1, . . . ,mo +me when me > 0.

The matrix K has the non-zero eigenvalues λ1, . . . , λmc ,−λ1, . . . ,−λmc (not necessarily pair-
wise distinct), and the additional eigenvalue 0 if mo +me > 0.
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Theorem 2.8 (Canonical form for G-Hamiltonian matrices) Let G ∈ C2n×2n be com-
plex skew-symmetric and invertible and let H ∈ C2n×2n be G-Hamiltonian. Then there exists
an invertible matrix X ∈ C2n×2n such that

X−1HX = Hc ⊕Hz, XTGX = Gc ⊕Gz,

where
Hc = Hc,1 ⊕ · · · ⊕ Hc,mc , Gc = Gc,1 ⊕ · · · ⊕Gc,mc ,
Hz = Hz,1 ⊕ · · · ⊕ Hz,mo+me , Gz = Gz,1 ⊕ · · · ⊕Gz,mo+me ,

and where the diagonal blocks are given as follows:

1) blocks associated with pairs (λj ,−λj) of nonzero eigenvalues of H:

Hc,j =
[
Jξj (λj) 0

0 −Jξj (λj)

]
, Gc,j =

[
0 Rξj
−Rξj 0

]
,

where λj ∈ C \ {0} with arg(λj) ∈ [0, π) and ξj ∈ N for j = 1, . . . ,mc when mc > 0;

2) blocks associated with the eigenvalue λ = 0 of H:

Hz,j =
[
Jξj (0) 0

0 −Jξj (0)

]
, Gz,j =

[
0 Rξj
−Rξj 0

]
,

where ηj ∈ N is odd for j = 1, . . . ,mo when mo > 0, and

Hz,j = Jηj (0), Gz,j = Γηj

where ηj ∈ N is even for j = mo + 1, . . . ,mo +me when me > 0.

The matrix H has the non-zero eigenvalues λ1, . . . , λmc ,−λ1, . . . ,−λmc (not necessarily pair-
wise distinct), and the additional eigenvalue 0 if mo +me > 0.

Theorem 2.9 (Canonical form for G-skew-Hamiltonian matrices) Let G ∈ C2n×2n

be complex skew-symmetric and invertible and let K ∈ C2n×2n be G-skew-Hamiltonian. Then
there exists an invertible matrix X ∈ C2n×2n such that

X−1KX = K1 ⊕ · · · ⊕ Km, XTGX = G⊕ · · · ⊕Gm,

where

Kj =
[
Jξj (λj) 0

0 Jξj (λj)

]
, Gj =

[
0 Rξj
−Rξj 0

]
.

The matrix K has the (not necessarily pairwise distinct) eigenvalues λ1, . . . , λm.

The following lemma on existence and uniqueness of structured square roots of structured
matrices will frequently be used.

Lemma 2.10 Let G ∈ Cn×n be invertible and let H ∈ Cn×n be invertible and such that
HTG = GH.

1. If G ∈ Cn×n is complex symmetric (i.e., H ∈ Cn×n is G-symmetric), then there exists
a square root S ∈ Cn×n of H that is a polynomial in H and that satisfies σ(S) ⊆ {z ∈
C : arg(z) ∈ [0, π)}. The square root is uniquely determined by these properties. In
particular, S is G-symmetric.
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2. If G ∈ Cn×n if complex skew-symmetric (i.e., H ∈ Cn×n is G-skew-Hamiltonian), then
there exists a square root S ∈ Cn×n of H that is a polynomial in H and that satisfies
σ(S) ⊆ {z ∈ C : arg(z) ∈ [0, π)}. The square root is uniquely determined by these
properties. In particular, S is G-skew-Hamiltonian.

Proof. By the discussion in Chapter 6.4 in [10], we obtain for both cases that a square root
S of H with σ(S) ⊆ {z ∈ C : arg(z) ∈ [0, π)} exists, is unique, and can be expressed as a
polynomial in H. It is straightforward to check that a matrix that is a polynomial in H is
again G-symmetric or G-skew-Hamiltonian, respectively.

3 Structured factorizations

In this section, we develop basic factorizations that will be needed for computing the canonical
forms in the Sections 4–6. We start with factorizations for matrices B ∈ Cm×n satisfying
BTB = I or BTB = 0.

Lemma 3.1 If B ∈ Cm×n satisfies BTB = In, then m ≥ n and there exists a nonsingular
matrix X ∈ Cm×m such that

XTB =
[
In
0

]
, XTX = Im.

Proof. By assumption B has full column rank. So there exists B̃ ∈ Cm×(m−n) such that
X̃ =

[
B B̃

]
∈ Cm×m is invertible. Then

X̃T X̃ =

[
In BT B̃

B̃TB B̃T B̃

]
,

and with

X1 =
[
In −BT B̃
0 Im−n

]
,

we have

(X̃X1)T (X̃X1) =
[
In 0
0 B̃T (I −BBT )B̃

]
.

Since X̃X1 is nonsingular, so is the complex symmetric matrix B̃T (I − BBT )B̃. By Corol-
lary 2.4, there exists a nonsingular matrix X2 such that

XT
2

(
B̃T (I −BBT )B̃

)
X2 = Im−n.

With

X = X̃X1

[
In 0
0 X2

]
we then obtain XTX = Im. Note that

X =
[
B B̃

] [
In −BT B̃
0 Im−n

] [
In 0
0 X2

]
=
[
B (I −BBT )B̃X2

]
,

and hence XTX = Im implies that

XTB =
[
In
0

]
. �
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Lemma 3.2 If B ∈ Cm×n satisfies rankB = n and BTB = 0, then m ≥ 2n and there exists
a unitary matrix X ∈ Cm×m such that

XTB =

 B0

0n
0

 , XTX =

 0 In 0
In 0 0
0 0 Im−2n

 ,
where B0 ∈ Cn×n is upper triangular and invertible.

Proof. We present a constructive proof which allows to determine the matrix X numerically.
We may assume that m ≥ 2, otherwise the result holds trivially. Let

Be1 = u1 + iv1, u1, v1 ∈ Rm.

Then (using e.g. a Householder transformation, see [7]) there exists an orthogonal matrix
Q1 ∈ Rm×m such that QT1 u1 = α1e1 and 0 ≤ α1 ∈ R. Let ṽ1 be the vector formed by the
trailing m − 1 components of QT1 v1. Then (using e.g. a QR-decomposition, see [7]) there
exists an orthogonal matrix Q2 ∈ R(m−1)×(m−1) such that QT2 ṽ1 = β1 and 0 ≤ β1 ∈ R. With
U1 = Q1(1⊕Q2), then

UT1 B =

 α1 + iv11 b1
iβ1 b2
0 B1

 ,
where B1 ∈ C(m−2)×(n−1), b1, b2 ∈ C1×(n−1), and v11 ∈ R. Since U1 is real orthogonal, we
have

(UT1 B)T (UT1 B) = BTB = 0,

and hence,

(α1 + iv11)2 − β2
1 = 0, (α1 + iv11)b1 + iβ1b2 = 0, BT

1 B1 + bT1 b1 + bT2 b2 = 0n−2. (3.1)

From the first identity in (3.1), it follows that v11 = 0 and α1 = β1. Since α1, β1 ≥ 0,
we have that α1 = β1 > 0, because otherwise we would have that rankB ≤ n − 1, which is
a contradiction. With this, the last two identities in (3.1) imply that b1 = −ib2, BT

1 B1 = 0,
and thus,

UT1 B =

 α1 −ib2
iα1 b2
0 B1

 , B1 ∈ C(m−2)×(n−1).

One can easily verify that rankB1 = n− 1.
Applying the same procedure inductively to B1 we obtain the existence of a real orthogonal

matrix U2 such that

UT2 B1 =

 α2 −ib3
iα2 b3
0 B2

 , B2 ∈ C(m−4)×(n−2).

Similarly as above, we can show that α2 > 0 and rankB2 = n− 2.
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Continuing the procedure, we finally obtain a real orthogonal matrix U such that

UB =



α1 −ib12 . . . −ib1n
iα1 b12 . . . b1n

α2 . . . −ib2n
iα2 . . . b2n

. . .
...
αn
−iαn

0
...
0



.

and from this we obtain that m ≥ 2n. Moreover, we see that every other row of UB is a
multiple by i of the preceding row. Thus, setting

Z1 =
√

2
2

[
1 −i
1 i

]
, Z = Z1 ⊕ . . .⊕ Z1︸ ︷︷ ︸

n

⊕Im−2n,

letting P be a permutation matrix for which premultiplication has the effect of re-arranging
the first 2n rows of a matrix in the order of 1, 3, . . . , 2n− 1, 2, 4, . . . , 2n, and introducing the
unitary matrix X = (PZU)T , we then have

XTB =
√

2



α1 −ib12 . . . −ib1n
α2 . . . −ib2n

. . .
...
αn
0
...
0


.

and we obtain furthermore that

ZZT =
[

0 1
1 0

]
⊕ . . .⊕

[
0 1
1 0

]
︸ ︷︷ ︸

n

⊕ Im−2n and XTX =

 0 In 0
In 0 0
0 0 Im−2n

 ,
using the fact that U is real orthogonal, i.e., UTU = I.

Proposition 3.3 Let B ∈ Cm×n and suppose that rankB = n, rankBTB = n0 ≤ n, and
that δ0 = n− n0 is the dimension of the null space of BTB. Then there exists a nonsingular
X ∈ Cm×m such that

XTB =
[

0
B0

]
m− n
n

, XTX = In1 ⊕

 0 0 Iδ0
0 In0 0
Iδ0 0 0

 ,
where B0 ∈ Cn×n is nonsingular and n1 = m− n− δ0.
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Proof. Since BTB is complex symmetric, by the assumption and by Corollary 2.4, there
exists a nonsingular matrix Y ∈ Cn×n such that

Y TBTBY =
[
In0 0
0 0δ0

]
.

Let B̃ ∈ Cm×n0 be the matrix formed by the leading n0 columns of BY . By Lemma 3.1 there
exists X1 ∈ Cm×m such that

XT
1 B̃ =

[
In0

0

]
, XT

1 X1 = Im

and we obtain that

XT
1 BY =

[
In0 B12

0 B1

]
.

Since

(XT
1 BY )T (XT

1 BY ) = Y TBTBY =
[
In0 0
0 0δ0

]
,

we have that
B12 = 0, BT

1 B1 = 0δ0 .

By assumption, B has full column rank, so this also holds for B1 ∈ C(m−n0)×δ0 . By Lemma 3.2
there exists a nonsingular matrix X2 ∈ C(m−n0)×(m−n0) such that

XT
2 B1 =

 T
0δ0
0

 , XT
2 X2 =

 0 Iδ0 0
Iδ0 0 0
0 0 In1

 ,
where T ∈ Cδ0×δ0 is nonsingular and n1 = m−n0−2δ0 = m−n−δ0. With X3 = X1(In0⊕X2)
we then have

XT
3 BY =


In0 0
0 T
0 0δ0
0 0

 , XT
3 X3 = In0 ⊕

[
0 Iδ0
Iδ0 0

]
⊕ In1 .

Let P be the permutation that rearranges the block rows of XT
3 BY in the order 4, 3, 1, 2 and

let X = X3P
T . Then

XTBY =


0 0
0 0δ0
In0 0
0 T

 , XTX = In1 ⊕

 0 0 Iδ0
0 In0 0
Iδ0 0 0

 .
Post-multiplying Y −1 to the first of these two equations and setting

B0 =
[
In0 0
0 T

]
Y −1,

we have the asserted form.

In the previous results we have obtained factorizations for matrices B such that BTB is
the identity or zero. We get similar results if BTJmB = Jn or BTJmB = 0.
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Lemma 3.4 If B ∈ C2m×2n satisfies BTJmB = Jn, then m ≥ n and there exists a nonsin-
gular matrix X ∈ C2m×2m such that

XTB1 =


In 0
0 0
0 In
0 0

 , XTJmX = Jm.

Proof. The proof is similar to that for Lemma 3.1 and is hence omitted.

Lemma 3.5 Let b ∈ C2m. Then there is a unitary matrix X ∈ C2m×2m such that

XT b = αe1, XTJmX = Jm.

Proof. We again present a constructive proof that can be implemented into a numerical
algorithm. Let b = [bT1 , b

T
2 ]T with b1, b2 ∈ Cm and let H2 ∈ Cm×m be a unitary matrix ( e.g.

a Householder matrix) such that
HT

2 b2 = βe1.

With H−1
2 b1 = [b11, . . . , bm1]T one then can determine (e.g. via a QR factorization) a unitary

matrix

G =
1

b̃11

[
b̄11 −β
β̄ b11

]
, b̃11 =

√
|b11|2 + |β|2, such that GT

[
b11

β

]
=
[
b̃11

0

]
.

Note that GTJ2G = J2. Next, determine a unitary matrix H1 ∈ Cm×m such that

HT
1 [̃b11, b21, . . . , bm1]T = αe1.

Finally, let

X =
[
H−T2 0

0 H2

]
Ĝ

[
H1 0
0 H−T1

]
,

where Ĝ ∈ C2m×2m is the unitary matrix obtained by replacing the (1, 1), (1,m+1), (m+1, 1),
and (m+ 1,m+ 1) elements of the identity matrix I2m with the corresponding elements of G,
respectively. It is easily verified that X is unitary and satisfies XT b = αe1 and XTJmX = Jm.

Lemma 3.6 If B ∈ C2m×n satisfies rankB = n and BTJmB = 0, then m ≥ n and there
exists a unitary matrix X ∈ C2m×2m such that

XTB =
[
B0

0

]
, XTJmX = Jm,

where B0 ∈ Cn×n is upper triangular invertible.

Proof. By Lemma 3.5, there exists a unitary matrix X1 such that

XT
1 B =


b11 bT1
0 B22

0 bT3
0 B24

 , XT
1 JmX1 = Jm,

11



where b1, b3 ∈ Cn−1. Since rankB = n, we have b11 6= 0 and from

(X1B)TJm(X1B) = BTJmB = 0,

it follows that

b3 = 0,
[
B22

B24

]T
Jm−1

[
B22

B24

]
= 0.

Applying the same procedure inductively to
[
B22

B24

]
, we obtain a unitary matrix X such that

XTB =
[
B0

0

]
n

2m− n
, XTJmX = Jm,

where B0 ∈ Cn×n is upper triangular and invertible.

Proposition 3.7 Let B ∈ C2m×n. Suppose that rankB = n, rankBTJmB = 2n0 ≤ n, i.e.,
δ0 = n − 2n0 is the dimension of the null space of BTJmB. Then there exists an invertible
matrix X ∈ C2m×2m such that

XTB =
[

0
B0

]
2m− n
n

, XTJmX = Jn1 ⊕

 0 0 Iδ0
0 Jn0 0
−Iδ0 0 0

 ,
where B0 ∈ Cn×n is nonsingular and n1 = m− n0 − δ0.

Proof. Since BTJmB is complex skew-symmetric, by the assumption and Corollary 2.5 there
exists a nonsingular matrix Y ∈ Cn×n such that

Y TBTJmBY =
[
Jn0 0
0 0δ0

]
.

Let B1 ∈ C2m×2n0 be the matrix formed by the leading 2n0 columns of BY . By Lemma 3.4
there exists a nonsingular X1 ∈ C2m×2m such that

XT
1 B1 =


In0 0
0 0
0 In0

0 0

 , XT
1 JmX1 = Jm.

We have

XT
1 BY =


In0 0 B13

0 0 B23

0 In0 B33

0 0 B43

 .
Since XT

1 JmX1 = Jm also implies X1JmX
T
1 = Jm, from

(XT
1 BY )TJm(XT

1 BY ) = Y TBTJmBY =
[
Jn0 0
0 0δ0

]
,

12



we obtain that

B13 = 0, B33 = 0,
[
B23

B43

]T
Jm−n0

[
B23

B43

]
= 0δ0 .

Since B has full column rank, so does
[
B23

B43

]
. By Lemma 3.6, there exists an invertible

X2 ∈ C(2m−2n0)×(2m−2n0) such that

XT
2

[
B23

B43

]
=
[
B̃0

0

]
, XT

2 Jm−n0X2 = Jm−n0 ,

where B̃0 ∈ Cδ0×δ0 is invertible. Let P1 be a permutation that interchanges the second and
third block rows of XT

1 BY and set X3 = X1P
T
1 (I2n0 ⊕X2). Then

XT
3 BY =


I2n0 0

0 B̃0

0 0
0 0
0 0


2n0

δ0

n1

δ0

n1

, XT
3 JmX3 = Jn0 ⊕ Jm−n0 ,

where n1 = m − n0 − δ0. (For convenience, we have split the zero block row of XT
3 BY into

three block rows.) Let P be a permutation that changes the block rows of XT
3 BY to the

order 3, 5, 4, 1, 2 by pre-multiplication, and let X = X3P
T (I2n1 ⊕ (−Iδ0)⊕ I2n0+δ0). Then

XTBY =


0 0
0 0
I2n0 0

0 B̃0


2n1

δ0

2n0

δ0

, XTJmX = Jn1 ⊕

 0 0 Iδ0
0 Jn0 0
−Iδ0 0 0

 .
Post-multiplying Y −1 to the first equation and setting B0 = (I2n0 ⊕ B̃0)Y −1, we have the
asserted form.

In this section we have presented preliminary factorizations that will form the basis in
determining the canonical forms in the following sections.

4 Canonical form for G, Ĝ complex symmetric

We start with the case that the matrix A under consideration is square and nonsingular. If
Σ = U∗AV is the standard singular decomposition of A, then U∗AA∗U = V ∗A∗AV = Σ2,
i.e., the canonical forms for both AA∗ and A∗A are just the square of the canonical form for
A. This fact has a generalization in the case of a matrix triple (A,G, Ĝ), where G and Ĝ are
complex symmetric. To start from a square root of the Ĝ-symmetric matrix Ĥ = Ĝ−1ATG−1A
will be the key strategy in the derivation of the canonical form in the following result.

Theorem 4.1 Let A ∈ Cn×n be nonsingular and let G, Ĝ ∈ Cn×n be complex symmetric and
nonsingular. Then there exist nonsingular matrices X,Y ∈ Cn×n such that

XTAY = Jξ1(µ1) ⊕ · · ·⊕ Jξm(µm),
XTGX = Rξ1 ⊕ · · ·⊕ Rξm ,

Y T ĜY = Rξ1 ⊕ · · ·⊕ Rξm ,

(4.1)

13



where µj ∈ C \ {0}, argµj ∈ [0, π), and ξj ∈ N for j = 1, . . . ,m. Moreover, for the Ĝ-
symmetric matrix Ĥ = Ĝ−1ATG−1A and for the G-symmetric matrix H = G−1AĜ−1AT we
have that

Y −1ĤY = J 2
ξ1

(µ1) ⊕ · · ·⊕ J 2
ξm

(µm),

X−1HX = J 2
ξ1

(µ1)T⊕ · · ·⊕J 2
ξm

(µm)T .
(4.2)

Moreover, the form (4.1) is unique up to the simultaneous permutation of blocks in the right
hand side of (4.1).

Proof. By Lemma 2.10, Ĥ has a unique Ĝ-symmetric square root S ∈ Cn×n satisfying
σ(S) ⊆ {µ ∈ C \ {0} : arg(µ) ∈ [0, π)}. Then by Theorem 2.6, there exists a nonsingular
matrix Ỹ ∈ Cn×n such that

SCF := Ỹ −1SỸ = Jξ1(µ1) ⊕ · · ·⊕ Jξm(µm),
GCF := Ỹ T ĜỸ = Rξ1 ⊕ · · ·⊕ Rξm ,

HCF := Ỹ −1ĤỸ = J 2
ξ1

(µ1)⊕ · · ·⊕J 2
ξm

(µm),

where µj ∈ C \ {0}, argµj ∈ [0, π), and ξj ∈ N for j = 1, . . . ,m. (Here, the third line
immediately follows from Ĥ = S2). Using G−1AĤ = HG−1A and the fact that G−1A is
nonsingular, we find that Ĥ and H are similar. Since the canonical form of G-symmetric
matrices in Theorem 2.6 is uniquely determined by the Jordan canonical form, we obtain
from Theorem 2.6 that the canonical forms of the pairs (Ĥ, Ĝ) and (H, G) coincide. In
particular, this implies the existence of a nonsingular matrix X̃ ∈ Cn×n such that

HCF = X̃−1HX̃ = J 2
ξ1

(µ1)⊕ · · ·⊕J 2
ξm

(µm),
GCF = X̃TGX̃ = Rξ1 ⊕ · · ·⊕ Rξm .

Finally setting X = G−1X̃−T and Y = A−1GX̃SCF, we obtain

XTAY = X̃−1G−1AA−1GX̃SCF = SCF

XTGX = X̃−1G−1GG−1X̃−T = (X̃TGX̃)−1 = G−1
1,CF

= GCF

Y T ĜY = STCFX̃
TGA−T ĜA−1GX̃SCF

= STCFX̃
TGX̃X̃−1H−1X̃SCF

= STCFGCF(HCF)−1SCF = GCFSCF(HCF)−1SCF = GCF

as desired, where we used that SCF is GCF-symmetric and that S2
CF = HCF. It is now easy

to check that Y −1ĤY and X−1HX have the claimed forms. Concerning uniqueness, we note
that the form (4.1) is already uniquely determined by the Jordan structure of Ĥ and by the
restriction µj ∈ C \ {0}, arg µj ∈ [0, π).

The canonical form for the case that A is singular or rectangular is more involved, because
then the matrices Ĥ and H may be singular as well. The key idea in the proof of Theorem 4.1
was the construction of a Ĝ-symmetric square root of Ĥ, but if Ĥ is singular, then such a
square root need not exist. (For example, the Rn-symmetric nilpotent matrix Jn(0) does not
have any square root let alone a Rn-symmetric one.) A second difficulty comes from the fact
that the Jordan structures of Ĥ and H may be different. For example, if

A =


0 0 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , G = R2 ⊕R2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , Ĝ = R1 ⊕R3 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


14



then we obtain that

Ĥ = Ĝ−1ATG−1A =


0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , H = G−1AĜ−1AT =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 .
Here Ĥ has a 1× 1 and a 3× 3 Jordan block associated with the eigenvalue zero, while H has
two 2× 2 Jordan blocks associated with zero. In general, we obtain the following result.

Theorem 4.2 Let A ∈ Cm×n and let G ∈ Cm×m, Ĝ ∈ Cn×n be complex symmetric and
nonsingular. Then there exist nonsingular matrices X ∈ Cm×m and Y ∈ Cn×n such that

XTAY = Ac ⊕Az,1 ⊕Az,2 ⊕Az,3 ⊕Az,4,
XTGX = Gc ⊕Gz,1 ⊕Gz,2 ⊕Gz,3 ⊕Gz,4, (4.3)
Y T ĜY = Ĝc ⊕ Ĝz,1 ⊕ Ĝz,2 ⊕ Ĝz,3 ⊕ Ĝz,4.

Moreover, for the Ĝ-symmetric matrix Ĥ = Ĝ−1ATG−1A ∈ Cn×n and for the G-symmetric
matrix H = G−1AĜ−1AT ∈ Cm×m we have that

Y −1ĤY = Ĥc ⊕ Ĥz,1 ⊕ Ĥz,2 ⊕ Ĥz,3 ⊕ Ĥz,4,
X−1HX = Hc ⊕Hz,1 ⊕Hz,2 ⊕Hz,3 ⊕Hz,4.

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of Ĥ and H:
Ac, Gc, Ĝc have the forms as in (4.1) and Ĥc,Hc have the forms as in (4.2);

1) one block corresponding to n0 Jordan blocks of size 1× 1 of Ĥ and m0 Jordan blocks of
size 1× 1 of H associated with the eigenvalue zero:

Az,1 = 0m0×n0 , Gz,1 = Im0 , Ĝz,1 = In0 , Ĥz,1 = 0n0 , Hz,1 = 0m0 ,

where m0, n0 ∈ N ∪ {0};

2) blocks corresponding to a pair of j × j Jordan blocks of Ĥ and H associated with the
eigenvalue zero:

Az,2 =
γ1⊕
i=1
J2(0) ⊕

γ2⊕
i=1
J4(0) ⊕ · · ·⊕

γ⊕̀
i=1
J2`(0) ,

Gz,2 =
γ1⊕
i=1

R2 ⊕
γ2⊕
i=1

R4 ⊕ · · ·⊕
γ⊕̀
i=1

R2` ,

Ĝz,2 =
γ1⊕
i=1

R2 ⊕
γ2⊕
i=1

R4 ⊕ · · ·⊕
γ⊕̀
i=1

R2` ,

Ĥz,2 =
γ1⊕
i=1
J 2

2 (0) ⊕
γ2⊕
i=1
J 2

4 (0) ⊕ · · ·⊕
γ⊕̀
i=1
J 2

2`(0) ,

Hz,2 =
γ1⊕
i=1
J 2

2 (0)T⊕
γ2⊕
i=1
J 2

4 (0)T⊕ · · ·⊕
γ⊕̀
i=1
J 2

2`(0)T ,

where γ1, . . . , γ` ∈ N∪{0}; thus, Ĥz,2 and Hz,2 both have each 2γj Jordan blocks of size
j × j for j = 1, . . . , `;
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3) blocks corresponding to a j × j Jordan block of Ĥ and a (j + 1)× (j + 1) Jordan block
of H associated with the eigenvalue zero:

Az,3 =
m1⊕
i=1

[
I1
0

]
2×1

⊕
m2⊕
i=1

[
I2
0

]
3×2

⊕ · · ·⊕
m`−1⊕
i=1

[
I`−1

0

]
`×(`−1)

,

Gz,3 =
m1⊕
i=1

R2 ⊕
m2⊕
i=1

R3 ⊕ · · ·⊕
m`−1⊕
i=1

R` ,

Ĝz,3 =
m1⊕
i=1

R1 ⊕
m2⊕
i=1

R2 ⊕ · · ·⊕
m`−1⊕
i=1

R`−1 ,

Ĥz,3 =
m1⊕
i=1
J1(0) ⊕

m2⊕
i=1
J2(0) ⊕ · · ·⊕

m`−1⊕
i=1
J`−1(0) ,

Hz,3 =
m1⊕
i=1
J2(0)T ⊕

m2⊕
i=1
J3(0)T ⊕ · · ·⊕

m`−1⊕
i=1
J`(0)T ,

where m1, . . . ,m`−1 ∈ N ∪ {0}; thus, Ĥz,3 has mj Jordan blocks of size j × j and Hz,3
has mj Jordan blocks of size (j + 1)× (j + 1) for j = 1, . . . , `− 1;

4) blocks corresponding to a (j + 1)× (j + 1) Jordan block of Ĥ and a j × j Jordan block
of H associated with the eigenvalue zero:

Az,4 =
n1⊕
i=1

[
0 I1

]
1×2
⊕

n2⊕
i=1

[
0 I2

]
2×3
⊕ · · ·⊕

n`−1⊕
i=1

[
0 I`−1

]
(`−1)×` ,

Gz,4 =
n1⊕
i=1

R1 ⊕
n2⊕
i=1

R2 ⊕ · · ·⊕
n`−1⊕
i=1

R`−1 ,

Ĝz,4 =
n1⊕
i=1

R2 ⊕
n2⊕
i=1

R3 ⊕ · · ·⊕
n`−1⊕
i=1

R` ,

Ĥz,4 =
n1⊕
i=1
J2(0) ⊕

n2⊕
i=1
J3(0) ⊕ · · ·⊕

n`−1⊕
i=1
J`(0) ,

Hz,4 =
n1⊕
i=1
J1(0)T ⊕

n2⊕
i=1
J2(0)T ⊕ · · ·⊕

n`−1⊕
i=1
J`−1(0)T ,

where n1, . . . , n`−1 ∈ N ∪ {0}; thus, Ĥz,4 has nj Jordan blocks of size (j + 1) × (j + 1)
and Hz,4 has nj Jordan blocks of size j × j for j = 1, . . . , `− 1;

For the eigenvalue zero, the matrices Ĥ and H have 2γj+mj+nj−1 respectively 2γj+mj−1+nj
Jordan blocks of size j×j for j = 1, . . . , `, where m` = n` = 0 and where ` is the maximum of
the indices of Ĥ and H. (Here, index refers to the size of the largest Jordan block associated
with the eigenvalue zero.)

Moreover, the form (4.3) is unique up to simultaneous block permutation of the blocks in
the diagonal blocks of the right hand side of (4.3).

Proof. The proof is very long and technical and is therefore postponed to the Appendix.

We highlight that the numbers m0 and n0 in 1) of Theorem 4.2 are allowed to be zero.
This has the effect that there may occur rectangular matrices with a total number of zero
rows or columns in the canonical form. We illustrate this phenomenon with the following
example.
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Example 4.3 Consider the two non-equivalent triples

A1 =
[

0 1
]
, G1 =

[
1
]
, Ĝ1 =

[
0 1
1 0

]
and A2 =

[
0 1

]
, G2 =

[
1
]
, Ĝ2 =

[
1 0
0 1

]
.

The first example is just one block of type 4) in Theorem 4.2. Indeed, forming the products

Ĥ1 = Ĝ−1
1 AT1G

−1
1 A =

[
0 1
0 0

]
, H1 = G−1

1 AĜ−1
1 AT1 =

[
0
]
,

we see that, as predicted by Theorem 4.2, Ĥ1 has only one Jordan block of size 2 associated
with the eigenvalue λ = 0 whereas H1 has one Jordan block of size 1 associated with λ = 0.
The situation is different in the second case. Here, we obtain

Ĥ2 = Ĝ−1
2 AT2G

−1
2 A =

[
0 0
0 1

]
, H2 = G−1

2 AĜ−1
2 AT2 =

[
1
]
,

i.e., Ĥ2 has two Jordan blocks of size 1, one associated with λ = 0 and a second one associated
with λ = 1, while H2 has one Jordan block of size 1 associated with λ = 1. Here, the triple
(A2, G2, Ĝ2) is in canonical form consisting of one block of type 1) and size 0× 1 and of one
block of type 0):

A2 =
[

0 1
]
, G2 =

[
1
]
, Ĝ2 =

[
1 0
0 1

]
.

Remark 4.4 Theorem 4.2 in particular covers the special case G = Im and Ĝ = In, i.e.,
the case that Ĥ = ATA and H = AAT . In comparison to the standard singular values of
a matrix A ∈ Cm×n which are σ1, . . . , σmin(m,n) ≥ 0 and which are the square roots of the
eigenvalues of AA∗ and A∗A, we now obtain the “transpose singular values” of A according
to Theorem 4.2 as

Jξ1(µ1), ..., 0m0×n0 ,J2p1(0), ...,
[
Iq1
0

]
, ...,

[
0 Ir1

]
, ...,

where µj 6= 0, arg(µj) ∈ [0, π) and ξj , pj , qj , rj ∈ N. Theorem 4.2 displays how thee blocks
are related to the eigenvalues and Jordan structures of AAT and ATA.

The canonical form of A in Theorem 4.2 together with the canonical forms for AAT and
ATA in the special case G = Im, Ĝ = In can also be deduced from Theorem 5 in [11], where
the canonical form for a pair (B,C), B ∈ Cm×n, C ∈ Cn×m under the transformation

(B,C) 7→ (X−1BY, Y −1CX), X, Y nonsingular

is given. Setting then B = A and C = AT then yields the desired form. The result of
Theorem 4.2, however, gives additional information on the transformation matrices X and
Y , because we also have a canonical form for XTX = XTGX and Y TY = Y T ĜY .

A well known result by Flanders [4] completely describes the Jordan structures of the
products BC and CB, where B ∈ Cm×n and C ∈ Cn×m. Recall that the partial multiplicities
of an eigenvalue λ of a matrix M ∈ Cn×n are just the sizes of the Jordan blocks associated
with λ in the Jordan canonical form for M .
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Theorem 4.5 ([4]) For M ∈ Cm×m and N ∈ Cn×n the following conditions are equivalent:

1) There exist matrices B ∈ Cm×n and C ∈ Cn×m such that M = BC and N = CB.

2) M and N satisfy the Flanders condition, i.e.,

i) M and N have the same nonzero eigenvalues and their algebraic, geometric, and
partial multiplicities coincide.

ii) If (τi)i∈N is the monotonically decreasing sequence of partial multiplicities of M
associated with the eigenvalue zero, made infinite by adjunction of zeros, and if
(ζi)i∈N is the corresponding sequence of N , then |τi − ζi| ≤ 1 for all i ∈ N.

With the canonical form of Theorem 4.2, we are now able to prove a specialization of
Theorem 4.5 for the case of complex symmetric matrices.

Theorem 4.6 For M ∈ Cm×m and N ∈ Cn×n the following conditions are equivalent:

1) There exists a matrix A ∈ Cm×n such that M = AAT and N = ATA.

2) M and N are symmetric and satisfy the Flanders condition, i.e., i) and ii) in Theo-
rem 4.5, as well as

iii) Let φk be the number of indices j for which τj = ζj = k, where (τi)i∈N and (ζi)i∈N
are the sequences as in Theorem 4.5, and let k1 > · · · > kν be the numbers k ∈ N
for which φk is odd. If ν is even, then for j = 1, . . . , dν2e we have that φk 6= 0 for
all k with k2j−1 ≥ k ≥ k2j. (Here, dκe denotes the smallest integer larger or equal
to κ and we set kν+1 := 1 in the case that ν is odd.)

Proof. ‘1) ⇒ 2)’: Let H = M = AAT and Ĥ = N = ATA and let ωj and ω̂j denote
the number of Jordan blocks of size j × j associated with the eigenvalue zero of H and Ĥ,
respectively. Using the same notation as in Theorem 4.2, we obtain that

ωj = 2γj + nj +mj−1 and ω̂j = 2γj +mj + nj−1, j = 1, . . . , `.

Assume without loss of generality that m`−1 ≥ n`−1. Since m` = n` = 0, we find that
the first 2γ` + n`−1 entries in the sequences (τi)i∈N and (ζi)i∈N are given by ` which implies
φ` = 2γ`+n`−1. The sequence (τi) has m`−1−n`−1 more entries equal to ` that are paired to
m`−1 − n`−1 entries `− 1 in (ζi). Since then there are 2γ`−1 + n`−1 + n`−2 more entries `− 1
in (ζi) and 2γ`−1 + n`−1 + m`−2 entries ` − 1 in (τi), we obtain that φ`−1 = 2γ`−1 + n`−1 +
min(m`−2, n`−2). Continuing the counting in the way just described finally yields

φj = 2γj + min(mj , nj) + min(mj−1, nj−1), j = 1, . . . , `. (4.4)

If ν = 0 then there is nothing to prove, so assume ν ≥ 1. Since 0 = min(m`, n`) is even
as well as φ`, . . . , φk1+1, we obtain from (4.4) that min(mj−1, nj−1) is even for j > k1 and
min(mk1−1, nk1−1) is odd. Clearly, we must then have that min(mk−1, nk−1) is odd for all k
satisfying k1 > k > k2. In particular, this implies φk 6= 0 for all such k as well as φk1 6= 0 and
φk2 6= 0. If ν ≤ 2 we are done. Otherwise, min(mk2−1, nk2−1) is even and we can repeat the
argument for k2j−1 ≥ k ≥ k2j for j = 2, . . . , dν2e.
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‘2) ⇒ 1)’: Let ` be the largest entry that appears in one of the sequences (τi)i∈N and
(ζi)i∈N. First, let us assume that ν = 0 or k1 = 1, i.e., φj is even for j = 2, . . . , `. Then we
build up a matrix triple (Ã, G, Ĝ) as a direct sum of blocks as follows: for the φk indices j
with τj = ζj = k, k 6= 1, we take φk/2 blocks as in 2) of Theorem 4.2 and for each index
j with |τj − ζj | = 1, τj , ζj 6= 0, we take a block as in 3) respectively 4) of Theorem 4.2.
Finally, if there are, say, m0 indices in (τi) left with τi = 1 and n0 indices in (ζi) left with
ζi = 1, then we take a block of size m0 × n0 as in 1) of Theorem 4.2. Then, by construction
and Theorem 4.2, the matrices H = G−1AĜ−1AT and Ĥ = Ĝ−1ATG−1A have the same
Jordan canonical form as M and N , respectively. Let Z, Ẑ be such that ZTGZ = Im and
ẐT ĜẐ = In. Then setting Â = ZT ÃẐ, we find that ÂÂT = Z−1HZ and ÂT Â = Ẑ−1ĤẐ
are symmetric. Thus, there exist orthogonal matrices S and T such that SÂÂTS−1 = M
and TÂT ÂT−1 = N . (This well-known fact is a direct consequence of Theorem 2.6.) Then
A = SÂT−1 satisfies M = AAT and N = ATA.

Next, assume that k1 > 1. Then 2) guarantees that for each k with k2j−1 > k > k2j ,
j = 1, . . . , dν2e we have that φk ≥ 2. This allows us to modify the sequences (τi) and (ζi) to
(not necessarily monotonically decreasing) sequences (τ̃i) and (ζ̃i) such that the number of
indices j with τ̃j = ζ̃j = k is even for all k > 1. In order to avoid too complicated notation,
we explain the modification only for the case ν ≤ 2. The general case is analogous. Thus, if

(τi) = . . . , k1, . . . , k1︸ ︷︷ ︸
φk1

, . . . , k1 − 1, . . . , k1 − 1︸ ︷︷ ︸
φk1−1

. . . , k2 + 1, . . . , k2 + 1︸ ︷︷ ︸
φk2+1

. . . , k2, . . . , k2︸ ︷︷ ︸
φk2

, . . . ,

(ζi) = . . . , k1, . . . , k1︸ ︷︷ ︸
φk1

, . . . , k1 − 1, . . . , k1 − 1︸ ︷︷ ︸
φk1−1

. . . , k2 + 1, . . . , k2 + 1︸ ︷︷ ︸
φk2+1

. . . , k2, . . . , k2︸ ︷︷ ︸
φk2

, . . . ,

then the corresponding parts in the sequences (τ̃i) and (ζ̃i) take the forms

(τ̃i) = . . . , k1, . . . , k1︸ ︷︷ ︸
φk1
−1

, . . . , k1 − 1, . . . , k1 − 1︸ ︷︷ ︸
φk1−1−2

. . . , k2 + 1, . . . , k2 + 1︸ ︷︷ ︸
φk2+1−2

. . . , k2, . . . , k2︸ ︷︷ ︸
φk2
−1

, Ξτ , . . . ,

(ζ̃i) = . . . , k1, . . . , k1︸ ︷︷ ︸
φk1
−1

, . . . , k1 − 1, . . . , k1 − 1︸ ︷︷ ︸
φk1−1−2

. . . , k2 + 1, . . . , k2 + 1︸ ︷︷ ︸
φk2+1−2

. . . , k2, . . . , k2︸ ︷︷ ︸
φk2
−1

, Ξζ , . . . ,

where
Ξτ = k1, k1 − 1, k1 − 1, k1 − 2, . . . , k2 + 1, k2;
Ξζ = k1 − 1, k1, k1 − 2, k1 − 1, . . . , k2, k2 + 1.

When the sequences (τ̃i) and (ζ̃i) have been constructed, we can apply the strategy of the
previous paragraph to construct A such that M = AAT and N = ATA.

Example 4.7 Let

M1 =
[

1 i
i −1

]
, N1 =

[
−1 i
i 1

]
, M2 =

 1 i 0
i −1 0
0 0 0

 , N2 =

 −1 i 0
i 1 0
0 0 0

 ,
i.e., M1 and N1 are similar to a Jordan block of size 2 × 2 associated with zero. Then
(τ (1)
i )i∈N = (ζ(1)

i )i∈N = (2, 0, 0, . . . ) and (τ (2)
i )i∈N = (ζ(2)

i )i∈N = (2, 1, 0, . . . ) are the sequences
as in Theorem 4.5 associated to M1, N1 and M2, N2, respectively. In both cases, we have
φ2 = 1 which is odd. The sequences associated to M1 and N1 do not satisfy condition iii)
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in Theorem 4.6, while the sequences associated with M2 and N2 do. Indeed, there does not
exist a matrix A1 such that M1 = A1A

T
1 and N1 = AT1A1, because setting

A1 =
[
a b
c d

]
gives [

a2 + b2 ac+ bd
ac+ bd c2 + d2

]
=
[

1 i
i −1

]
and

[
a2 + c2 ab+ cd
ab+ cd b2 + d2

]
=
[
−1 i
i 1

]
which implies d = ±a. If d = −a then i = ac − ba = ab − ca a contradiction. But d = a
implies a2 = bc, because detA1 = detM1 = 0. Moreover, we then have bc+ b2 = 1 = −c2− bc
which implies (b + c)2 = 0, i.e., c = −b, contradicting a2 + b2 = 1 6= a2 + c2. On the other
hand, we have

M2 = AAT and N2 = ATA, where A =

 0 0 1
0 0 i
i 1 0

 .
Here, the canonical form for the triple (A, I3, I3) is given by 0 1 0

0 0 1
0 0 0

 ,
 1 0 0

0 0 1
0 1 0

 ,
 0 1 0

1 0 0
0 0 1

 .

5 Condensed forms for G complex symmetric, Ĝ complex
skew-symmetric

In this section we study the canonical forms for the case that G is complex symmetric and
Ĝ complex skew-symmetric. Again, we start with the canonical form for the case that A
is quadratic and nonsingular. We cannot directly use our key strategy from the proof of
Theorem 4.2 and construct a square root of Ĥ, because now Ĥ is Ĝ-Hamiltonian. A Ĝ-
Hamiltonian matrix can neither have a Ĝ-Hamiltonian nor a Ĝ-skew-Hamiltonian square root,
because the squares of matrices of such type are always Ĝ-skew-Hamiltonian. Therefore, we
will start from the fourth root of the Ĝ-skew-Hamiltonian matrix Ĥ2 instead.

Theorem 5.1 Let A,G, Ĝ ∈ C2n×2n be nonsingular and let G be complex symmetric and Ĝ
be complex skew-symmetric. Then there exists nonsingular matrices X,Y ∈ C2n×2n such that

XTAY =
[
Jξ1(µ1) 0

0 Jξ1(µ1)

]
⊕ · · ·⊕

[
Jξm(µm) 0

0 Jξm(µm)

]
,

XTGX =
[

0 Rξ1
Rξ1 0

]
⊕ · · ·⊕

[
0 Rξm
Rξm 0

]
,

Y T ĜY =
[

0 Rξ1
−Rξ1 0

]
⊕ · · ·⊕

[
0 Rξm

−Rξm 0

]
,

(5.1)

where µj ∈ C \ {0}, argµj ∈ [0, π/2), and ξj ∈ N for j = 1, . . . ,m. Moreover, for the Ĝ-
Hamiltonian matrix Ĥ = Ĝ−1ATG−1A and the G-skew-symmetric matrix H = G−1AĜ−1AT
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we have that

Y −1ĤY =
[
−J 2

ξ1
(µ1) 0

0 J 2
ξ1

(µ1)

]
⊕ · · ·⊕

[
−J 2

ξm
(µm) 0

0 J 2
ξm

(µm)

]
,

X−1HX =
[
J 2
ξ1

(µ1) 0
0 −J 2

ξ1
(µ1)

]T
⊕ · · ·⊕

[
J 2
ξm

(µm) 0
0 −J 2

ξm
(µm)

]T
.

(5.2)

Proof. By Theorem 2.8, there exists a nonsingular matrix Y ∈ Cn×n such that

Y−1ĤY =
[
Jξ1(λ1) 0

0 −Jξ1(λ1)

]
⊕ · · ·⊕

[
Jξm(λm) 0

0 −Jξm(λm)

]
,

YT ĜY =
[

0 Rξ1
−Rξ1 0

]
⊕ · · ·⊕

[
0 Rξm

−Rξm 0

]
,

where λj ∈ C \ {0}, arg(λj) ∈ [0, π), and ξj ∈ N for j = 1, . . . ,m. Next construct the matrix
S̃ such that

Y−1S̃Y =
[
Jξ1(λ1) 0

0 Jξ1(λ1)

]
⊕ · · · ⊕

[
Jξm(λm) 0

0 Jξm(λm)

]
It is easily verified that S̃ is Ĝ-skew-Hamiltonian, that it satisfies S̃2 = Ĥ2, and that we have
σ(S̃) ⊆ {z ∈ C \ {0} : arg(z) ∈ [0, π)}. Thus, by the uniqueness property of Lemma 2.10,
we obtain that S̃ is a polynomial in Ĥ2. Moreover, applying Lemma 2.10 once more, we
obtain that S̃ has a unique square root S ∈ Cn×n being a polynomial in S̃ and satisfying
σ(S) ⊆ {z ∈ C \ {0} : arg(z) ∈ [0, π)}, namely

Y−1SY =

[
Jξ1(λ1)

1
2 0

0 Jξ1(λ1)
1
2

]
⊕ · · · ⊕

[
Jξm(λm)

1
2 0

0 Jξm(λm)
1
2

]
.

In fact, we must have
σ(S) ⊆ {z ∈ C \ {0} : arg(z) ∈ [0, π/2)},

because otherwise S̃ would have eigenvalues λj with arg(λj) ∈ [π, 2π). Let µ2
j = λj and

arg(µj) ∈ [0, π/2). By Theorem 2.9 we then obtain that there exists a nonsingular matrix
Ỹ ∈ Cn×n such that

SCF := Ỹ −1SỸ =
[
Jξ1(µ1) 0

0 Jξ1(µ1)

]
⊕ · · ·⊕

[
Jξm(µm) 0

0 Jξm(µm)

]
,

ĜCF := Ỹ T ĜỸ =
[

0 Rξ1
−Rξ1 0

]
⊕ · · ·⊕

[
0 Rξm

−Rξm 0

]
.

Moreover, using G−1AĤ = HG−1A and the fact that G−1A is nonsingular, we find that Ĥ
and H are similar. Thus, by Theorem 2.7 there exists a nonsingular matrix X̃ ∈ Cn×n such
that

HCF = X̃−1HX̃ =
[
−J 2

ξ1
(µ1) 0

0 J 2
ξ1

(µ1)

]
⊕ · · ·⊕

[
−J 2

ξm
(µm) 0

0 J 2
ξm

(µm)

]
,

GCF = X̃TGX̃ =
[

0 Rξ1
Rξ1 0

]
⊕ · · ·⊕

[
0 Rξm
Rξm 0

]
.
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Indeed, since H is similar to Ĥ, it has the eigenvalues λj = µ2
j with partial multiplicities

ξj , j = 1, . . . ,m. Since the canonical form of G-skew-symmetric matrices in Theorem 2.7
is uniquely determined by the Jordan canonical form, we find that the pairs (H, G) and
(HCF, GCF) must have the same canonical form. Observe that SCF is GCF-symmetric, but not
a square root of HCF. Instead, it is easy to check that

SCF(HCF)−1SCF =
[
−Iξ1 0

0 Iξ1

]
⊕ · · · ⊕

[
−Iξm 0

0 Iξm

]
.

Using this identity and setting X = G−1X̃−T and Y = A−1GX̃SCF, we obtain that

XTAY = X̃−1G−1AA−1GX̃SCF = SCF,

XTGX = X̃−1G−1GG−1X̃−T = (X̃TGX̃)−1 = (GCF)−1 = GCF,

Y T ĜY = STCFX̃
TGA−T ĜA−1GX̃SCF

= STCFX̃
TGX̃X̃−1H−1X̃SCF

= STCFGCF(HCF)−1SCF = GCFSCF(HCF)−1SCF = ĜCF.

It is now straightforward to check that Y −1ĤY and X−1HX have the claimed forms. Con-
cerning uniqueness, we note that the form (5.1) is already uniquely determined by the Jordan
structure of Ĥ and by the restriction µj ∈ C \ {0}, arg µj ∈ [0, π/2).

Theorem 5.2 Let A ∈ Cm×2n, let G ∈ Cm×m be complex symmetric and nonsingular and
let Ĝ ∈ C2n×2n be complex skew-symmetric and nonsingular. Then there exists nonsingular
matrices X ∈ Cm×m and Y ∈ C2n×2n such that

XTAY = Ac ⊕Az,1 ⊕Az,2 ⊕Az,3 ⊕Az,4 ⊕Az,5 ⊕Az,6,
XTGX = Gc ⊕Gz,1 ⊕Gz,2 ⊕Gz,3 ⊕Gz,4 ⊕Gz,5 ⊕Gz,6, (5.3)
Y T ĜY = Ĝc ⊕ Ĝz,1 ⊕ Ĝz,2 ⊕ Ĝz,3 ⊕ Ĝz,4 ⊕ Ĝz,5 ⊕ Ĝz,6.

Moreover, for the Ĝ-Hamiltonian matrix Ĥ = Ĝ−1ATG−1A ∈ C2n×2n and for the G-skew-
symmetric matrix H = G−1AĜ−1AT ∈ Cm×m we have that

Y −1ĤY = Ĥc ⊕ Ĥz,1 ⊕ Ĥz,2 ⊕ Ĥz,3 ⊕ Ĥz,4 ⊕ Ĥz,5 ⊕ Ĥz,6,
X−1HX = Hc ⊕Hz,1 ⊕Hz,2 ⊕Hz,3 ⊕Hz,4 ⊕Hz,5 ⊕Hz,6.

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of Ĥ and H:
Ac, Gc, Ĝc have the forms as in (5.1) and Ĥc,Hc have the forms as in (5.2);

1) one block corresponding to 2n0 Jordan blocks of size 1 × 1 of Ĥ and m0 Jordan blocks
of size 1× 1 of H associated with the eigenvalue zero:

Az,1 = 0m0×2n0 , Gz,1 = Im0 , Ĝz,1 = Jn0 , Ĥz,1 = 02n0 , Hz,1 = 0m0 ,

where mo, no ∈ N ∪ {0};
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2) blocks corresponding to a pair of j × j Jordan blocks of Ĥ and H associated with the
eigenvalue zero:

Az,2 =
γ1⊕
i=1
J2(0) ⊕

γ2⊕
i=1
J4(0) ⊕ · · ·⊕

γ2`+1⊕
i=1
J4`+2(0) ,

Gz,2 =
γ1⊕
i=1

R2 ⊕
γ2⊕
i=1

R4 ⊕ · · ·⊕
γ2`+1⊕
i=1

R4`+2 ,

Ĝz,2 =
γ1⊕
i=1

[
0 R1

−R1 0

]
⊕

γ2⊕
i=1

[
0 R2

−R2 0

]
⊕ · · ·⊕

γ2`+1⊕
i=1

[
0 R2`+1

−R2`+1 0

]
,

Ĥz,2 =
γ1⊕
i=1

02 ⊕
γ2⊕
i=1

(−Σ2,2)J 2
4 (0) ⊕ · · ·⊕

γ2`+1⊕
i=1

(−Σ2`+1,2`+1)J 2
4`+2(0) ,

Hz,2 =
γ1⊕
i=1

02 ⊕
γ2⊕
i=1

Σ3,1J 2
4 (0)T ⊕ · · ·⊕

γ2`+1⊕
i=1

Σ2`+2,2`J 2
4`+2(0)T ,

where γ1, . . . , γ` ∈ N∪{0}; thus, Ĥz,2 and Hz,2 both have each 2γj Jordan blocks of size
j × j for j = 1, . . . , 2`+ 1;

3) blocks corresponding to a 2j × 2j Jordan block of Ĥ and a (2j + 1) × (2j + 1) Jordan
block of H associated with the eigenvalue zero:

Az,3 =
m2⊕
i=1

[
I2
0

]
3×2

⊕
m4⊕
i=1

[
I4
0

]
5×4

⊕ · · ·⊕
m2⊕̀
i=1

[
I2`
0

]
(2`+1)×2`

,

Gz,3 =
m2⊕
i=1

R3 ⊕
m4⊕
i=1

R5 ⊕ · · ·⊕
m2⊕̀
i=1

R2`+1 ,

Ĝz,3 =
m2⊕
i=1

[
0 R1

−R1 0

]
⊕

m4⊕
i=1

[
0 R2

−R2 0

]
⊕ · · ·⊕

m2⊕̀
i=1

[
0 R`
−R` 0

]
,

Ĥz,3 =
m2⊕
i=1

(−Σ1,1)J2(0) ⊕
m4⊕
i=1

(−Σ2,2)J4(0) ⊕ · · ·⊕
m2⊕̀
i=1

(−Σ`,`)J2`(0) ,

Hz,3 =
m2⊕
i=1

Σ2,1J3(0)T ⊕
m4⊕
i=1

Σ3,2J5(0)T ⊕ · · ·⊕
m2⊕̀
i=1

Σ`+1,`J2`+1(0)T ,

where m2,m4, . . . ,m2` ∈ N ∪ {0}; thus, Ĥz,3 has m2j Jordan blocks of size 2j × 2j and
Hz,3 has m2j Jordan blocks of size (2j + 1)× (2j + 1) for j = 1, . . . , `;

4) blocks corresponding to two (2j−1)×(2j−1) Jordan blocks of Ĥ and two 2j×2j Jordan
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blocks of H associated with the eigenvalue zero:

Az,4 =
m1⊕
i=1


0 I1
0 0
I1 0
0 0


4×2

⊕
m3⊕
i=1


0 I3
0 0
I3 0
0 0


8×6

⊕ · · ·⊕
m2`−1⊕
i=1


0 I2`−1

0 0
I2`−1 0

0 0


4`×(4`−2)

,

Gz,4 =
m1⊕
i=1

R4 ⊕
m3⊕
i=1

R8 ⊕ · · ·⊕
m2`−1⊕
i=1

R4` ,

Ĝz,4 =
m1⊕
i=1

[
0 R1

−R1 0

]
⊕

m3⊕
i=1

[
0 R3

−R3 0

]
⊕ · · ·⊕

m2`−1⊕
i=1

[
0 R2`−1

−R2`−1 0

]
,

Ĥz,4 =
m1⊕
i=1

02 ⊕
m3⊕
i=1

[
−J3(0) 0

0 J3(0)

]
⊕ · · ·⊕

m2`−1⊕
i=1

[
−J2`−1(0) 0

0 J2`−1(0)

]
,

Hz,4 =
m1⊕
i=1

[
−J2(0) 0

0 J2(0)

]T
⊕

m3⊕
i=1

[
−J4(0) 0

0 J4(0)

]T
⊕ · · ·⊕

m2`−1⊕
i=1

[
−J2`(0) 0

0 J2`(0)

]T
,

where m1,m3, . . . ,m2`−1 ∈ N ∪ {0}; thus, Ĥz,4 has 2m2j−1 Jordan blocks of the size
(2j − 1)× (2j − 1) and Hz,4 has 2m2j−1 Jordan blocks of size 2j × 2j for j = 1, . . . , `;

5) blocks corresponding to a 2j × 2j Jordan block of Ĥ and a (2j − 1) × (2j − 1) Jordan
block of H associated with the eigenvalue zero:

Az,5 =
n1⊕
i=1

[
0 I1

]
1×2

⊕
n3⊕
i=1

[
0 I3

]
3×4

⊕ · · ·⊕
n2`−1⊕
i=1

[
0 I2`−1

]
(2`−1)×2`

,

Gz,5 =
n1⊕
i=1

R1 ⊕
n3⊕
i=1

R3 ⊕ · · ·⊕
n2`−1⊕
i=1

R2`−1 ,

Ĝz,5 =
n1⊕
i=1

[
0 R1

−R1 0

]
⊕

n3⊕
i=1

[
0 R2

−R2 0

]
⊕ · · ·⊕

n2`−1⊕
i=1

[
0 R`
−R` 0

]
,

Ĥz,5 =
n1⊕
i=1

(−Σ1,1)J2(0) ⊕
n3⊕
i=1

(−Σ2,2)J4(0) ⊕ · · ·⊕
n2`−1⊕
i=1

(−Σ`,`)J2`(0) ,

Hz,5 =
n1⊕
i=1

01 ⊕
n3⊕
i=1

Σ2,1J3(0)T ⊕ · · ·⊕
n2`−1⊕
i=1

Σ`,`−1J2`−1(0)T ,

where n1, n3 . . . , n2`−1 ∈ N∪{0}; thus, Ĥz,5 has n2j−1 Jordan blocks of size 2j× 2j and
Hz,5 has n2j−1 Jordan blocks of size (2j − 1)× (2j − 1) for j = 1, . . . , `;

6) blocks corresponding to two (2j+1)×(2j+1) Jordan blocks of Ĥ and two 2j×2j Jordan
blocks of H associated with the eigenvalue zero:

Az,6 =
n2⊕
i=1

[
0 0 0 I2
0 I2 0 0

]
4×6

⊕
n4⊕
i=1

[
0 0 0 I4
0 I4 0 0

]
8×10

⊕ · · ·⊕
n2⊕̀
i=1

[
0 0 0 I2`
0 I2` 0 0

]
4`×(4`+2)

,

Gz,6 =
n2⊕
i=1

R4 ⊕
n4⊕
i=1

R8 ⊕ · · ·⊕
n2⊕̀
i=1

R4` ,

Ĝz,6 =
n2⊕
i=1

[
0 R3

−R3 0

]
⊕

n4⊕
i=1

[
0 R5

−R5 0

]
⊕ · · ·⊕

n2⊕̀
i=1

[
0 R2`+1

−R2`+1 0

]
,

Ĥz,6 =
n2⊕
i=1

[
−J3(0) 0

0 J3(0)

]
⊕

n4⊕
i=1

[
−J5(0) 0

0 J5(0)

]
⊕ · · ·⊕

n2⊕̀
i=1

[
−J2`+1(0) 0

0 J2`+1(0)

]
,

Hz,6 =
n2⊕
i=1

[
−J2(0) 0

0 J2(0)

]T
⊕

n4⊕
i=1

[
−J4(0) 0

0 J4(0)

]T
⊕ · · ·⊕

n2⊕̀
i=1

[
−J2`(0) 0

0 J2`(0)

]T
,
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where n2, n4, . . . , n2` ∈ N∪{0}; thus, Ĥz,6 has 2n2j Jordan blocks of size (2j+1)×(2j+1)
and Hz,6 has 2n2j Jordan blocks of size 2j × 2j for j = 1, . . . , `;

For the eigenvalue zero, the matrices Ĥ and H have 2γ2j + m2j + n2j−1 respectively 2γ2j +
2m2j−1 + 2n2j Jordan blocks of size 2j × 2j for j = 1, . . . , ` and 2γ2j+1 + 2m2j+1 + 2n2j

respectively 2γ2j+1 + m2j + n2j+1 Jordan blocks of size (2j + 1) × (2j + 1) for j = 0, . . . , `.
Here m2`+1 = n2`+1 = 0 and 2`+ 1 is the smallest odd number that is larger or equal to the
maximum of the indices of Ĥ and H. (Here index refers to the maximal size of a Jordan
block associated with zero.)

Moreover, the form (4.3) is unique up to simultaneous block permutation of the blocks in
the diagonal blocks of the right hand side of (4.3).

Proof. The proof is presented in the Appendix.

6 Canonical forms for G, Ĝ complex skew-symmetric

In this section we finally treat that case that both G and Ĝ are complex skew-symmetric.

Theorem 6.1 Let A ∈ C2n×2n be nonsingular and let G, Ĝ ∈ C2n×2n be nonsingular and
complex skew-symmetric. Then there exists nonsingular matrices X,Y ∈ C2n×2n such that

XTAY =
[
Jξ1(µ1) 0

0 Jξ1(µ1)

]
⊕ · · ·⊕

[
Jξm(µm) 0

0 Jξm(µm)

]
,

XTGX =
[

0 Rξ1
−Rξ1 0

]
⊕ · · ·⊕

[
0 Rξm

−Rξm 0

]
,

Y T ĜY =
[

0 −Rξ1
Rξ1 0

]
⊕ · · ·⊕

[
0 −Rξm
Rξm 0

]
,

(6.1)

where µj ∈ C \ {0}, argµj ∈ [0, π), and ξj ∈ N for j = 1, . . . ,m. Furthermore, for
the Ĝ-skew-Hamiltonian matrix Ĥ = Ĝ−1ATG−1A and for the G-skew-Hamiltonian matrix
H = G−1AĜ−1AT we have that

Y −1ĤY =
[
J 2
ξ1

(µ1) 0
0 J 2

ξ1
(µ1)

]
⊕ · · ·⊕

[
J 2
ξm

(µm) 0
0 J 2

ξm
(µm)

]
,

X−1HX =
[
J 2
ξ1

(µ1) 0
0 J 2

ξ1
(µ1)

]T
⊕ · · ·⊕

[
J 2
ξm

(µm) 0
0 J 2

ξm
(µm)

]T
.

(6.2)

Proof. The proof proceeds completely analogous to the proof of Theorem 4.1. Starting with
a skew-Hamiltonian square root S of Ĥ that is a polynomial in Ĥ (such a square root exists
by Lemma 2.10) and reducing the pair (S; Ĝ) to the canonical form

(SCF, GCF) = (Ỹ −1SỸ , Ỹ T ĜỸ )

of Theorem 2.9, we obtain the existence of a transformation matrix X̃ such that

(X̃−1HX̃, X̃TGX̃) = (S2
CF,−GCF).

Here, it is used that by Theorem 2.9 the canonical form of all three pairs (Ĥ, Ĝ), (H, G),
and (H,−G) is the same, because H and Ĥ are similar. Then setting X = G−1X̃−T and
Y = A−1GX̃SCF yields the desired result.

25



We mention that the choice of the transformation matrices X,Y in Theorem 6.1 so that
XTGX = −Y T ĜY rather than XTGX = Y T ĜY is just a matter of taste. A canonical
form (with modified values instead of µ1, . . . , µm in XTAY ) with XTGX = Y T ĜY can
be constructed as well, but this would lead to the occurrence of distracting minus signs in
the forms for H and Ĥ. Therefore, we prefer to represent the canonical form as we did in
Theorem 6.1.

Theorem 6.2 Let A ∈ C2m×2n and let G ∈ C2m×2m, Ĝ ∈ C2n×2n be complex skew-symmetric
and nonsingular. Then there exists nonsingular matrices X ∈ C2m×2m and Y ∈ C2n×2n such
that

XTAY = Ac ⊕Az,1 ⊕Az,2 ⊕Az,3 ⊕Az,4,
XTGX = Gc ⊕Gz,1 ⊕Gz,2 ⊕Gz,3 ⊕Gz,4, (6.3)
Y T ĜY = Ĝc ⊕ Ĝz,1 ⊕ Ĝz,2 ⊕ Ĝz,3 ⊕ Ĝz,4.

Moreover, for the Ĝ-skew-Hamiltonian matrix Ĥ = Ĝ−1ATG−1A ∈ C2n×2n and for the G-
skew-Hamiltonian matrix H = G−1AĜ−1AT ∈ C2m×2m we have that

Y −1ĤY = Ĥc ⊕ Ĥz,1 ⊕ Ĥz,2 ⊕ Ĥz,3 ⊕ Ĥz,4,
X−1HX = Hc ⊕Hz,1 ⊕Hz,2 ⊕Hz,3 ⊕Hz,4.

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of Ĥ and H:
Ac, Gc, Ĝc have the forms as in (6.1) and Ĥc,Hc have the forms as in (6.2);

1) one block corresponding to 2n0 Jordan blocks of size 1× 1 of Ĥ and 2m0 Jordan blocks
of size 1× 1 of H associated with the eigenvalue zero:

Az,1 = 02m0×2n0 , Gz,1 = Jm0 , Ĝz,1 = Jn0 , Ĥz,1 = 02n0 , Hz,1 = 02m0 ;

2) blocks corresponding to a pair of j × j Jordan blocks of Ĥ and H associated with the
eigenvalue zero:

Az,2 =
γ1⊕
i=1
J2(0) ⊕

γ2⊕
i=1
J4(0) ⊕ · · ·⊕

γ⊕̀
i=1
J2`(0) ,

Gz,2 =
γ1⊕
i=1

[
0 R1

−R1 0

]
⊕

γ2⊕
i=1

[
0 R2

−R2 0

]
⊕ · · ·⊕

γ⊕̀
i=1

[
0 R`
−R` 0

]
,

Ĝz,2 =
γ1⊕
i=1

[
0 R1

−R1 0

]
⊕

γ2⊕
i=1

[
0 R2

−R2 0

]
⊕ · · ·⊕

γ⊕̀
i=1

[
0 R`
−R` 0

]
,

Ĥz,2 =
γ1⊕
i=1

02 ⊕
γ2⊕
i=1

Γ̂4J 2
4 (0) ⊕ · · ·⊕

γ⊕̀
i=1

Γ̂2`J 2
2`(0) ,

Hz,2 =
γ1⊕
i=1

02 ⊕
γ2⊕
i=1

Γ4J 2
4 (0)T ⊕ · · ·⊕

γ⊕̀
i=1

Γ2`J 2
2`(0)T ,

where γ1, . . . , γ` ∈ N∪ {0}, Γ̂2j = (−Ij−1)⊕ I1⊕ (−Ij), and Γ2j = (−Ij)⊕ I1⊕ (−Ij−1)
for j = 2, . . . , `; thus, Ĥz,2 and Hz,2 both have each 2γj Jordan blocks of size j × j for
j = 1, . . . , `;

26



3) blocks corresponding to two j × j Jordan blocks of Ĥ and two (j + 1)× (j + 1) Jordan
blocks of H associated with the eigenvalue zero:

Az,3 =
m1⊕
i=1


0 I1
0 0
I1 0
0 0


4×2

⊕
m2⊕
i=1


0 I2
0 0
I2 0
0 0


6×4

⊕ · · ·⊕
m⊕̀
i=1


0 I`−1

0 0
I`−1 0

0 0


2`×(2`−2)

,

Gz,3 =
m1⊕
i=1

[
0 R2

−R2 0

]
⊕

m2⊕
i=1

[
0 R3

−R3 0

]
⊕ · · ·⊕

m`−1⊕
i=1

[
0 R`
−R` 0

]
,

Ĝz,3 =
m1⊕
i=1

[
0 R1

−R1 0

]
⊕

m2⊕
i=1

[
0 R2

−R2 0

]
⊕ · · ·⊕

m`−1⊕
i=1

[
0 R`−1

−R`−1 0

]
,

Ĥz,3 =
m1⊕
i=1

02 ⊕
m2⊕
i=1

[
J2(0) 0

0 J2(0)

]
⊕ · · ·⊕

m`−1⊕
i=1

[
J`−1(0) 0

0 J`−1(0)

]
,

Hz,3 =
m1⊕
i=1

[
J2(0) 0

0 J2(0)

]T
⊕

m2⊕
i=1

[
J3(0) 0

0 J3(0)

]T
⊕ · · ·⊕

m`−1⊕
i=1

[
J`(0) 0

0 J`(0)

]T
,

where m1, . . . ,m`−1 ∈ N ∪ {0}; thus, Ĥz,3 has 2mj Jordan blocks of size j × j and Hz,3
has 2mj Jordan blocks of size (j + 1)× (j + 1) for j = 1, . . . , `− 1;

4) blocks corresponding to two (j + 1)× (j + 1) Jordan blocks of Ĥ and two j × j Jordan
blocks of H associated with the eigenvalue zero:

Az,4 =
n1⊕
i=1

[
0 0 0 I1
0 I1 0 0

]
2×4

⊕
n2⊕
i=1

[
0 0 0 I2
0 I2 0 0

]
4×6

⊕ · · ·⊕
n`−1⊕
i=1

[
0 0 0 I`−1

0 I`−1 0 0

]
(2`−2)×2`

,

Gz,4 =
n1⊕
i=1

[
0 R1

−R1 0

]
⊕

n2⊕
i=1

[
0 R2

−R2 0

]
⊕ · · ·⊕

n`−1⊕
i=1

[
0 R`−1

−R`−1 0

]
Ĝz,4 =

n1⊕
i=1

[
0 R2

−R2 0

]
⊕

n2⊕
i=1

[
0 R3

−R3 0

]
⊕ · · ·⊕

n`−1⊕
i=1

[
0 R`
−R` 0

]
,

Ĥz,4 =
n1⊕
i=1

[
J2(0) 0

0 J2(0)

]
⊕

n2⊕
i=1

[
J3(0) 0

0 J3(0)

]
⊕ · · ·⊕

n`−1⊕
i=1

[
J`(0) 0

0 J`(0)

]
,

Hz,4 =
n1⊕
i=1

[
J1(0) 0

0 J1(0)

]T
⊕

n2⊕
i=1

[
J2(0) 0

0 J2(0)

]T
⊕ · · ·⊕

n`−1⊕
i=1

[
J`−1(0) 0

0 J`−1(0)

]T
,

where n1, . . . , n`−1 ∈ N ∪ {0}; thus, Ĥz,4 has 2nj Jordan blocks of size (j + 1)× (j + 1)
and Hz,4 has 2nj Jordan blocks of size j × j for j = 1, . . . , `− 1;

Then for the eigenvalue zero, the matrices Ĥ and H have 2γj + 2mj + 2nj−1 respectively
2γj + 2mj−1 + 2nj Jordan blocks of size j × j for j = 1, . . . , `. Here ` is the maximum of the
indices of Ĥ and H. (Here, index refers to the maximal size of a Jordan block associated with
the eigenvalue zero.)

Moreover, the form (6.3) is unique up to simultaneous block permutation of the blocks in
the diagonal blocks of the right hand side of (6.3).

Proof. The proof is presented in the Appendix.
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7 Conclusion

We have presented canonical forms for matrix triples (A,G, Ĝ) where G, Ĝ are complex sym-
metric or complex skew-symmetric and nonsingular. The canonical form for A can be inter-
preted as a variant of the singular value decomposition, because the form also displays the
Jordan canonical forms of the structured matrices Ĥ = Ĝ−1ATG−1A and H = G−1AĜ−1AT .
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Appendix: Proofs of the main theorems

In the appendix, we present a constructive and recursive proof of Theorem 4.2. Then, we
explain the necessary changes to be made in the proof to obtain the proofs of Theorems 5.2
and 6.2.

Proof of Theorem 4.2

The proof proceeds in four well-separated steps. First, we present a reduction towards a
staircase-like form by repeatedly applying Proposition 3.3. In the second step, we further
reduce this staircase-like form towards a form that can be considered as a canonical form. In
the third step, we show how single Jordan blocks can be extracted from the form. Finally,
uniqueness is proved in the fourth step.

Step 1) Reduction to a stair-case-like form

Applying appropriate congruence transformations to G and Ĝ otherwise, we may assume that
G = Im and Ĝ = In. Let

A = B1C
T
1

be a full rank factorization of A, i.e., B1 ∈ Cm×r, C1 ∈ Cn×r, rankB1 = rankC1 = r.
Applying Proposition 3.3 to B1 and C1, respectively, we can determine nonsingular matrices
X1 ∈ Cm×m and Y1 ∈ Cn×n such that

XT
1 B1 =

 0
0
B10

 π0

δ1

r

, XT
1 X1 = Iπ0 ⊕

 0 0 Iδ1
0 Ip1 0
Iδ1 0 0

 ,
Y T

1 C1 =

 0
0
C10

 π̂0

δ̂1

r

, Y T
1 Y1 = Iπ̂0 ⊕

 0 0 Iδ̂1
0 Ip̂1 0
Iδ̂1 0 0

 ,
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where B10, C10 ∈ Cr×r are both invertible, p1, δ1, p̂1, δ̂1 ≥ 0, and

p1 + δ1 = p̂1 + δ̂1 = r.

Partition

B10C
T
10 =

[ p̂1 δ̂1

p1 A33 A34

δ1 A43 A44

]
,

then

XT
1 AY1 =


0 0 0 0
0 0 0 0
0 0 A33 A34

0 0 A43 A44

 , XT
1 X1 =


Iπ0 0 0 0
0 0 0 Iδ1
0 0 Ip1 0
0 Iδ1 0 0

 ,

Y T
1 Y1 =


Iπ̂0 0 0 0
0 0 0 Iδ̂1
0 0 Ip̂1 0
0 Iδ̂1 0 0

 ,
Applying the same procedure to the triple (A33, Ip1 , Ip̂1), we can construct nonsingular ma-
trices X̃2, Ỹ2 such that

X̃T
2 A33Ỹ2 =


0 0 0 0
0 0 0 0
0 0 A55 A56

0 0 A65 A66

 , X̃T
2 X̃2 =


Iπ1 0 0 0
0 0 0 Iδ2
0 0 Ip2 0
0 Iδ2 0 0

 ,

Ỹ T
2 Ỹ2 =


Iπ̂1 0 0 0
0 0 0 Iδ̂2
0 0 Ip̂2 0
0 Iδ̂2 0 0

 ,
where p2, δ2, p̂2, δ̂2 ≥ 0, A66 ∈ Fδ2×δ̂2 , A56 ∈ Fp2×δ̂2 , A65 ∈ Fδ2×p̂2 , A55 ∈ Fp2×p̂2 , and
p2 + δ2 = p̂2 + δ̂2 = rankA33, and where the matrix[

A55 A56

A65 A66

]
∈ F(p2+δ2)×(p2+δ2)

is nonsingular. Letting

X2 = X1(Iπ0+δ1 ⊕ X̃2 ⊕ Iδ1), Y2 = Y1(Iπ̂0+δ̂1
⊕ Ỹ2 ⊕ Iδ̂1),
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we then have

XT
2 AY2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 A37

0 0 0 0 0 0 A47

0 0 0 0 A55 A56 A57

0 0 0 0 A65 A66 A67

0 0 A73 A74 A75 A76 A77


, XT

2 X2 =



Iπ0 0 0 0 0 0 0
0 0 0 0 0 0 Iδ1
0 0 Iπ1 0 0 0 0
0 0 0 0 0 Iδ2 0
0 0 0 0 Ip2 0 0
0 0 0 Iδ2 0 0 0
0 Iδ1 0 0 0 0 0


,

Y T
2 Y2 =



Iπ̂0 0 0 0 0 0 0
0 0 0 0 0 0 Iδ̂1
0 0 Iπ̂1 0 0 0 0
0 0 0 0 0 Iδ̂2 0
0 0 0 0 Ip̂2 0 0
0 0 0 Iδ̂2 0 0 0
0 Iδ̂1 0 0 0 0 0


,

where the matrix XT
2 AY2 has been partitioned conformably with XT

2 X2 (row-wise) and Y T
2 Y2

(column-wise). The submatrix of XT
2 AY2 that is obtained by deleting the leading two rows

and columns is then nonsingular, because it is equivalent to B10C
T
10. Thus, [A37

A47
] has full row

rank and [A73 A74] has full column rank.
We can repeat the procedure for the triple (A55, Ip2 , Ip̂2) which finally yields nonsingular

matrices X3 and Y3 such that (after renaming some blocks in A and using the canonical
notation corresponding to the notation in the previous step), we have

XT
3 AY3 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 A3,10

0 0 0 0 0 0 0 0 0 A4,10

0 0 0 0 0 0 0 0 A5,9 A5,10

0 0 0 0 0 0 0 0 A6,9 A6,10

0 0 0 0 0 0 A7,7 A7,8 A7,9 A7,10

0 0 0 0 0 0 A8,7 A8,8 A8,9 A8,10

0 0 0 0 A9,5 A9,6 A9,7 A9,8 A9,9 A9,10

0 0 A10,3 A10,4 A10,5 A10,6 A10,7 A10,8 A10,9 A10,10


, (7.1)

XT
3 X3 =



Iπ0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Iδ1
0 0 Iπ1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Iδ2 0
0 0 0 0 Iπ2 0 0 0 0 0
0 0 0 0 0 0 0 Iδ3 0 0
0 0 0 0 0 0 Ip3 0 0 0
0 0 0 0 0 Iδ3 0 0 0 0
0 0 0 Iδ2 0 0 0 0 0 0
0 Iδ1 0 0 0 0 0 0 0 0


, (7.2)
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Y T3 Y3 =



Iπ̂0, 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Iδ̂1
0 0 Iπ̂1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Iδ̂2 0
0 0 0 0 Iπ̂2 0 0 0 0 0
0 0 0 0 0 0 0 Iδ̂3 0 0
0 0 0 0 0 0 Ip̂3 0 0 0
0 0 0 0 0 Iδ̂3 0 0 0 0
0 0 0 Iδ̂2 0 0 0 0 0 0
0 Iδ̂1 0 0 0 0 0 0 0 0


, (7.3)

where [A10,3 A10,4] and [A9,5 A9,6] have full column rank,[
A3,10

A4,10

]
and

[
A5,9

A6,9

]
have full row rank, and

[
A77 A78

A87 A88

]
is nonsingular.

Continuing recursively, the process clearly has to stagnate after finitely many steps. Using
the canonical notation corresponding to the notation in the first two steps of the process, we
find that stagnation occurs after the `th step either when A2`+1,2`+1 is nonsingular or when
p` = p̂` = 0. In both cases we obviously have that p` = p̂`, and we end up with a nonsingular
matrix [

A2`+1,2`+1 A2`+1,2`+2

A2`+2,2`+1 A2`+2,2`+2

]
∈ F(p`+δ`)×(p̂`+δ̂`), (7.4)

full row rank matrices[
A2k+1,3`+2−k
A2k+2,3`+2−k

]
∈ F(πk+δk+1)×δ̂k , k = 1, . . . , `− 1,

and full column rank matrices [A3`+2−k,2k+1 A3`+2−k,2k+2] ∈ Fδk×(π̂k+δ̂k+1) for k = 1, . . . , `−1.
Also, we have

δ` = δ̂`, (7.5)

because p`+δ` = p̂`+ δ̂`. Finally, we obtain that due to the full rank properties, we have that

δk−1 ≥ π̂k−1 + δ̂k, δ̂k−1 ≥ πk−1 + δk (7.6)

for k = 2, . . . , `. On the other hand, the nonsingularity of the submatrices in (7.4) implies
that

pk + δk = p̂k + δ̂k (7.7)

for k = 1, 2, . . . , `− 1. We also have

pk−1 = πk−1 + 2δk + pk,

p̂k−1 = π̂k−1 + 2δ̂k + p̂k,

for k = 2, . . . , l. The latter two equations can be rewritten as

pk−1 + δk−1 = πk−1 + δk + δk−1 + (pk + δk),
p̂k−1 + δ̂k−1 = π̂k−1 + δ̂k + δ̂k−1 + (p̂k + δ̂k).

By using (7.7) we then obtain

πk−1 + δk + δk−1 = π̂k−1 + δ̂k + δ̂k−1,

or, equivalently,
δ̂k−1 − πk−1 − δk = δk−1 − π̂k−1 − δ̂k ≥ 0 (7.8)

for k = 2, . . . , `, where the nonnegativity follows from (7.6).
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Step 2) Further reduction of the staircase form

We now isolate the nonsingular block A2`+1,2`+1 from the other blocks and compress the
remaining part of XT

` AY` to more condensed form. We set π` = p`, π̂` = p̂` and

mk :=
{
πk if k is even
π̂k if k is odd

, nk :=
{
πk if k is odd
π̂k if k is even

for k = 0, . . . , `. Moreover, (using (7.5) and (7.8)), we define γ` := δ` = δ̂` and

γk := δ̂k − πk − δk+1 = δk − π̂k − δ̂k+1, k = 1, . . . , `− 1.

For the sake of readability of the paper, we will not carry out the proof for the general case,
but we will illustrate the procedure for the special case that ` = 3, where we have the matrices
as in (7.1)– (7.3). The general case proceeds completely analogous, but the tedious details
are left to the reader.

If not void then A7,7 in XT
3 AY3 in (7.1) is nonsingular, and hence, we can annihilate A7,8

by post-multiplying XT
3 AY3 with the matrix

Z1 := In0 ⊕ Iδ̂1 ⊕ Im1 ⊕ Iδ̂2 ⊕ In2 ⊕ Iδ̂3 ⊕
[
I −A−1

7,7A7,8

0 I

]
⊕ Iδ̂2 ⊕ Iδ̂1 .

Correspondingly updating Y T
3 Y3 this leads to a fill-in in the (7, 8) and (8, 7) block positions in

ZT1 Y
T
3 Y3Z1 given by −A−1

7,7A7,8 and −AT7,8A
−T
7,7 , respectively. We can annihilate these two fill-

ins by using the (8, 6) block entry Iδ̂3 as a pivot, i.e., by applying a congruence transformation
to ZT1 Y

T
3 Y3Z1 with

Z2 = In0 ⊕ Iδ̂1 ⊕ Im1 ⊕ Iδ̂2 ⊕ In2 ⊕
[
I AT7,8A

−T
7,7

0 I

]
⊕ Iδ̂3 ⊕ Iδ̂2 ⊕ Iδ̂1 .

It is then easy to check that ZT2 Z
T
1 Y

T
3 Y3Z1Z2 = Y T

3 Y3 and that the correspondingly updated
matrix XT

3 AY3Z1Z2 has no further fill-ins. Finally, we update Y3 ← Y3Z1Z2.
Similarly, we can annihilate A8,7 by working on the rows of XT

3 AY3 and applying congru-
ence transformations to XT

3 X3. Then, we can proceed and annihilate the blocks A7,9, A9,7,
A7,10, and A10,7 in XT

3 AY3. Since originally the matrix[
A7,7 A7,8

A8,7 A8,8

]
is nonsingular, we find that after the above reductions the updated block A8,8 is nonsingular
(or even void). With A8,8 as the pivot, we can then annihilate A8,9, A9,8, A8,10, A10,8 and
recover XT

3 X3 and Y T
3 Y3. Observe that this does not change the zero blocks in XT

3 AY3.
Finally post-multiplying XT

3 AY3 with the matrix

Z3 = In0 ⊕ Iδ̂1 ⊕ Im1 ⊕ Iδ̂2 ⊕ In2 ⊕AT8,8 ⊕ Iπ3 ⊕A−1
8,8 ⊕ Iδ̂2 ⊕ Iδ̂1 ,

33



(and updating Y3 ← Y3Z3) we then obtain

XT
3 AY3 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 A3,10

0 0 0 0 0 0 0 0 0 A4,10

0 0 0 0 0 0 0 0 A5,9 A5,10

0 0 0 0 0 0 0 0 A6,9 A6,10

0 0 0 0 0 0 A7,7 0 0 0
0 0 0 0 0 0 0 Iδ3 0 0
0 0 0 0 A9,5 A9,6 0 0 A9,9 A9,10

0 0 A10,3 A10,4 A10,5 A10,6 0 0 A10,9 A10,10


,

while XT
3 X3 and Y T

3 Y3 are as in (7.2) and (7.3). (Indeed, observe that the congruence
transformation with Z3 leaves Y T

3 Y3 invariant.) Since the original block [A9,5 A9,6] has full
column rank, it easily follows that the corresponding updated entry[

A9,5 A9,6

]
←
[
A9,5 A9,6A

T
8,8

]
has full column rank as well. Then there exists a nonsingular matrix W1 such that

[
A9,5 A9,6

]
←W T

1

[
A9,5 A9,6

]
=

 In2 0
0 Iδ̂3
0 0

 . (7.9)

Transforming then XT
3 AY3 and XT

3 X3 with a pre-multiplication and congruence transforma-
tion, respectively, with a block diagonal matrix having W−1

1 in the (4, 4)-block position and
W T

1 in the (9, 9)-block position, we obtain the desired update in the block [A9,5 A9,6] while
XT

3 X3 and zero block-structure of XT
3 AY3 are invariant under that transformation. We then

continue by taking this updated block [A9,5 A9,6] as a pivot to annihilate [A10,5 A10,6]. Again,
this can be done without changing XT

3 X3.
Similarly, due to a full row rank argument, there exists a nonsingular matrix W2 such that[

A5,9

A6,9

]
:=
[
A5,9

A6,9

]
W2 =

[
Im2 0 0
0 Iδ3 0

]
. (7.10)

and applying appropriate transformation matrices, the corresponding change in XT
3 AY3 can

be made without changing Y T
3 Y3. Then, A5,10 and A6,10 can be annihilated.

Also, we use the pivots [A5,9
A6,9

] and
[
A9,5 A9,6

]
, respectively, to annihilate the leading

m2 + δ3 columns of A9,9 and A10,9, and the leading n2 + δ̂3 rows of A9,9 and A9,10. So these
three blocks become

A9,9 ←

 0 0 0
0 0 0
0 0 Ã9,9

 , A9,10 ←

 0
0

Ã9,10

 , A10,9 ←
[

0 0 Ã10,9

]
,

where Ã9,9 ∈ Fγ2×γ2 , Ã9,10 ∈ Fγ2×δ̂1 , Ã10,9 ∈ Fδ1×γ2 . Since originally the submatrix
0 0 0 0 A5,9

0 0 0 0 A6,9

0 0 A7,7 A7,8 A7,9

0 0 A8,7 A8,8 A8,9

A9,5 A9,6 A9,7 A9,8 A9,9


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was nonsingular, we have that Ã9,9 is nonsingular. We then use Ã9,9 as pivot block to
annihilate Ã9,10 and Ã10,9, and transform Ã9,9 to Iγ2 .

In a similar way we can perform the reductions[
A3,10

A4,10

]
←
[
In1 0 0
0 Iδ2 0

]
,
[
A10,3 A10,4

]
←

 Im1 0
0 Iδ̂2
0 0

 ,
and use them as pivots to reduce A10,10 to

A10,10 :=

 0 0 0
0 0 0
0 0 Ã10,10

 ,
where Ã10,10 ∈ Fγ1×γ1 , and finally transform Ã10,10 to Iγ1 . After all this, the matrix XT

3 AY3

has the form

XT
3 AY3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 In1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 Iδ2 0
0 0 0 0 0 0 0 0 Im2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Iγ3 0 0 0 0
0 0 0 0 0 0 A7,7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Iγ3 0 0 0 0 0 0
0 0 0 0 In2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 Iγ3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 Iγ2 0 0 0
0 0 Im1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 Iδ̂2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 Iγ1



,

while XT
3 X3 and Y T

3 Y3 are still as in (7.2) and (7.3). We partition

Iδ1 = Im1 ⊕ Im2 ⊕ Iγ3 ⊕ Iγ2 ⊕ Iγ1 , Iδ2 = In2 ⊕ Iγ3 ⊕ Iγ2 ,
Iδ̂1 = In1 ⊕ In2 ⊕ Iγ3 ⊕ Iγ2 ⊕ Iγ1 , Iδ̂2 = Im2 ⊕ Iγ3 ⊕ Iγ2 ,

and replace Iδ1 , Iδ2 , Iδ̂1 , and Iδ̂2 in the matrix triple with these partitions. We then get
XT

3 AY3, XT
3 X3, and Y T

3 Y3 partitioned in 22 block rows and columns. Let PR be the block
permutation that re-arranges the block columns of XT

3 AY3 in the order

13, 1, 6, 22, 5, 10, 17, 21, 4, 9, 12, 14, 16, 20, 2, 7, 18, 3, 8, 11, 15, 19.

Let PL be another block permutation such that P TL re-arranges the block rows of XT
3 AY3 in

the same order. Set
X̃ := X3PL, Ỹ := Y3PR.

Then we obtain that

X̃TAỸ = Ans⊕A0⊕ (A1⊕A2⊕A3)⊕ (A1,2⊕A2,3),

X̃T X̃ = Gns ⊕ G0 ⊕ (G1 ⊕ G2 ⊕ G3) ⊕ (G1,2 ⊕ G2,3),

Ỹ T Ỹ = Ĝns ⊕ Ĝ0 ⊕ (Ĝ1 ⊕ Ĝ2 ⊕ Ĝ3) ⊕ (Ĝ1,2 ⊕ Ĝ2,3),
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where
Ans = A2`+1,2`+1, Gns = Iπ`

= In`
, Ĝns = Iπ̂`

= Im`
, ` = 3 (7.11)

A0 = 0m0×n0 , G0 = Iπ0 = Im0 , Ĝ0 = Iπ̂0 = In0 , (7.12)

A1 ⊕A2 ⊕A3 =
[

0 0
0 Iγ1

]
⊕


0 0 0 0
0 0 0 Iγ2
0 0 Iγ2 0
0 Iγ2 0 0

⊕


0 0 0 0 0 0
0 0 0 0 0 Iγ3
0 0 0 0 Iγ3 0
0 0 0 Iγ3 0 0
0 0 Iγ3 0 0 0
0 Iγ3 0 0 0 0

 ,

G1 ⊕ G2 ⊕ G3 = Ĝ1 ⊕ Ĝ2 ⊕ Ĝ3

=
[

0 Iγ1
Iγ1 0

]
⊕


0 0 0 Iγ2
0 0 Iγ2 0
0 Iγ2 0 0
Iγ2 0 0 0

⊕


0 0 0 0 0 Iγ3
0 0 0 0 Iγ3 0
0 0 0 Iγ3 0 0
0 0 Iγ3 0 0 0
0 Iγ3 0 0 0 0
Iγ3 0 0 0 0 0

 ,

A1,2⊕A2,3 =

 0 0 0
0 0 In1

0 Im1 0

 ⊕


0 0 0 0 0
0 0 0 0 In2

0 0 0 Im2 0
0 0 In2 0 0
0 Im2 0 0 0



G1,2 ⊕ G2,3 =

 0 0 Im1

0 In1 0
Im1 0 0

⊕


0 0 0 0 Im2

0 0 0 In2 0
0 0 Im2 0 0
0 In2 0 0 0
Im2 0 0 0 0



Ĝ1,2 ⊕ Ĝ2,3 =

 0 0 In1

0 Im1 0
In1 0 0

 ⊕


0 0 0 0 In2

0 0 0 Im2 0
0 0 In2 0 0
0 Im2 0 0 0
In2 0 0 0 0


Step 3) Extraction of Jordan blocks from the staircase-like-form

Completely analogous to the case ` = 3, we proceed in the case ` 6= 3 and obtain the staircase-
like-form as

X̃TAỸ = Ans⊕A0⊕
⊕̀
j=1

Aj ⊕
`−1⊕
j=1

Aj,j+1,

X̃T X̃ = Gns ⊕ G0 ⊕
⊕̀
j=1

Gj ⊕
`−1⊕
j=1

Gj,j+1,

Ỹ T Ỹ = Ĝns ⊕ Ĝ0 ⊕
⊕̀
j=1

Ĝj ⊕
`−1⊕
j=1

Ĝj,j+1,
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where Ans,Gns, Ĝns are as in (7.11), A0,G0, Ĝ0 are as in (7.12),

Aj =
(
R2jJ2j(0)

)
⊗ Iγj =


0 0 0 0
0 0 0 Iγj

0 0 . .
.

0
0 Iγj 0 0


(2j)×(2j) blocks

, (7.13)

Gj = Ĝj = R2j ⊗ Iγj =

 0 0 Iγj

0 . .
.

0
Iγj 0 0


(2j)×(2j) blocks

, (7.14)

and Aj,j+1, Ĝj,j+1, and Ĝj,j+1 are (2j + 1) × (2j + 1) block matrices, where the block rows
have alternating sizes nj ,mj and the forms

Aj,j+1 =



0 0
0 Inj

. .
.
Imj

. .
.
. .
.

0 Inj

0 Imj 0


, Gj,j+1 =



0 Imj

Inj

. .
.

Iπj

. .
.

Inj

Imj 0


, (7.15)

Ĝj,j+1 =



0 Inj

Imj

. .
.

Iπ̂j

. .
.

Imj

Inj 0


, (7.16)

(Indeed, recall that πj , π̂j ∈ {mj , nj}, where the actual definition depends on j being odd or
even.) The blocks A0, G0, and Ĝ0 are already in the form as indicated in Theorem 4.2 and
we can apply Theorem 4.1 to the blocks Ans, Gns, and Ĝns. Next, let us investigate in detail
the blocks of the form (7.13)–(7.14). Let Pj be the permutation such that premultiplication
with P Tj reorders the rows of Aj in the order

2jγj , (2j − 1)γj , . . . , γj ,
2jγj − 1, (2j − 1)γj − 1, . . . , γj − 1,

...
...

. . .
...

2jγj − γj + 1, (2j − 1)γj − γj + 1, . . . , 1;

and let P̃j be the permutation such that postmultiplication with P̃j reorders the columns of
Aj in the order

γj , . . . , (2j − 1)γj , 2jγj ,
γj − 1, . . . , (2j − 1)γj − 1, 2jγj − 1,

... . .
. ...

...
1, . . . , (2j − 1)γj − γj + 1, 2jγj − γj + 1.
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Then it is easily verified that

P Tj AjP̃j =
γj⊕
i=1

J2j(0), P Tj GjPj = P̃ Tj ĜjP̃j =
γj⊕
i=1

R2j ,

which is exactly the form of the blocks of type 2 in Theorem 4.2.
Finally, let us return to the blocks of the forms (7.15)–(7.16). Let Zj be the permutation

such that premultiplication with ZTj reorders the rows of Aj,j+1 in the order

(j + 1)mj + jnj , jmj + (j − 1)nj , . . . , 2mj + nj , mj ,
(j + 1)mj − 1 + jnj , jmj − 1 + (j − 1)nj , . . . , 2mj − 1 + nj , mj − 1,

...
...

. . .
...

...
jmj + 1 + jnj , (j − 1)mj + 1 + (j − 1)nj , . . . , mj + 1 + nj , 1,
jmj + jnj , (j − 1)mj + (j − 1)nj , . . . , mj + nj ,

jmj + jnj − 1, (j − 1)mj + (j − 1)nj − 1, . . . , mj + nj − 1,
...

...
. . .

...
jmj + (j − 1)nj + 1, (j − 1)mj + (j − 2)nj + 1, . . . , mj + 1,

and let Z̃j+1 be the permutation such that postmultiplication with Z̃j+1 reorders the columns
of Aj,j+1 in the order

mj + nj , 2mj + nj , . . . , jmj + jnj ,
mj − 1 + nj , 2mj − 1 + nj , . . . , jmj − 1 + jnj ,

...
...

. . .
...

1 + nj , mj + 1 + nj , . . . , (j − 1)mj + 1 + jnj ,
nj , mj + 2nj , . . . , (j − 1)mj + jnj , jmj + (j + 1)nj ,

nj − 1, mj + 2nj − 1, . . . , (j − 1)mj + jnj − 1, jmj + (j + 1)nj − 1,
...

...
. . .

...
...

1, mj + nj + 1, . . . , (j − 1)mj + (j − 1)nj + 1, jmj + jnj + 1.

Then it is easily verified that

ZTj Aj,j+1Z̃j+1 =
mj⊕
i=1

[
Ij
0

]
(j+1)×j

⊕
nj⊕
i=1

[
0 Ij

]
j×(j+1)

,

ZTj Gj,j+1Zj =
mj⊕
i=1

Rj+1 ⊕
nj⊕
i=1

Rj ,

Z̃Tj+1Ĝj,j+1Z̃j+1 =
mj⊕
i=1

Rj ⊕
nj⊕
i=1

Rj+1,

(7.17)

and we have obtained the blocks as in 3) and 4) of Theorem 4.2.
Up to this point, we have proved the existence of the canonical form for the triple

(A,G, Ĝ). The corresponding forms for Ĥ and H then immediately from forming the products
Ĝ−1ATG−1A and G−1AĜ−1AT .
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Step 4) Uniqueness of the form

Concerning uniqueness, in view of Theorem 4.1 it remains to show that the numbers `j ,mj , nj
are uniquely determined. Note that there exists a unique sequence of subspaces

Eig ν(Ĥ, 0) ⊆ Eig ν−1(Ĥ, 0) ⊆ · · · ⊆ Eig 1(Ĥ, 0) = ker Ĥ

where Eig j(Ĥ, 0) consists the zero vector and of all eigenvectors of Ĥ associated with zero that
can be extended to a Jordan chain of length at least j. Define κν = dim

(
Eig ν(Ĥ, 0)∩ kerA

)
and

κj = dim
(
Eig j(Ĥ, 0) ∩ kerA

)
− dim

(
Eig j+1(Ĥ, 0) ∩ kerA

)
, j = 1, . . . , ν − 1.

Then any eigenvector of Ĥ that is associated with a Jordan block of size j × j in the
canonical form and that is also in the kernel of A contributes to κj . Similarly, we define
κ̂ν = dim

(
Eig ν(H, 0) ∩ kerAT

)
and

κ̂j = dim
(
Eig j(H, 0) ∩ kerAT

)
− dim

(
Eig j+1(H, 0) ∩ kerAT

)
, j = 1, . . . , ν − 1.

Then elementary counting yields

κj = `j + nj−1 and κ̂j = `j +mj−1, j = 1, . . . , ν.

If pj respectively p̂j denote the number of Jordan blocks of size j × j in the canonical form
of Ĥ and H, respectively, we also have that

pj = 2`j +mj + nj−1 and p̂j = 2`j +mj−1 + nj , j = 1, . . . , ν.

Hence, we obtain

pj − κj − κ̂j = mj −mj−1, and p̂j − κj − κ̂j = nj − nj−1, j = 1, . . . , ν,

from which we can successively compute mj , nj , j = ν − 1, . . . , 0 using mν = nν = 0. We
furthermore obtain that

`j =
1
2

(pj −mj − nj−1)

for j = 1, . . . , ν. Thus, the numbers `j ,mj , nj are uniquely determined by the invariant
numbers pj , p̂j , κj , κ̂j , j = 1, . . . , ν.

This concludes the proof of Theorem 4.2.

Proof of Theorem 5.2

Applying appropriate congruence transformations to G and Ĝ otherwise, we may assume that
G = Im and Ĝ = Jn. Let

A = B1C
T
1

be a full rank factorization of A, i.e., B1 ∈ Cm×r, C1 ∈ C2n×r, rankB1 = rankC1 = r.
Repeatedly applying Proposition 3.3 to B1 and Proposition 3.7 to C1, respectively, we can
determine a staircase-like form that can be further reduced to canonical form. The proof
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follows the same lines as in the steps 1) and 2) of the proof of Theorem 4.2 and yields the
reduced staircase-like form

X̃TAỸ = Ans⊕A0⊕
⊕̀
j=1

Aj ⊕
`−1⊕
j=1

Aj,j+1,

X̃T X̃ = Gns ⊕ G0 ⊕
⊕̀
j=1

Gj ⊕
`−1⊕
j=1

Gj,j+1,

Ỹ TJnỸ = Ĝns ⊕ Ĝ0 ⊕
⊕̀
j=1

Ĝj ⊕
`−1⊕
j=1

Ĝj,j+1,

where
Ans = A2`+1,2`+1, Gns = Iπ`

= I2π̂`
, Ĝns = Jπ̂`

,

with A2`+1,2`+1 ∈ Cπ`×π` being nonsingular,

A0 = 0m0×2n0 , G0 = Im0 , Ĝ0 = Jn0 ,

Aj =
(
R2jJ2j(0)

)
⊗ Iγj , Gj = R2j ⊗ Iγj , Ĝj =

[
0 Rj
−Rj 0

]
⊗ Iγj ,

and Aj,j+1, Ĝj,j+1, and Ĝj,j+1 are (2j + 1) × (2j + 1) block matrices, where, if j is odd, the
block rows have alternating sizes nj , 2mj and the forms

Aj,j+1 =



0 0
0 Inj

. .
.
I2mj

. .
.
. .
.

0 Inj

0 I2mj 0


, Gj,j+1 =



0 I2mj

Inj

. .
.

Inj

. .
.

Inj

I2mj 0


, (7.18)

Ĝj,j+1 =



0 Inj

I2mj

. .
.

Jmj

. .
.

−I2mj

−Inj 0


, (7.19)
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or, if j is even, then the block rows have alternating sizes 2nj ,mj and the forms

Aj,j+1 =



0 0
0 I2nj

. .
.
Imj

. .
.
. .
.

0 I2nj

0 Imj 0


, Gj,j+1 =



0 Imj

I2nj

. .
.

Imj

. .
.

I2nj

Imj 0


, (7.20)

Ĝj,j+1 =



0 I2nj

Imj

. .
.

Jnj

. .
.

−Imj

−I2nj 0


, (7.21)

The blocks A0, G0, and Ĝ0 are already in the form as indicated in Theorem 5.2, for the
blocks Ans, Gns, Ĝns, we can apply Theorem 5.1, and for the blocks Aj , Ĝj , and Ĝj we
can apply an analogous permutation as it has been done for the corresponding blocks in
the proof of Theorem 4.2. Moreover, if j is odd, then let Zj be the permutation such that
premultiplication with ZTj reorders the rows of Aj,j+1 in the order

2(j + 1)mj + jnj , 2jmj + (j − 1)nj , . . . , 4mj + nj , 2mj ,
2jmj +mj + jnj , 2(j − 1)mj +mj + (j − 1)nj , . . . , 2mj +mj + nj , mj ,

2(j + 1)mj −1 + jnj , 2jmj −1 + (j − 1)nj , . . . , 4mj −1 + nj , 2mj −1,
2jmj +mj −1 + jnj , 2(j − 1)mj +mj −1 + (j − 1)nj , . . . , 2mj +mj −1 + nj , mj −1,

...
...

. . .
...

...
2jmj +mj +1 + jnj , 2(j − 1)mj +mj +1 + (j − 1)nj , . . . , 2mj +mj +1 + nj , mj +1,

2jmj + 1 + jnj , 2(j − 1)mj + 1 + (j − 1)nj , . . . , 2mj + 1 + nj , 1,
2jmj + jnj , 2(j − 1)mj + (j − 1)nj , . . . , 2mj + nj ,

2jmj + jnj − 1, 2(j − 1)mj + (j − 1)nj − 1, . . . , 2mj + nj − 1,
...

...
. . .

...
2jmj + (j − 1)nj + 1, 2(j − 1)mj + (j − 2)nj + 1, . . . , 2mj + 1,

and let Z̃j+1 be the permutation such that postmultiplication with Z̃j+1 reorders the columns
of Aj,j+1 in the order

mj + nj , 2mj +mj + 2nj , . . . , 2(j − 1)mj +mj + jnj ,
2mj + nj , 4mj + nj , . . . , 2jmj + jnj ,
mj −1 + nj , 2mj +mj −1 + 2nj , . . . , 2(j − 1)mj +mj −1 + jnj ,
2mj −1 + nj , 4mj −1 + nj , . . . , 2jmj −1 + jnj ,

...
...

. . .
...

1 + nj , 2mj + 1 + nj , . . . , 2(j − 1)mj + 1 + jnj ,
mj +1 + nj , 2mj +mj +1 + nj , . . . , 2(j − 1)mj +mj +1 + jnj ,

nj , 2mj + 2nj , . . . , 2(j − 1)mj + jnj , 2jmj + (j + 1)nj ,
nj − 1, 2mj + 2nj − 1, . . . , 2(j − 1)mj + jnj − 1, 2jmj + (j + 1)nj − 1,

...
...

. . .
...

...
1, 2mj + nj + 1, . . . , 2(j − 1)mj + (j − 1)nj + 1, 2jmj + jnj + 1.
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(Notice the slight difference in the way how the permutation matrices Zj and Z̃j are build
up compared to the way in the proof of Theorem 4.2. In this way, we can group together two
paired blocks of equal size into one block.) Then it is easily verified that

ZTj Aj,j+1Z̃j+1 =
mj⊕
i=1


0 Ij
0 0
Ij 0
0 0


2(j+1)×2j

⊕
nj⊕
i=1

[
0 Ij

]
j×(j+1)

,

ZTj Gj,j+1Zj =
mj⊕
i=1

[
0 Rj+1

Rj+1 0

]
⊕

nj⊕
i=1

Rj ,

Z̃Tj+1Ĝj,j+1Z̃j+1 =
mj⊕
i=1

[
0 Rj
−Rj 0

]
⊕

nj⊕
i=1

[
0 R j+1

2

−R j+1
2

0

]
(7.22)

i.e., we obtain blocks as in 4) and 5) in Theorem 5.2. Similarly, an analogous permutation
extracts blocks as in 3) and 6) in Theorem 5.2 for the case that j is even, i.e., if we consider
the blocks (7.20)–(7.21). (In the theorem, for cosmetic reasons we changed the meaning of `
by letting ` be such that 2`+ 1 is the smallest odd number that is larger than or equal to the
maximum of the indices of Ĥ and H.)

Concerning uniqueness, as in the proof of Theorem 4.2 it remains to show uniqueness
of the numbers `j , 2mj , and nj . This is done exactly in the same way as in the proof of
Theorem 4.2. Note that the paired blocks in 4) and 6) in Theorem 5.2 cannot be decomposed
into two smaller blocks of equal size, because of the fact that nonsingular skew-symmetric
matrices must have even size.

Proof of Theorem 6.2

Applying appropriate congruence transformations to G and Ĝ otherwise, we may assume that
G = Jm and Ĝ = Jn. Again, we then compute a staircase-like form for A by considering the
full rank factorization

A = B1C
T
1

of A, i.e., B1 ∈ C2m×r, C1 ∈ C2n×r, rankB1 = rankC1 = r, and repeatedly applying
Proposition 3.7 to B1 and C1. Then continuing as in step 2) of the proof of Theorem 4.2
yields the reduced staircase-like form

X̃TAỸ = Ans⊕A0⊕
⊕̀
j=1

Aj ⊕
`−1⊕
j=1

Aj,j+1,

X̃TJmX̃ = Gns ⊕ G0 ⊕
⊕̀
j=1

Gj ⊕
`−1⊕
j=1

Gj,j+1,

Ỹ TJnỸ = Ĝns ⊕ Ĝ0 ⊕
⊕̀
j=1

Ĝj ⊕
`−1⊕
j=1

Ĝj,j+1,

where
Ans = A2`+1,2`+1, Gns = Jπ`

, Ĝns = Jπ̂`
= Jπ`

,
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with A2`+1,2`+1 ∈ C2π`×2π` being nonsingular,

A0 = 02m0×2n0 , G0 = Jm0 , Ĝ0 = Jn0 ,

Aj =
(
R2jJ2j(0)

)
⊗ Iγj , Gj = Ĝj =

[
0 Rj
−Rj 0

]
⊗ Iγj ,

and Aj,j+1, Ĝj,j+1, and Ĝj,j+1 are (2j + 1) × (2j + 1) block matrices, where the block rows
have alternating sizes 2nj , 2mj and the forms

Aj,j+1 =



0 0
0 I2nj

. .
.
I2mj

. .
.
. .
.

0 I2nj

0 I2mj 0


, Gj,j+1 =



0 I2mj

I2nj

. .
.

Jπj

. .
.

−I2mj

−I2nj 0


, (7.23)

Ĝj,j+1 =



0 I2nj

I2mj

. .
.

Jπ̂j

. .
.

−I2mj

−I2nj 0


, (7.24)

The remainder of the proof then proceed as the proof of Theorem 4.2 by adapting the per-
mutation used on the blocks of the forms (7.23)–(7.24) similarly as in the proof of Theorem 6.2
in order to allow to group together paired blocks.

Concerning uniqueness, as in the proof of Theorem 4.2 it remains to show uniqueness
of the numbers `j , 2mj , and 2nj . This is done exactly in the same way as in the proof of
Theorem 4.2.
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