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Abstract

Two results about the matrix exponential are given. One is to
characterize the matrices A which satisfy eAeA

H

= eA
H

eA, another is
about the upper bounds of trace eAeA

H

. When A is stable, the bounds
preserve the asymptotic stability.

1 Introduction

Let A be an n-by-n matrix, the exponential of A is defined as follows.

eA = In +A+
A2

2!
+
A3

3!
+ · · · =

∞∑
k=0

Ak

k!
. (1)

The matrix exponential plays an important role in linear control systems
and ordinary differential equations, see [1, 2, 8, 9, 11, 13] and the references
therein. However, the theoretical analysis as well as the numerical computa-
tion of eA are still under investigations, see [1, 2, 5, 10]. In [1, 2], Bernstein
proposed many open problems arising from linear control systems, which
include some matrix exponential problems. Here we will consider two of
them.

Problem

1. Is there any nonnormal matrix such that eAeA
H

= eA
H
eA or eAeA

H
=

eA+AH?

2. Can we derive a bound of trace eAeA
H

in stead of trace eA+AH such
that when A is stable and under asymptotic case the bound can show
the stable behavior?
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Certainly the above problems are conventional when A is normal i.e.,
AAH = AHA, so we only consider the nonnormal case of A. Further it is
implicitly proved in [12] that eAeA

H
= eA+AH if and only if A is normal.

We just need to consider the first part of the first problem.
We use λ(A) to denote the eigenvalue set of square matrix A, ||·|| to

denote 2−norm and κ(X) = ||X||
∣∣∣∣X−1

∣∣∣∣ for nonsingular X. we let σmin(Y )
represent the minimum singular value of the matrix Y , the superscript H
and −H represent the conjugate transpose and that with inverse.

We will answer the first question in Section 2 and the second one in
Section 3. We will address our conclusion remarks in Section 4.

2 A Positive Answer For The First Problem

As commented in Section 1, the first problem has just the first part left, i.e.,
whether there is any nonnormal matrix A such that eAeA

H
= eA

H
eA. We

will give a positive result.

Theorem 1 A matrix A ∈ Cn×n satisfies eAeA
H

= eA
H
eA if and only if

there is a unitary matrix Q such that

A = Qdiag(A1, . . . , As)QH , (2)

where Am, m = 1, . . . , s are diagonalizable and

∀λmj , λml ∈ λ(Am) : λmj − λml = 2ikmj,lπ, for integer kmj,l, (3)

∀λm ∈ λ(Am), λj ∈ λ(Aj), m 6= j : eλm 6= eλj . (4)

Proof. For sufficiency it is easy to check eAeA
H

= eA
H
eA if A can be

expressed as in (2)-(4).
For necessity, from eAeA

H
= eA

H
eA we get that eA is normal. So there

is a unitary matrix Q such that eA = QTQH , with

T = diag(µ1In1 , . . . , µsIns),

µ1, µ2, . . . , µs pairwise different,
∑s
k=1 nk = n.

Since QHAQ and T commute, we can verify that

QHAQ := diag(A1, . . . , As),

where Ak is nk × nk, and eAk = Tk, k = 1, . . . , s. With the property of the
exponential function, the eigenvalues of Ak must satisfy (3). Moreover Ak
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must be diagonalizable, since any Jordan block in Ak will cause the same
order Jordan block in eAk , e. g., [3, Corollary 3.8,Theorem 3.3] or [7, Section
6.4]. The property µk 6= µl with k 6= l implies the condition (4).

Unlike the case of eAeA
H

= eA+AH , this theorem shows that there do
exist nonnormal matrices which satisfy eAeA

H
= eA

H
eA, furthermore the

structure of such matrices is quite simple. Let us look at two examples.

Example 1 [12] Let

A =

[
iπ 1
0 −iπ

]
.

Clearly the eigenvalues of A satisfy the conditions of Theorem 1 and A is
diagonalizable, so we have

eAeA
H

= eA
H
eA = I2.

However eA+AH =

[
0 e
e 0

]
.

Example 2 Let

A =


1 π

2 0 π
−π

2 1 −π 0
0 0 1 5π

2
0 0 −5π

2 1

 .
This is a real matrix. With simple calculations,

A = Qdiag(

[
1 + π

2 i πi
0 1 + 5π

2 i

]
,

[
1− π

2 i −πi
0 1− 5π

2 i

]
)QH

:= Qdiag(T1, T2)QH := QTQH ,

where

Q =
√

2
2


1 0 i 0
i 0 1 0
0 1 0 i
0 i 0 1


is unitary and T1, T2 are diagonalizable,

Tk =

[
1 1

2
0 1

]
T̂k

[
1 −1

2
0 1

]
, k = 1, 2.
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with
T̂1 = diag(1 +

π

2
i, 1 +

5π
2
i),

T̂2 = diag(1− π

2
i, 1− 5π

2
i).

So A satisfies the condition of Theorem 1, and actually we have

eAeA
H

= eA
H
eA = e2I4,

but

eA+AH =


α 0 0 β
0 α −β 0
0 −β α 0
β 0 0 α

 ,
where α = 1

2(e2+π + e2−π), β = 1
2(e2+π − e2−π).

The first question is completely resolved by Theorem 1 together with the
results in [12].

3 Generalized Bounds For trace eAeA
H

The inequality
trace eAeA

H ≤ trace eA+AH (5)

is well known, see [2] and the references therein. In control theory one usually
estimates trace eAteA

H t when A is stable, i.e., ∀λ ∈ λ(A) : Reλ < 0. Hence
limt→+∞ trace eAteA

H t = 0. However if (5) is applied, trace eAteA
H t ≤

trace e(A+AH)t, but A+AH may not be stable when A is nonnormal, which
means the asymptotic stability can be destroyed. Consequently in such a
case the upper bound in (5) is not good.

We try to use (5) to set up more generalized bounds and then applying
Lyapunov theory to give better estimators for trace eAeA

H
which are suitable

for asymptotic stability analysis. We begin the discussions with a lemma.

Lemma 2 Let A ∈ Cn×n, X = BBH , with B ∈ Cn×n an arbitrary nonsin-
gular matrix. Then

trace eAeA
H ≤ κ(X) trace eB

−1(AX+XAH)B−H . (6)
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Proof. Since X = BBH ,

B−1(AX +XAH)B−H = B−1AB + (B−1AB)H .

Using (5) we have

trace eB
−1(AX+XAH)B−H

= trace eB
−1AB+(B−1AB)H ≥ trace eB

−1ABe(B−1AB)H

= traceB−1eABBHeA
H
B−H = trace(BBH)−1eABBHeA

H

≥ σmin((BBH)−1) trace eABBHeA
H

=
1
||X||

traceBBHeA
H
eA

≥ σmin(BBH)
||X||

trace eA
H
eA =

1
||X|| ||X−1||

trace eAeA
H
.

This proves (6).
If B = In in (6), then the inequality is just that in (5). So the result in

Lemma 2 is more general and has the freedom of choosing the matrix B.
Now we consider the case when A is stable. At first we recall Lyapunov’s

Theorem.

Theorem 3 (Lyapunov) Let A ∈ Cn×n be stable. Then for an arbitrary
negative definite Hermitian matrix C, there exists a unique positive definite
Hermitian solution X of the Lyapunov equation

AX +XAH = C. (7)

Proof. See [7, pages 96-99].
When A is stable, combining Theorem 3 and Lemma 2 we get the fol-

lowing results.

Theorem 4 Let A ∈ Cn×n be stable, and let C ∈ Cn×n be a negative definite
Hermitian matrix. Let X be the positive definite solution of the Lyapunov
equation (7), and express X as X = BBH . Then

trace eAeA
H ≤ κ(X) trace eB

−1(AX+XAH)B−H ≤ κ(X) trace e
1
||X||C . (8)

Proof. Using the inequality in Lemma 2 we get

trace eAeA
H ≤ κ(X) trace eB

−1(AX+XAH)B−H = κ(X) trace eB
−1CB−H . (9)
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Since C is negative definite, so is B−1CB−H . We denote the eigenvalues of
C and B−1CB−H , respectively, by

0 > λ1 ≥ · · · ≥ λn; 0 > µ1 ≥ · · · ≥ µn,

and denote by Vi an arbitrary i−dimensional subspace. Using Minimax
Theorem (see [4]) we have

µi = max
Vi

min
0 6=x∈Vi

xHB−1CB−Hx

xHx
= max

Vi
min

0 6=y∈Vi

yHCy

yHy

yHy

yHBBHy

= max
Vi

min
0 6=y∈Vi

yHCy

yHy

yHy

yHXy
≤ 1
||X||

max
Vi

min
0 6=y∈Vi

yHCy

yHy

=
1
||X||

λi, i = 1, . . . , n.

Hence

trace eB
−1CB−H =

n∑
i=1

eµi

≤
n∑
i=1

e
λi
||X|| = trace e

1
||X||C .

Substituting this into (9) we get (8).
Inequality (8) reflects the asymptotic stability. Actually we can get

trace eAteA
H t ≤ κ(X) trace e

t
||X||C . (10)

When C is selected to be negative definite, then the right side of (10) tends
to zero as t→ +∞.

When A+AH is negative definite, set C = A+AH , in this case we have
X = I and (8) becomes (5).

The negative definite matrix C can be arbitrary selected in Theorem 4,
so we have the following results.

Corollary 5 Let A ∈ Cn×n and D := {C|C ∈ Cn×n,negative definite}.
Then

trace eAeA
H ≤ inf

C∈D
(κ(X) trace e

1
||X||C), (11)

where X satisfies (7) corresponding to C.
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Unfortunately we do not know how to obtain the infimum of (11). But
with different choices of the negative definite matrix C we can get different
upper bounds. Here are two of them.

Corollary 6 Let A be stable and have the Jordan canonical form

A = PJP−1 = P diag(J1, . . . , Js)P−1,

with
Ji = diag(Ji,1, . . . , Ji,1︸ ︷︷ ︸

ni,1

, . . . , Ji,ti , . . . , Ji,ti︸ ︷︷ ︸
ni,ti

), i = 1, . . . , s,

where

Ji,j =


λi −Reλi

. . . . . . O

O
. . . −Reλi

λi


is a modified j-by-j Jordan block for λi. Then

trace eAeA
H ≤ κ2(P )

s∑
i=1

e2 Reλi(
ti∑
j=1

ni,j(
j∑

k=1

e
2 Reλi cos kπ

j+1 )). (12)

Proof. Each Ji,j + JHi,j has the eigenvalues 2 Reλi(1 + cos kπ
j+1), k =

1, . . . , j. Because A is stable, Reλi < 0, 1+cos kπ
j+1 > 0 for all j, so Ji,j +JHi,j

is negative definite and then C = P (J + JH)PH is also negative definite.
Therefore (7) has the unique positive definite solution X = PPH . Applying
the first part of (8) to these X and C we arrive at (12).

We can get various bounds in such a way, i.e., first use similarity trans-
formations with diagonal matrices to J to reduce the magnitudes of the
subdiagonal elements, such that J +JH is negative definite, then determine
C and X, and finally get an upper bound by applying Theorem 4 to C and
X. But this is not a practical way to estimate trace eAeA

H
, because if we

know the Jordan canonical form of A, we can explicitly compute it.

Corollary 7 Let A be stable and let X̂ be the solution of AX+XAH = −In.
Then

trace eAeA
H ≤ nκ(X̂)e

− 1

||X̂|| . (13)
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E Bold Bnew,1 Bnew,2

3e−2ε (e+ e−1)e−2ε max{ε2, ε−2}(e−ε + e−3ε) 2(
√

(2ε)2+1+1)2

(2ε)2 e
−(1− 1√

(2ε)2+1
)2ε

Table 1: Exact value and bounds of trace eAeA
H

E(t) Bold(t) Bnew,1(t) Bnew,2(t)

(2 + t2)e−2εt (et + e−t)e−2εt max{ε2, ε−2}(e−εt + e−3εt) 2(
√

(2ε)2+1+1)2

(2ε)2 e
−(1− 1√

(2ε)2+1
)2εt

Table 2: Exact value and bounds of trace eAteA
H t

Proof. Use (8) with C = −In and X = X̂.
From a result in [6], in such a case 1/

∣∣∣∣∣∣X̂∣∣∣∣∣∣ = sep(A,AH), where

sep(A,AH) = min
X 6=0

XHermitian

∣∣∣∣∣∣AX +XAH
∣∣∣∣∣∣

||X||
.

For an arbitrary negative definite C and the solution X, ||C|| / ||X|| ≥ 1/
∣∣∣∣∣∣X̂∣∣∣∣∣∣,

so the bound in (13) maybe in general is also the worst one in asymptotic
analysis. However, it is a cheaper estimator in practice. To get this bound
only the cost of solving a Lyapunov equation is needed.

Finally we give a simple example to compare the new and old bounds.

Example 3 Let

A =

[
−ε 1
0 −ε

]
, ε > 0.

We list the exact value of trace eAeA
H

and its bound in (5), (12) and (13)
in Table 1, which are denoted by E, Bold, Bnew,1 and Bnew,2, respectively.
Also we list them with time t in Table 2 denoted by E(t), Bold(t), Bnew,1(t)
and Bnow,2(t), respectively. When ε is sufficiently small Bold is a better
estimator for E than Bnew,1 and Bnew,2. But in the asymptotic case (ε <
1/2) limt→+∞Bold(t) = +∞, while limt→+∞Bnew,1 = 0 with order of e−εt

and limt→+∞Bnew,2 = 0 with order of e−4ε3t. So Bnew,1 and Bnew,2 are
successful to show the asymptotic stability of trace eAteA

H t, while Bold fails.
Furthermore, Bnew,1 is better than Bnew,2.

In the expression of E(t) there is a quadratic polynomial coefficient 2+t2

varying for t. With the elementary mathematical result that for arbitrary
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polynomial p(t) and α > 0, limt→+∞ p(t)e−αt = 0, we can replace the vari-
able coefficient by a scalar. For example since maxt∈[0,+∞) t

2e−εt = 4
e2
ε−2,

E(t) ≤ 4
e2
ε−2e−εt + 2e−2εt, which is just equivalent to Bnew,1.

In general, by using the Schur form of A we must have the following form

trace eAteA
H t =

s∑
i=1

s∑
j=1

pij(t)e(Reλi+Reλj)t ≤ p(t)e(2 maxi Reλi)t,

where p(t), pij(t), i, j = 1, . . . , s are polynomials and λi, i = 1, . . . , s are the
pairwise different eigenvalues of A. Roughly speaking, our bounds are just
to try to replace the polynomial coefficient by a scalar. The cost is that we
have to take some order e−δt, with δ < −2 maxi Reλi, from the exponential
part, to keep the form p(t)e−δt bounded and keep the bounds asymptotic
stable.

4 Conclusion

In this paper we have achieved two things. The first one is that we have given
sufficient and necessary conditions for a matrix A which satisfies eAeA

H
=

eA
H
eA. The second is that we give a general upper bound for trace eAeA

H

and two particular bounds for that when A is stable. These two bounds
are sometimes weaker than trace eA+AH , but the importance is that they
reveal the asymptotic stability of trace eAteA

H t. Furthermore, the general
bound has a freedom to choose the negative definite matrix C, which maybe
is useful in practical applications.
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