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Abstract

We derive formulas for the minimal positive solution of a particu-
lar non-symmetric Riccati equation arising in transport theory. The
formulas are based on the eigenvalues of an associated matrix. We use
the formulas to explore some new properties of the minimal positive
solution and to derive fast and highly accurate numerical methods.
Some numerical tests demonstrate the properties of the new methods.
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1 Introduction

We consider non-symmetric matrix Riccati equations of the special form

XA+DX −XBX − C = 0, (1)

with
A = Γ− peT , D = ∆− epT , B = ppT , C = eeT
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where

Γ := diag(γ1, . . . , γn), ∆ := diag(δ1, . . . , δn),
p = [p1, . . . , pn]T , e = [1, . . . , 1]T ,

and γn > . . . > γ1 > 0, δn > . . . , δ1 > 0, and p1, . . . , pn > 0.
Such Riccati equations arise in Markov models [27] and in nuclear physics

[6, 16, 20]. In the latter application, to study the transport of particles, one
introduces integral equations of the form[

1
x+ α

+
1

y − α

]
T (x, y) = β

[
1 +

1
2

∫ 1

−α

T (t, y)
t+ α

dt

] [
1 +

1
2

∫ 1

α

T (x, t)
t− α

dt

]
.

(2)
where the unknown function T (x, y) : [−α, 1] × [α, 1] 7→ R+ is called the
scattering function, α ∈ [0, 1) is an angular shift, and β ∈ [0, 1] is the
average of the total number of particles emerging from a collision. (Here R+

denotes the set of positive real numbers. )
To solve this integral equation numerically, one approximates the inte-

grals via classical quadrature formulas [28]. For this the function T (x, y)
is approximated via a matrix X = [xij ], where xij is an approximation of
T (µi, νj) with µi, νj being the ith and jth nodes of the quadrature formula
on [−α, 1] and [α, 1], respectively, e.g. [16].

In this discretization the matrix X has to satisfy the matrix Riccati
equation (1) with coefficient matrices

γj =
1

β(1− α)ωj
, δj =

1
β(1 + α)ωj

, pj =
cj

2ωj
, (3)

for j = 1, 2, . . . , n, where {cj}n
j=1, {wj}n

j=1 are the sets of weights and nodes
of the specific quadrature rule that is used on the interval [0, 1]. These
typically satisfy

c1, . . . , cn > 0,
n∑

j=1

cj = 1; 1 > ω1 > . . . > ωn > 0. (4)

In [18] it is shown that the Riccati equation (1) has two entry-wise positive
solutions X = [xij ], Y = [yij ] ∈ Rn,n, which satisfy X ≤ Y , where we use
the notation that X ≤ Y if xij ≤ yij for all i, j = 1, . . . , n.

In the applications from transport theory only X, the smaller one of the
two positive solutions is of interest. Therefore, in this paper we only consider
the computation of the minimal positive solution X. The computation of
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this minimal solution has been investigated in several publications. Various
direct and iterative methods [1, 10, 11, 12, 13, 14, 15, 17, 16, 24] have been
proposed by either directly solving the Riccati equation or by computing
specific invariant subspaces of the 2n× 2n matrix

H =
[
A −B
C −D

]
(5)

that is formed from the coefficient matrices.
In [18] even an explicit solution formula has been derived that is based

on the eigenvalues H. Motivated by this result, we derive different explicit
formulas, one of which is mathematically equivalent to the one in [18], but of
a much simpler form. We will use these formulas to derive both entry-wise
and norm-wise bounds for the solution matrix and show that the entries of
the solution have a graded entry property. We will also use the formulas
to develop fast and highly accurate numerical algorithms for the minimal
positive solution of (1).

The paper is organized in follows. In Section 2, we will reformulate the
associated eigenvalue problem via an appropriate balancing strategy. We
use the associated secular function to derive some properties of the eigenval-
ues of H. In Section 3 we then derive four formulas for the minimal positive
solution based on the eigenvalues. Entry-wise and norm-wise bounds for
the minimal positive solution are provided in Section 4. Numerical algo-
rithms and an error analysis are presented in Section 5 and some numerical
examples are shown in Section 6. A conclusion is given in Section 7.

Throughout the paper, λ(A) denotes the spectrum of a square matrix A,
In (or simply I) is the n× n identity matrix. The norm used in this paper
is the spectral norm.

2 Spectral properties of the matrix H

In this section we analyze the spectral properties of the matrix H in (5)
defined by the coefficient matrices of (1).

In order for all the eigenvalues of H to be real, we assume that the
condition

1−
n∑

j=1

pj

(
1
γj

+
1
δj

)
≥ 0 (6)

holds, which follows directly from the definition of the coefficients in (3) and
(4).
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The first step in our analysis is a balancing of the coefficient matrices.
Since the entries of the vector p are positive, we may define

Φ := diag(
√
p1, . . . ,

√
pn), φ := [

√
p1, . . . ,

√
pn]T .

Using Φ to scale the Riccati equation (1) via

X̃ = ΦXΦ
Ã = Φ−1AΦ = Γ− φφT ,

D̃ = ΦDΦ−1 = ∆− φφT ,

B̃ = Φ−1BΦ−1 = φφT ,

C̃ = ΦCΦ = φφT = B̃,

we obtain the equivalent Riccati equation

X̃Ã+ D̃X̃ − X̃B̃X̃ − B̃ = 0, (7)

and obviously, X is a solution to (1) if and only if X̃ = ΦXΦ is a solution
to (7). For the associated matrix formed from the coefficients we then have

H̃ =
[

Φ−1 0
0 Φ

]
H

[
Φ 0
0 Φ−1

]
=

[
Ã −B̃
B̃ −D̃

]
=
[

Γ 0
0 −∆

]
−
[

φ
−φ

] [
φ
φ

]T

, (8)

and we see that H̃ is similar to H and it is a rank one modification of a
diagonal matrix, which is similar to the real symmetric rank-one updating
problem discussed by Golub in [7]. It follows that the eigenvalues of H̃ can
be obtained cheaply and accurately via the solution of secular equations by
using a method similar to the one discussed in [8, Sec. 8.5].

It is furthermore well-known, see e.g. [21], that X̃ is a solution to (7) if
and only if X̃ satisfies the invariant subspace equation

H̃

[
I

X̃

]
=
[
I

X̃

]
(Ã− B̃X̃).

In [18] it was shown (for the original solution X) that X̃ is the minimal
positive solution if and only if all the eigenvalues of Ã−B̃X̃ are nonnegative.

In order to analyze the properties of the matrix H̃ and thus also of the
similar matrix H, we first derive some properties of the eigenvalues of H̃.
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Consider the rational function

χ(λ) = 1 +
n∑

j=1

pj

λ− γj
−

n∑
j=1

pj

λ+ δj
. (9)

Then, since

det(λI − H̃) = χ(λ)

 n∏
j=1

(λ− γj)(λ+ δj)

 , (10)

it follows that the eigenvalues of H̃ are just the roots of the secular equation
χ(λ) = 0 and thus the computation of the spectrum of H̃ can be obtained
very efficiently by solving the secular equation. Furthermore, we have the
following interlacing properties.

Lemma 2.1 Consider the matrix H̃ defined via the coefficients of the Ric-
cati equation (7) and suppose that (6) holds. Then H̃ has 2n real eigenvalues,
−ν1 < . . . < −νn ≤ 0, 0 ≤ λ1 < . . . < λn that satisfy the inequalities

0 ≤ ν1 < δ1 < ν2 < δ2 < . . . < νn−1 < δn−1 < νn < δn,

and
0 ≤ λ1 < γ1 < λ2 < γ2 < . . . < λn−1 < γn−1 < λn < γn.

Moreover, the following cases can be considered.

1. ν1 = 0 and λ1 > 0 if and only if χ(0) = 0 and χ′(0) > 0.

2. ν1 < 0 and λ1 = 0 if and only if χ(0) = 0 and χ′(0) < 0.

3. ν1 = λ1 = 0 if and only if χ(0) = χ′(0) = 0. In this case, H̃ has a
2× 2 Jordan block associated with the eigenvalue 0.

Proof. The proof is basically given already in [18] based on the properties
of the secular function χ(λ). Note that assumption (6) implies that χ(0) ≥ 0.

It remains to show that in the third case, if 0 is a double eigenvalue of
H̃, then it has geometric multiplicity 1. Let x ∈ R2n,2n\{0} be in the kernel
of H̃, i.e.

H̃x = 0,

then [
Γ 0
0 −∆

]
x = ζ

[
−φ
φ

]
, with ζ = [φT , φT ]x.
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Therefore, x has the form

x = −ζ
[

Γ−1φ
∆−1φ

]
.

This shows that the eigenspace corresponding to 0 is one-dimensional and
hence the geometric multiplicity of 0 must be one.

Remark 2.2 Suppose the quadrature formula that is used to discretize the
integral equation (2) is of order greater than or equal to 3, i.e.,

n∑
j=1

cjw
k
j =

1
k + 1

, k = 0, 1, 2, 3.

With (3) it is easily verified that

χ(0) = 1−
n∑

j=1

(
pj

γj
+
pj

δj

)
= 1− β

n∑
j=1

cj = 1− β,

χ′(0) =
n∑

j=1

(
− pj

γ2
j

+
pj

δ2j

)
= 2αβ2

n∑
j=1

cjwj = αβ2,

χ′′(0) = −2
n∑

j=1

(
pj

γ3
j

+
pj

δ3j

)
= −2(1 + 3α2)β3

n∑
j=1

cjw
2
j = −2

3
(1 + 3α2)β3,

χ′′′(0) = 6
n∑

j=1

(
− pj

γ4
j

+
pj

δ4j

)
= 24α(1 + α2)β4

n∑
j=1

cjw
3
j = 6α(1 + α2)β4.

Since χ′(0) ≥ 0, we have that Case 1. in Lemma 2.1 happens when β = 1
and α > 0 and Case 3. happens when β = 1 and α = 0. Case 2. will never
happen.

3 Formulas for the minimal positive solution

In this section we will derive explicit formulas for the minimal positive solu-
tion of (1) in terms of the eigenvalues −ν1, . . . ,−νn, λ1, . . . , λn of H (or H̃).
For this we need the following lemma.

Lemma 3.1 Suppose in the following that X̃ ∈ Rn,n. The following state-
ments are equivalent.

(a) X̃ is the minimal positive solution of (7).
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(b) X̃ satisfies

H̃

[
In
X̃

]
=
[
In
X̃

]
R̃1,

where R̃1 = Ã− B̃X̃ and σ(R̃1) = {λ1, . . . , λn}.

(c) X̃T is the minimal positive solution to the dual Riccati equation

Ỹ D̃ + ÃỸ − Ỹ B̃Ỹ − B̃ = 0. (11)

(d) X̃ satisfies

H̃

[
X̃T

In

]
=
[
X̃T

In

]
R̃2, (12)

where R̃2 = −(D̃ − B̃X̃T ) and σ(R̃2) = {−ν1, . . . ,−νn}.

Proof. The equivalence of (a) and (b) is given in [18].
The equivalence between (a) and (c) is obvious by taking the transpose

on both sides of (7) or (11).
Just as the relation between (a) and (b), X̃T is the minimal positive

solution of (11) if and only if[
D̃ −B̃
B̃ −Ã

] [
I

X̃T

]
=
[

I

X̃T

]
(D̃ − B̃X̃T ), (13)

and the eigenvalues of D̃−B̃X̃T are the rightmost n eigenvalues of
[
D̃ −B̃
B̃ −Ã

]
.

Identity (13) can be written as[
−Ã B̃

−B̃ D̃

] [
X̃T

I

]
=
[
X̃T

I

]
(D̃ − B̃X̃T ).

Since [
−Ã B̃

−B̃ D̃

]
= −H̃,

we have

H̃

[
X̃T

I

]
=
[
X̃T

I

]
R̃2, R̃2 = −(D̃ − B̃X̃T ),

which is (12). Clearly, the eigenvalues of R̃2 are the n leftmost eigenvalues
of H̃, which are −ν1, . . . ,−νn. This shows the equivalence between (c) and
(d).
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With formulas for R̃1, R̃2 as in Lemma 3.1 and the formulas for Ã, D̃
and B̃, it follows that the minimal positive solution X̃ of (7) satisfies the
following relations.

Γ− φξ̃T = R̃1, σ(R̃1) = {λ1, . . . , λn}, (14)
∆− φη̃T = −R̃2, σ(−R̃2) = {ν1, . . . , νn}, (15)
X̃Γ + ∆X̃ = η̃ξ̃T , (16)

where
ξ̃ = (I + X̃T )φ, η̃ = (I + X̃)φ.

The last equation is a reformulation of (7).
It thus follows that if the vectors ξ̃ an η̃ can be determined, then X̃ can

be easily formulated based on the simple Sylvester equation (16).
The following result shows that ξ̃ and η̃ can be determined based on the

relations (14) and (15).

Proposition 3.2 ([25]) Suppose that matrices A,B are given such that
A = diag(a1, . . . , an) with distinct diagonal entries a1, . . . , an ∈ R, and
B ∈ Rn,n with λ(B) = {b1, . . . , bn} for distinct b1, . . . , bn ∈ R.

Let q1, q2, . . . , qn ∈ R \ {0} and define

q = [q1, q2, . . . , qn]T , Q = diag(q1, q2, . . . , qn)

as well as

f =


n∏

j=1

(a1 − bj)∏
j 6=1

(a1 − aj)
, . . . ,

n∏
j=1

(ak − bj)∏
j 6=k

(ak − aj)
, . . . ,

n∏
j=1

(an − bj)∏
j 6=n

(an − aj)


T

.

If a vector z ∈ Rn satisfies A− qzT = B, then

z = Q−1f =
[
f1

q1
, . . . ,

fn

qn

]T

. (17)

Using (17), (14), (15), and (16), we obtain the following explicit formulas
for X.
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Theorem 3.3 Consider the Riccati equation (1). Introduce for k = 1, . . . , n
the scalar quantities

ξk =

n∏
j=1

(γk − λj)∏
j 6=k

(γk − γj)
, ηk =

n∏
j=1

(δk − νj)∏
j 6=k

(δk − δj)
, κk =

n∏
j=1

(γk + δj)

n∏
j=1

(γk + νj)

, εk =

n∏
j=1

(δk + γj)

n∏
j=1

(δk + λj)

,

the associated vectors and matrices

ξ = [ξ1, . . . , ξn]T , Ξ = diag(ξ1, . . . , ξn),
η = [η1, . . . , ηn]T , E = diag(η1, . . . , ηn),
κ = [κ1, . . . , κn]T , K = diag(κ1, . . . , κn), (18)
ε = [ε1, . . . , εn]T , E = diag(ε1, . . . , εn),

and the Cauchy matrix

Θ =
[

1
δi + γj

]
.

Let
P = diag(p1, . . . , pn),

with the pi defined in (1). Then we have the following solution formulas for
(1).

X = P−1EΘΞP−1, (19)
X = P−1EΘK, (20)
X = EΘΞP−1, (21)
X = EΘK. (22)

Proof. To prove the formulas, we apply Proposition 3.2 to (14) and
obtain

ξ̃ = Φ−1ξ,

where ξ is defined in (18). Similarly, from (15) we obtain

η̃ = Φ−1η,

where η is defined in (18). By solving the Sylvester equation (15) we obtain

X̃ = Φ−1EΘΞΦ−1,
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with E, Ξ as in (18). Then, (19) follows by using X = Φ−1X̃Φ−1 and
P = Φ2.

In order to get the other formulas we only need to show that Ξ = PK
and E = PE .

Since −ν1, . . . ,−νn, λ1, . . . , λn are the eigenvalues of H̃, it follows from
(10) that

n∏
j=1

(λ− λj)
n∏

j=1

(λ+ νj) =
n∑

m=1

pm

∏
j 6=m

(λ− γj)
n∏

j=1

(λ+ δj)

−
n∑

m=1

pm

n∏
j=1

(λ− γj)
∏
j 6=m

(λ+ δj) +
n∏

j=1

(λ− γj)
n∏

j=1

(λ+ δj). (23)

By inserting λ = γk, we obtain
n∏

j=1

(γk − λj)
n∏

j=1

(γk + νj) = pk

∏
j 6=k

(γk − γj)
n∏

j=1

(γk + δj),

which implies that
ξk = pkκk, k = 1, 2, . . . , n.

We then have Ξ = PK.
Similarly, by inserting λ = −δk in (23) we get

ηk = pkεk, k = 1, . . . , n,

and thus E = PE . Then the other formulas follow.
Note that formula (20) only needs the eigenvalues ν1, . . . , νn, while for-

mula (21) only needs the eigenvalues λ1, . . . , λn. Numerically, these two
formulas provide very cheap procedures to compute the minimal solution X
of (1).

Remark 3.4 In [18] already an explicit formula for the minimal solution of
(1) was given that is equivalent to (21). However, there a different expression
for εk was introduced as

εk = 1 +
n∑

m=1

1
δk + λm

n∏
j=1

(γj − λm)∏
j 6=m

(λj − λm)
.

This expression is less compact and its evaluation has a higher complexity
than the expression in Theorem 3.3.
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In this section we have derived new explicit formulas for the minimal solution
X of (1) and we will use them in the next section to derive some further
properties of X.

4 Properties and bounds for the minimal positive
solution

The simple expressions of the quantities ξk, κk, ηk, εk in the explicit formulas
(19)–(22) and the eigenvalue interlacing property for the eigenvalues of H̃
allow to derive further properties of the minimal positive solution of (1).
For this we first prove the following Lemma.

Lemma 4.1 The coefficients γk, δk in (1), the eigenvalues νk, λk of H̃ in
(8)and the quantities ξk, ηk, κk, εk, k = 1, . . . , n in (18) satisfy the following
inequalities.

1.

0 < ak < ηk < δk − ν1 ≤ δk, 0 < bk < ξk < γk − λ1 ≤ γk,

1 < εk <
δk + γn

δk + λ1
≤ δk + γn

δk
, 1 < κk <

γk + δn
γk + ν1

≤ γk + δn
γk

,

where

ak =

{
(δk−νk)(νk+1−δk)

δn−δk
1 ≤ k < n,

δn − νn k = n,

bk =

{
(γk−λk)(λk+1−γk)

γn−γk
1 ≤ k < n,

γn − λn k = n.

2.
1 < εn < εn−1 < . . . < ε1, 1 < κn < κn−1 < . . . < κ1.

Proof. To prove the first part, we use the interlacing property in Lemma 2.1,
and obtain

0 <
δk − νj

δk − δj−1
< 1, 1 < j ≤ k;

δk − νj

δk − δj
> 1, 1 ≤ j < k

and

0 <
δk − νj

δk − δj
< 1, k < j ≤ n;

δk − νj+1

δk − δj
> 1, k < j < n.
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For 1 ≤ k < n, then

ηk =
(δk − νk)(δk − νk+1)

δk − δn

k−1∏
j=1

δk − νj

δk − δj

n−1∏
j=k+1

δk − νj+1

δk − δj
> ak,

and

ηk = (δk − ν1)
k−1∏
j=1

δk − νj+1

δk − δj

n∏
j=k+1

δk − νj

δk − δj
< δk − ν1 ≤ δk.

Finally, for k = n, we obtain

ηn = (δn − νn)
n−1∏
j=1

δn − νj

δn − δj
> δn − νn =: an,

and

ηn = (δn − ν1)
n−1∏
j=1

δn − νj+1

δn − δj
< δn − ν1 ≤ δn.

This proves the inequalities for the ηk and clearly we have ak > 0 for k =
1, . . . , n.

The inequalities for the ξk can be derived in the same way by using the
interlacing property for the eigenvalues λ1, . . . , λn. This interlacing property
also gives

εk =
n∏

j=1

δk + γj

δk + λj
> 1,

and

εk =
δk + γn

δk + λ1

n−1∏
j=1

δk + γj

δk + λj+1
<
δk + γn

δk + λ1
≤ δk + γn

δk
.

Similarly, one can prove the inequalities for κk.
To prove part 2. we consider the function

ψ(t) =
n∏

j=1

t+ γj

t+ λj
=

n∏
j=1

(
1 +

γj − λj

t+ λj

)
.

Since γj − λj ≥ 0 for j = 1, . . . , n, it follows that ψ(t) is decreasing as t
increases. Since ψ(δk) = εk for k = 1, . . . , n, and δ1 < . . . < δn, we thus
have

ε1 > ε2 > . . . > εn.
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Obviously ψ(t) > 1 for any t > 0 and hence εn = ψ(δn) > 1.
The monotonicity κ1 > . . . > κn > 1 follows in the same way.
With the help of Lemma 4.1 we can now prove the following entry-wise

monotonicity property of the minimal positive solution X of (1).

Theorem 4.2 Let X = [xij ] ∈ Rn,n be the minimal positive solution of (1).
Then for any i ≥ k and j ≥ l with (i, j) 6= (k, l), the entries of X satisfy

xij > xkl

Proof. Since

0 < γ1 < . . . < γn, 0 < δ1 < . . . < δn,

and by Lemma 4.1,

1 < εn < . . . ε1, 1 < κn < . . . < κ1,

with (22), for 1 ≤ i, j ≤ n, if i < n, it follows that

xij =
εiκj

δi + γj
>

εi+1κj

δi+1 + γj
= xi+1,j .

If j < n, then
xij =

εiκj

δi + γj
>

εiκj+1

δi + γj+1
= xi,j+1.

The quantities in Lemma 4.1 also provide upper and lower bounds for
the entries of the minimal positive solution X of (1).

Theorem 4.3 Let X = [xij ] ∈ Rn,n be the minimal positive solution of (1).
Then

wij

δi + γj
< xij <

Wij

δi + γj
,

where

wij = max
{
aibj
pipj

,
ai

pi
,
bj
pj
, 1
}
,

Wij = min
{
δiγj

pipj
,
δi(γj + δn)

piγj
,

(δi + γn)γj

δipj

(δi + γn)(γj + δn)
δiγj

}
.

Proof. The bounds follow from the formulas (19) - (22) and the inequal-
ities given in the first part of Lemma 4.1.
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Corollary 4.4 Let X = [xij ] ∈ Rn,n be the minimal positive solution of (1)
and let wij ,Wij be as in Theorem 4.3. Then

wnn

δn + γn
< xnn ≤ xij ≤ x11 <

W11

δ1 + γ1

for i, j = 1, . . . , n.

Proof. The inequalities follow from Theorems 4.2 and 4.3.
We also obtain a bound for the spectral norm of the minimal positive

solution X of (1).

Theorem 4.5 Let X̃ ∈ Rn,n be the minimal positive solution of (7). Then

||X̃|| ≤ 1,

and ||X̃|| = 1 if and only if χ(0) = 0 and χ′(0) = 0.
Moreover, the minimal positive solution X of (1) satisfies

||X|| ≤ 1
minj pj

.

Proof. Define the matrix function

H̃(t) =
[

Γ 0
0 −∆

]
− t

[
φ
−φ

] [
φ
φ

]T

with 0 ≤ t ≤ 1. Let χt(λ) be the corresponding secular function as in (10).
Using the assumption (6), it follows that χt(0) > 0 for 0 ≤ t < 1. So H̃(t)
has 2n real eigenvalues −ν1(t), . . . ,−νn(t) and λ1(t), . . . , λn(t), and the same
interlacing properties as in Lemma 2.1 hold, i.e.,

0 < ν1(t) < δ1 < ν2(t) < δ2 < . . . < δn−1 < νn(t) < δn

and
0 < λ1(t) < γ1 < λ2(t) < γ2 < . . . < γn−1 < λn(t) < γn,

for 0 ≤ t < 1.
Since

H̃(1) = H̃, H̃(0) =
[

Γ 0
0 −∆

]
.

we have that

λj(1) = λj , νj(1) = νj ; λj(0) = γj , νj(0) = δj
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for j = 1, . . . , n.
Let v1(t), . . . , vn(t) ∈ R2n be the eigenvectors associated with λ1(t), . . . , λn(t),

respectively, and let
Ṽ (t) = [v1(t), . . . , vn(t)].

Then Ṽ (t) satisfies

H̃(t)Ṽ (t) = Ṽ (t)Λ(t), Λ(t) = diag(λ1(t), . . . , λn(t)). (24)

Because λ1(t), . . . , λn(t) are distinct for 0 ≤ t < 1, such a matrix Ṽ (t) always
exists and has full rank. Since {λ1(t), . . . , λn(t)}∩{−ν1(t), . . . ,−νn(t)} = ∅,
we may construct it in such a way that Ṽ (t) is a continuous function of t
and Ṽ (0) =

[
I
0

]
, see e.g. [29].

With

Σ =
[
In 0
0 −In

]
.

it is easily verified that ΣH̃(t) is real symmetric. By taking the transpose
on both sides of (24) we have

(ΣṼ (t))T H̃(t) = Λ(t)(ΣṼ (t))T ,

i.e., the columns of ΣṼ (t) form a basis of the left invariant subspace associ-
ated with the eigenvalues {λ1(t), . . . , λn(t)} of H̃. Then

S(t) := Ṽ (t)T ΣṼ (t)

is nonsingular for 0 ≤ t < 1. Because Ṽ (0) =
[

I
0

]
, we have S(0) = I,

which is positive definite. Then, since S(t) is a continuous function of t and
detS(t) 6= 0, it follows that S(t) is positive definite for 0 ≤ t < 1. Thus,
with the partition

Ṽ (t) =
[
Ṽ1(t)
Ṽ2(t)

]
, Ṽ1(t), Ṽ2(t) ∈ Rn,n

and using the relation

S(t) = Ṽ1(t)T Ṽ1(t)− Ṽ2(t)T Ṽ2(t),

it follows that Ṽ1(t) must be nonsingular, and X̃(t) = Ṽ2(t)Ṽ1(t)−1 is the
minimal positive solution of the Riccati equation of the from (7) associated
with H̃(t). Because I−X̃(t)T X̃(t) is also positive definite, we have ||X̃(t)|| <
1 for 0 ≤ t < 1. By taking the limit t→ 1 we have ||X̃|| ≤ 1.
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If ||X̃|| = 1 then S(1) is singular. This implies

{λ1, . . . , λn} ∩ {ν1, . . . , νn} 6= ∅.

But due to the interlacing properties for the eigenvalues, this happens only
when λ1 = ν1 = 0, i.e., when χ(0) = 0 and χ′(0) = 0. On the other hand, if
χ(0) = 0 and χ′(0) = 0, then by Lemma 2.1, λ1 = ν1 = 0 and 0 is a defective
eigenvalue of H̃. In this case S(1) must be singular, or equivalently ||X̃|| = 1.

The upper bound for ||X|| follows from the relation X = Φ−1X̃Φ−1.
Various lower bounds for ||X|| can also be derived by using the inequalities

for the entries of X, but we will not pursue this topic here.
In the end of this section we also provide a formula for the inverse of X.

Theorem 4.6 The minimal positive solution X = [xij ] of (1) is invertible
and with P,Θ as in Theorem 3.3, its inverse is given by

X−1 = PQΘTGP,

where
Q = diag(q1, . . . , qn), G = diag(g1, . . . , gn),

with

qk =
n∏

j=1

γk + δj
γk − λj

, gk =
n∏

j=1

δk + γj

δk − νj
,

for k = 1, . . . , n.

Proof. Since γn > . . . > γ1 > 0 and δn > . . . > δ1 > 0, it follows (see e.g.
[5]) that the Cauchy matrix Θ is invertible and

Θ−1 = Q̂ΘT Ĝ,

where
Q̂ = diag(q̂1, . . . , q̂n), Ĝ = diag(ĝ1, . . . , ĝn),

with

q̂k =

n∏
j=1

(γk + δj)∏
j 6=k

(γk − γj)
, ĝk =

n∏
j=1

(δk + γj)∏
j 6=k

(δk − δj)
,

for k = 1, . . . , n. Since all the diagonal matrices in (19) are invertible, it
follows that X is also invertible and the formula for X−1 follows from (19)
using Θ−1.
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5 Numerical algorithms

The formulas given in Section 3 can be used to develop the following nu-
merical algorithms for computing the minimal positive solution of (1).

Algorithm 5.1 For the Riccati equation (1) this algorithm computes the
minimal positive solution.

1. Compute the eigenvalues ν1, . . . , νn, λ1, . . . , λn of H̃ in (8) by applying
a root finding solver to the secular equation χ(λ) = 0 given by (9).

2. Use either of the formulas (19) or (22) to compute the minimal positive
solution X of (1).

We can also use the formula (20) or (21).

Algorithm 5.2 For the Riccati equation (1) this algorithm computes the
minimal positive solution.

1. Compute the eigenvalues ν1, . . . , νn of H̃ in (8) by applying a root
finding solver to the secular equation χ(λ) = 0 given by (9).

2. Use Formula (20) to compute the minimal positive solution X of (1).

Algorithm 5.3 For the Riccati equation (1) this algorithm computes the
minimal positive solution.

1. Compute the eigenvalues λ1, . . . , λn of H̃ in (8) by applying a secular
equation solver to χ(λ) = 0.

2. Use Formula (21) to compute the minimal positive solution X of (1).

Note that Algorithms 5.2 and 5.3 only need to computed half of the
eigenvalues.

The success of these three algorithms depends on how fast and accu-
rately the eigenvalues can be computed and how sensitive the evaluation
of the formulas (19)–(22) is. This requires an efficient and reliable secular
equation solver. The osculatory interpolation methods of [2, 23] that were
developed in the context of the divide-and-conquer eigenvalue methods ([8,
Sec. 8.5], [3, 4, 7]) may not be applicable directly, since the secular func-
tion χ(λ) has quite different properties than the secular equation derived
in the symmetric divide-and-conquer method. For this reason we propose
the following hybrid method for the computation of roots of the secular
function. We only consider the case for computing the eigenvalues λk, the
method for computing the eigenvalues νk is analogous. Our approach treats
λ1 differently than the other eigenvalues λ2, . . . , λn, because of the different
properties that λ1 has.
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5.1 Computation of λk with k > 1.

1. Initial guess. To compute an initial guess, we basically follow the pro-
cedure suggested in [23]. We first evaluate χ(mk), where mk is the
mid-point of the interval (γk, γk+1). Because χ(λ) has only one root in
(γk, γk+1), and since limλ→γ+

k
χ(λ) = ∞, and limλ→γ−k+1

χ(λ) = −∞,
based on the sign of χ(mk), we can easily determine in which half of
the interval λk is located. Simple geometry shows that if χ(mk) > 0
then λk is closer to γk+1, and if χ(mk) < 0 then λk is closer to γk. We
then consider the equation

pk

λ− γk
+

pk+1

λ− γk+1
+ rk = 0,

with right hand side rk = χ(mk)− pk/(mk − γk)− pk+1/(mk − γk+1),
which can be obtained during the evaluation of χ(mk) without any
extra cost. We then take the root of this equation in (γk, γk+1) as our
initial guess z0

k. It is easily verified that z0
k and λk are in the same

half interval. We also choose an initial interval so that the χ values
on end-points have opposite signs, (which guarantees that λk is in
this interval). If χ(mk)χ(z0

k) < 0, then we use mk, z
0
k for the interval.

Otherwise, we use the asymptotic properties of χ to find another λ
value to replace mk. Let us denote the resulting interval by [u0, v0].

2. Iteration step. For a current approximation zj
k, we first evaluate χ′(zj

k)
and use one step of Newton’s method to determine the next approx-
imate zj+1

k . If zj+1
k is inside the current interval [uj , vj ] we evalu-

ate χ(zj+1
k ). We then replace one of uj , vj and its corresponding χ

value with zj+1
k and χ(zj+1

k ) based on the sign of χ(zj+1
k ) and move

on to the next iteration. If zj+1
k is outside [uj , vj ] (maybe even out-

side of (γk, γk+1)), then we apply one step of the secant method with
uj , vj and their corresponding χ values to get zj+1

k . We then evaluate
χ(zj+1

k ), update [uj , vj ], and continue. If this zj+1
k is still outside of

[uj , vj ] we use one step of the bisection method with uj , vj to get zj+1
k .

When the iterates zj
k get close to the root λj , then due to rounding

errors it becomes more difficult to compute a reliable value of χ(zj
k).

(This happens typically for small roots.) This may cause the sign of
χ to alternate between positive and negative values in the Newton
iteration and the secant iteration and may have the effect that the
sequence {zj

k} does not converge. If we observe such a behavior and

18



the function values for χ are also small in absolute value, then we run
a step of the bisection method. This procedure has turned out to be
very successful during our numerical tests.

3. Stopping criterion. In order to compute the root λk accurately, we actually
use the shift s = λ − γk or s = λ − γk+1 initially, depending on
whether λk is closer to γk or γk+1. The iteration step is then applied
to the new variable s to generate a sequence of approximate values
s0, s1, . . . , sj , . . .. The iteration can be written as

sj+1 = sj + ∆sj ,

where ∆sj is the jth correction.

We use the stopping criterion

|∆sj | < cεM |sj+1|, (25)

where εM is the machine precision and c is a modest constant (which
is set to 48 in our tests).

The procedure for the computation of νk k = 2, . . . , n is analogous.

5.2 Computation of λ1

1. Initial guess. The strategy for choosing starting values z0
1 and starting in-

tervals [u0, v0] is slightly different than in the case of the other eigen-
values. Since we know that λ1 ∈ [0, γ1), we first evaluate χ(m1), where
m1 = γ1/2. We use the sign of χ(m1) to determine if λ1 is closer to 0
or γ1. We then use the root z0

1 ∈ [0, γ) of the equation
p1

λ− γ1
+ r1 = 0,

with r1 = χ(m1)− p1/(m1 − γ1), as the initial starting value.

If χ(m1)χ(z0
1) < 0, then we use m1, z

0
1 to form the initial interval

[u0, v0]. If χ(m1), χ(z0
1) > 0, then we replace m1 by another value

such that the corresponding χ value is negative, by using the fact
limλ→γ−1

(λ) = −∞. In the case that χ(m1), χ(z0
1) < 0, if χ(0) > 0, we

replace m1 with 0. If χ(0) = 0 we still need to check the sign of χ′(0).
If χ′(0) > 0 we may use it to find a small positive number such that
its corresponding χ is positive. We then replace m1 with this number.
If χ′(0) ≤ 0, we simply set λ1 = 0, and no iteration is required.

Note that for transport theory problem χ(0) and χ′(0) can be easily
determined by the formulas given in Remark 2.2.
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2. Iteration step. We first use the same iteration steps as described for the
eigenvalues λk, k ≥ 2 to an approximation of λ1. This usually works
well for λ1 > c1

√
εM with some positive constant c1. If, however, λ1 is

too small, then it is difficult to get accurate function values for χ and
χ′, which then may cause convergence problems. In order to overcome
this difficulty, once we observe that the jth approximate zj

1 satisfies
zj
1 < c1

√
εM (we used c1 = 100 in our tests), we evaluate χ(zj

1) and
χ′(zj

1) by using their corresponding Taylor polynomials at 0, given by

χ(zj
1) ≈ χ(0) + zj

1χ
′(0) +

(zj
1)

2

2
χ′′(0)

χ′(zj
1) ≈ χ′(0) + zj

1χ
′′(0) +

(zj
1)

2

2
χ′′′(0)

and use these values in the next step of the Newton iteration. If χ′(zj
1)

is also very small in modulus, then we approximate χ′′(zj
1) by

χ′′(zj
1) ≈ χ′′(0) + zj

1χ
′′′(0).

We then use the approximations for χ(zj
1), χ

′(zj
1), χ

′′(zj
1) to construct

the second degree Taylor polynomial for χ at zj
1, and use one of the

roots of this polynomial (if it exists) as our next iterate zj+1
1 .

For a general secular equation, the computation of χ(0), χ′(0), χ′′(0),
and χ′′′(0) requires extra cost and it is not clear if the values can be
really evaluated accurately. In the secular equation from the trans-
port problem, however, this computation is essentially cost-free since
we may use the formulas in Remark 2.2, and because of the simple
formulations the values can be computed accurately.

3. Stopping criterion. We use again the stopping criterion (25).

The procedure for the computation of ν1 is analogous.

5.3 Costs.

The main cost in Algorithms 5.1–5.3 is the evaluation of χ and χ′ during each
iteration step. In order to evaluate χ(λ) and χ′(λ), we first compute λ− γj ,
λ+ δj for j = 1, . . . , n. We then compute pj/(λ− γj) and pj/(λ+ δj). After
this χ(λ) can be evaluated. We continue to compute [pj/(λ− γj)]/(λ− γj)
and [pj/(λ + δj)]/(λ + δj)], which costs one extra flop for each term and
then evaluate χ′(λ). So if the Newton iteration is used in the iteration step,
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then the cost per iteration step and per eigenvalue is about 10n flops. If
the average number of iterations is M , then the cost for Algorithm 5.1 is
about (20M + 9)n2 flops, and the cost for Algorithms 5.2 and 5.3 is about
(10M + 9)n2 flops. Note that it requires 3n2 flops to compute each set of
the values ξk, ηk, κk, εk, and it requires another 3n2 flops to compute the
components of X. Note also that in these complexity estimates we did not
count the cost for the computation of the initial values.

5.4 Error analysis.

To analyze the computational errors in the described procedures, we first
estimate the errors in the computed eigenvalues. We assume that the itera-
tion for each eigenvalue stops when (25) holds, and the computed sequence
satisfies the conditions in the following lemma observed by Kahan (see e.g.
[23]).

Lemma 5.4 Let {xj}∞j=1 be a sequence of real numbers, produced by some
rapidly convergent iteration scheme, such that limj→∞ xj = x∗. If the se-
quence of ratios |xj+1−xj |

|xj−xj−1| is decreasing for j ≥ k, and if |xk+1−xk|
|xk−xk−1| < 1,

then

|xk+1 − x∗| < |xk+1 − xk|2

|xk − xk−1| − |xk+1 − xk|
.

Let λj , νj be the exact eigenvalues of H and let λ̂j , ν̂j be the corresponding
computed eigenvalues. With the discussed properties of the eigenvalues, the
presented procedures and Lemma 5.4, it is reasonable to assume that the
computed eigenvalues satisfy

|λj − λ̂j | < Cλj
εM min{γj+1 − λj , λj − γj}, (26)

|νj − ν̂j | < CνjεM min{δj+1 − νj , νj − δj}, (27)

for j = 1, . . . , n, where Cλj
, Cνj are some modest constants. We then have

the following Lemma.

Lemma 5.5 Suppose that the computed eigenvalues λ̂j, ν̂j of H as in (5)
satisfy (26) and (27). Let ξ̂k, η̂k, ε̂k, κ̂k be the computed quantities deter-
mined via the formulas given in Theorem 3.3. Then

ξ̂k = ξk(1 + nCξk
εM ), η̂k = ηk(1 + nCηk

εM ),
κ̂k = κk(1 + nCκk

εM ), ε̂k = εk(1 + nCεk
εM ),

for k = 1, . . . , n, where Cξk
, Cηk

, Cκk
, Cεk

are constants.
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Proof. For the proof we just consider the first order error.
Note that ξ̂k is actually computed by the formula

n∏
j=1

(γk − λ̂j)/
∏
j 6=k

(γk − γj),

i.e., λj is replaced with λ̂j . By (26),

|γk − λ̂j | = |γk − λj + εMCkj min{γj+1 − λj , λj − γj}|

= |γk − λj |
∣∣∣∣1 + CkjεM

min{γj+1 − λj , λj − γj}
|γk − λj |

∣∣∣∣ .
By the interlacing property of the eigenvalues we have

min{γj+1 − λj , λj − γj}
|γk − λj |

≤ 1

for j = 1, . . . , n and hence

|γk − λ̂j | = |γk − λj |(1 + C̃kjεM ),

for some constant C̃kj . With this relation, it is not difficult to obtain that

ξ̂k = ξk(1 + nCξk
εM ),

where Cξk
is a constant. The corresponding relations for the other terms

follow in the same way.
Using this Lemma we obtain the following relative errors for the com-

ponents of the minimal positive solution computed by the formulas given in
Section 3.

Theorem 5.6 Consider the problem of computing the minimal positive so-
lution X = [xij ] of (1) using formulas (19)–(22) and suppose that the com-
puted eigenvalues satisfy the relations (26) and (27). Then for the computed
solution X̂ = [x̂ij ], the relative error estimate

|x̂ij − xij |
xij

= DijnεM , i, j = 1, . . . , n

holds, where Dij’s are positive constants.

Proof. The relative error estimates follow from Lemma 5.5.
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6 Numerical Examples

In this section we present some numerical test results for the problems from
transport theory, see [18, 19]. The weights c1, . . . , cn and nodes ω1, . . . , ωn

are generated from the composite four-node Gauß-Legendre quadrature for-
mula on [0, 1] with n/4 equally spaced subintervals, see e.g. [28]. All the
numerical examples were tested in MATLAB version 7.1.0 with machine pre-
cision εM ≈ 2.22e − 16. We solved the problem for various numbers of the
parameters α and β and the size n. We used all four formulas to compute
the minimal positive solution, with a secular equation solver as described in
Section 5.

The computed minimal positive solution via formulas (19)–(22) are de-
noted by X(1), X(2), X(3), X(4), respectively. In the following we display the
test results. We present one table for each pair (α, β) and various values of
n. In each table, we list the following results:

- Maximum residual:

R = max
j∈{1,2,3,4}

||X(j)Γ + ∆X(j) − (e+X(j)p)(eT + pTX(j))||

- Maximum and minimum entry-wise relative errors:

REmax = max
i,j∈{1,2,3,4}

i6=j

max
k,l∈{1,...,n}

|x(i)
kl − x

(j)
kl |

min{x(i)
kl , x

(j)
kl }

REmin = min
i,j∈{1,2,3,4}

i6=j

max
k,l∈{1,...,n}

|x(i)
kl − x

(j)
kl |

min{x(i)
kl , x

(j)
kl }

- Largest entry x11 (determined by one of the four solutions)

- Smallest entry xnn (determined by one of the four solutions)

- Norm ||X|| (X is one of the four solutions)

- Number of iterations for ν1: N−

- Number of iterations for λ1: N+

- Average of number of iterations for all 2n eigenvalues: N

We also give the eigenvalues −ν1, λ1 in the caption.
We can summarize the numerical results as follows.
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1. The values of R in the tables are usually the residual ofX(1). The other
residuals are basically the same but some can be one order smaller.

2. Since we do not know the exact solution, we use REmax and REmin to
detect if high relative accuracy can be actually achieved. The values of
REmax and REmin do support the high relative accuracy result. (Note
that xnn is small in all examples.)

3. The number of iterations for ν1 and λ1 increases as α→ 0 and β → 1.
This shows the numerical difficulty when the eigenvalues −ν1 and λ1

are getting close to each other. However, our computed values of ν1, λ1

are much more accurate than those obtained by running the MATLAB
code eig on H̃.

4. Our MATLAB implementation of the root finder based on the secular
equation is still not very robust. In general, about .5% of the eigen-
values need 100 iterations, the maximum iteration number used in our
experimental code. Some further improvement could improve these
convergence properties.

n R REmax REmin x11 xnn ||X|| N− N+ N

64 2.70e-13 1.83e-14 6.80e-15 .263 8.23e-04 7.87e+00 8 7 5
128 1.27e-12 6.72e-14 3.33e-14 .263 4.09e-04 1.57e+01 9 8 5
256 5.35e-12 1.64e-13 7.73e-14 .264 2.04e-04 3.15e+01 9 9 5
512 1.97e-11 2.70e-13 1.34e-13 .264 1.02e-04 6.29e+01 10 8 5

Table 1: α = 0.5, β = .5, (−ν1, λ1) ≈ (−1.166, 3.996)

n R REmax REmin x11 xnn ||X|| N− N+ N

64 5.16e-13 2.65e-14 1.23e-14 2.70 2.19e-03 6.12e+01 8 6 5
128 2.43e-12 9.67e-14 4.06e-14 2.72 1.08e-03 1.22e+02 10 5 5
256 8.48e-12 1.46e-13 7.03e-14 2.72 5.37e-04 2.45e+02 9 5 5
512 3.48e-11 4.21e-13 2.04e-13 2.72 2.67e-04 4.89e+02 10 6 6

Table 2: α = 0.1, β = 0.99, (−ν1, λ1) ≈ (−7.98e− 02, 3.83e− 01)

7 Conclusion

We have presented four formulas for the minimal positive solution of the
non-symmetric Riccati equation (1) that depend on the eigenvalues of the
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n R REmax REmin x11 xnn ||X|| N− N+ N

64 2.46e-11 1.48e-12 7.35e-13 4.19 2.24e-03 8.59e+01 23 16 5
128 1.02e-10 5.16e-12 2.57e-12 4.21 1.10e-03 1.72e+02 26 25 5
256 4.66e-11 1.24e-12 5.60e-13 4.22 5.48e-04 3.43e+02 19 25 5
512 5.43e-10 7.02e-12 3.48e-12 4.22 2.73e-04 6.87e+02 34 25 6

Table 3: α = 10−4, β = 1− 10−8, (−ν1, λ1) ≈ (−7.91e− 05, 3.79e− 04)

n R REmax REmin x11 xnn ||X|| N− N+ N

64 6.09e-13 2.52e-14 1.02e-14 4.19 2.24e-03 8.59e+01 28 26 6
128 2.72e-12 7.80e-14 3.15e-14 4.21 1.10e-03 1.72e+02 28 26 5
256 1.02e-11 1.85e-13 8.30e-14 4.22 5.48e-04 3.44e+02 28 26 5
512 4.28e-11 4.12e-13 1.60e-13 4.22 2.73e-04 6.87e+02 28 26 6

Table 4: α = 10−14, β = 1−10−14, (−ν1, λ1) ≈ (−1.73e−07, 1.73e−07)

n R REmax REmin x11 xnn ||X|| N− N+ N

64 7.74e-13 4.84e-14 1.94e-14 4.19 2.24e-03 8.59e+01 0 30 5
128 2.95e-12 8.97e-14 4.07e-14 4.21 1.10e-03 1.72e+02 0 30 5
256 1.21e-11 1.76e-13 7.39e-14 4.22 5.48e-04 3.44e+02 0 32 5
512 4.51e-11 4.14e-13 1.87e-13 4.22 2.73e-04 6.87e+02 0 30 6

Table 5: α = 10−8, β = 1, (−ν1, λ1) = (0, 3.00e− 08)

n R REmax REmin x11 xnn ||X|| N− N+ N

64 6.97e-13 3.39e-14 1.42e-14 4.19 2.24e-03 8.59e+01 0 55 5
128 2.71e-12 7.83e-14 2.91e-14 4.21 1.10e-03 1.72e+02 0 55 5
256 1.02e-11 1.60e-13 7.47e-14 4.22 5.48e-04 3.44e+02 0 55 5
512 4.19e-11 3.71e-13 1.53e-13 4.22 2.73e-04 6.87e+02 0 55 5

Table 6: α = 10−15, β = 1, (−ν1, λ1) = (0, 3.00e− 15)

associated matrix. With the help of the formulas we have given some prop-
erties and entry-wise bounds for the minimal positive solution. We also have
derived a norm-wise upper bound by using the invariant subspace connec-
tion. We have used the formulas to develop fast numerical algorithms for
computing the minimal positive solution. If the eigenvalues can be computed
accurately, then the computed minimal positive solution has high relative
accuracy.
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