
A robust numerical method for the γ-iteration in H∞ control

Peter Benner¶ ∗ Ralph Byers†‡ Volker Mehrmann‖ ∗ Hongguo Xu†§

December 16, 2006

Abstract

We present a numerical method for the solution of the optimal H∞ control problem
based on the γ-iteration and a novel extended matrix pencil formulation of the state-space
solution to the (sub)optimal H∞ control problem. In particular, instead of algebraic
Riccati equations or unstructured matrix pencils, our approach is solely based on solving
even generalized eigenproblems. The enhanced numerical robustness of the method is
derived from the fact that using the structure of the problem, spectral symmetries are
preserved. Moreover, these methods are also applicable even if the pencil has eigenvalues
on the imaginary axis. We compare the new method with conventional methods and
present several examples.

Keywords. H∞ control, algebraic Riccati equation, CS decomposition, Lagrangian sub-
spaces, even matrix pencil
AMS subject classification. 93B40, 93B36, 65F15, 93B52, 93C05.

1 Introduction

The optimal infinite-horizon output (or measurement) feedback H∞ control problem is one of
the central tasks in robust control, see, e.g., [28, 40, 50, 54]. Nevertheless, the development of
robust numerical methods for the H∞ control is unusually difficult [48]. It remains a major
open problem [16] despite recent developments [19, 23, 26, 29, 41, 44] some of which are
incorporated into software libraries like SLICOT1 [8, 12, 30] or the Matlab Robust Control
Toolbox [2].

This paper derives a numerical method based on a better exploitation of symmetry struc-
tures in the underlying linear algebra problems. It is therefore expected that the resulting
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method will exhibit some better robustness in the presence of rounding errors than other
methods.

If F (s) is a matrix valued analytic function that is bounded in the open right-half plane,
then its H∞ norm is ‖F‖∞ = supω∈R σmax[F (ıω)], where σmax[F (ıω)] denotes the maximal
singular value of the matrix F (ıω) and ı =

√
−1. In robust control, the H∞ norm of a transfer

function from disturbance inputs to error outputs is a measure of the worst case influence of
disturbances. The optimal H∞ control problem is the task of designing a dynamic controller
that minimizes this measure.

Consider the linear system

ẋ = Ax + B1w + B2u, x(t0) = x0,

z = C1x + D11w + D12u, (1)

y = C2x + D21w + D22u,

where A ∈ R
n,n, Bi ∈ R

n,mi , Ci ∈ R
pi,n, and Dij ∈ R

pi,mj for i, j = 1, 2. (By R
n,k we denote

the set of real n×k matrices.) As usual, see [28, 54], we assume p1 ≥ m2 and m1 ≥ p2. In this
system, x(t) ∈ R

n is the state vector, u(t) ∈ R
m2 is the control input vector, and w(t) ∈ R

m1

is an exogenous input that may include noise, linearization errors and unmodeled dynamics.
The vector y(t) ∈ R

p2 contains measured outputs, while z(t) ∈ R
p1 is a regulated output or

an estimation error.

Definition 1.1 The Optimal H∞ Control Problem: Determine a controller (dynamic
compensator)

˙̂x = Âx̂ + B̂y,

u = Ĉx̂ + D̂y,
(2)

with Â ∈ R
N,N , B̂ ∈ R

N,p2, Ĉ ∈ R
m2,N , D̂ ∈ R

m2,p2 and transfer function K(s) = Ĉ(sI −
Â)−1B̂ + D̂ such that the closed-loop system resulting from (1) and (2),

ẋ = (A + B2D̂Z1C2)x + (B2Z2Ĉ)x̂ + (B1 + B2D̂Z1D21)w,

˙̂x = B̂Z1C2x + (Â + B̂Z1D22Ĉ)x̂ + B̂Z1D21w, (3)

z = (C1 + D12Z2D̂C2)x + D12Z2Ĉx̂ + (D11 + D12D̂Z1D21)w,

with Z1 = (I − D22D̂)−1 and Z2 = (I − D̂D22)
−1, is internally stable, (i.e., for w ≡ 0 the

closed-loop system is asymptotically stable), and the closed-loop transfer function Tzw(s) from
w to z is minimized in the H∞ norm.

The solution of the problem is, in general, difficult. Solving the H∞ control problem by
directly minimizing ‖Tzw‖∞ over the set of internally stabilizing controllers (2) is intractable
by conventional optimization methods. It is often unclear whether a minimizing controller
exists [54, p.414]. When a minimizing controller or an approximately minimizing controller
does exist, it is typically not unique. Nevertheless, the well-known state-space solution to
the H∞ control problem [21, 22], relating H∞ control to algebraic Riccati equations, provides
a way to solve many H∞ control problems despite the above difficulties. We review this
solution in Subsection 2.2 following [54]. In summary, for each number γ > 0, the theory is
based on an explicit computational test for the existence of an internally stabilizing dynamic
controller (3) whose closed-loop transfer function Tzw(s) satisfies ‖Tzw‖∞ < γ. Explicit but
complicated formulas in terms of γ for a dynamic controller that achieves γ > ‖Tzw‖∞ (when
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one exists) appear, e.g., in [29, 54] and are discussed in [7]. Hence, at least in principle, the
H∞ control problem can be solved by bisection (or alike) on γ.

Here, we divide the optimal H∞ problem into two subproblems that we call the modified
optimal H∞ control problem and the suboptimal H∞ control problem.

Definition 1.2 The Modified Optimal H∞ Control Problem: Let Γ be the set of
numbers γ > 0 for which there exists an internally stabilizing dynamic controller with transfer
function Tzw(s) satisfying γ > ‖Tzw‖∞. Determine γmo = inf Γ. (If no internally stabilizing
controller exists, then Γ = ∅ and γmo = ∞.)

The modified optimal H∞ control problem is an optimization in the single independent vari-
able γ, while the optimal H∞ control problem requires optimization over the complicated set
of stabilizing controllers.

Because in many applications, it is neither practical nor necessary to determine γmo to high
precision and because there may be no dynamic controller so that γmo is actually attained, in
general, it is necessary to use a controller whose transfer function has larger H∞ norm, i.e.,
a suboptimal controller.

Definition 1.3 The Suboptimal H∞ Control Problem: For a given value γ ∈ Γ, find an
internally stabilizing dynamic controller such that the closed loop transfer function satisfies
‖Tzw‖∞ < γ.

The process of solving the modified optimal H∞ control problem is sometimes called
the γ-iteration. Once a sufficiently accurate approximation to γmo has been determined, a
suboptimal controller may be constructed using the formulas suggested in [29, 54] or by the
more robust formulas in [7]. In this paper we present a rounding-error robust numerical
method for the γ-iteration.

The outline of the paper is as follows. First, we introduce some necessary notation and
review some of the theory surrounding H∞ control in Section 2. In Section 3 we discuss
some of the existing numerical methods and point out where numerical difficulties may arise.
In Section 4 we present a formulation of the modified optimal H∞ control problem chosen
to avoid such numerical difficulties. The formulation incorporates ideas from singular H∞

control [19, 26] in combination with numerical methods designed especially for even eigenvalue
problems [5, 15]. Using structure preserving methods for these eigenvalue problem, we derive
a numerically robust γ-iteration in Section 5. The procedure applies in situations where
classical γ-iterations fail. Consequently, it allows the H∞ approach to be used on a broader
range of problems.

2 Preliminaries and Theoretical Background

2.1 Hamiltonian matrices and algebraic Riccati equations

In this section we introduce some notation and definitions. By R
n,k we denote the set of real

n×k matrices and In is the identity matrix in R
n,n. For symmetric matrices A and B, A ≥ B

and A > B mean that A − B is positive semidefinite and positive definite, respectively. An
eigenvalue λ of a square matrix A is stable (semi-stable) if its real part is negative (zero). A
square matrix A is stable (semi-stable) if all the eigenvalues of A are in the open (closed) left
half complex plane.
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Definition 2.1 Let J :=
[

0
−In

In

0

]

.

a) H ∈ R
2n,2n is Hamiltonian if (HJ )T = HJ and it is skew-Hamiltonian if (HJ )T =

−HJ .

b) Z ∈ R
2n,2n is symplectic if ZJZT = J , and U ∈ R

2n,2n is orthogonal symplectic if
UJUT = J and UTU = I2n.

c) An invariant subspace L of a Hamiltonian matrix H ∈ R
2n,2n is Lagrangian if it is

n-dimensional and xHJy = 0, for all x, y ∈ L.

d) An invariant subspace L of a Hamiltonian matrix H ∈ R
2n,2n is stable (semi-stable)

Lagrangian if it is Lagrangian and corresponds to the stable (semi-stable) eigenvalues
of H.

Real Hamiltonian matrices take the form

H =

[

F −G
−K −F T

]

, (4)

where F, G, K ∈ R
n,n, G = GT and K = KT .

An important property of real Hamiltonian matrices is their spectral symmetry: the
eigenvalues are symmetric about both the real axis and the imaginary axis, see [33, 35, 37].
Eigenvalues with nonzero real and imaginary parts occur in quadruples consisting of two ±
pairs, λ, −λ, λ̄, −λ̄. Real eigenvalues and pure imaginary eigenvalues appear in ± pairs.

To each Hamiltonian matrix there corresponds an algebraic Riccati equation (ARE)

F T X + XF + K − XGX = 0. (5)

Definition 2.2 A matrix X is a stabilizing (semi-stabilizing) solution of (5) if X = X T and
F − GX is stable (semi-stable).

It is well known [33, 37] and easy to verify that if X is a stabilizing (semi-stabilizing) solution

of the ARE (5), then the columns of
[

In

X

]

span a stable (semi-stable) Lagrangian invariant

subspace of the Hamiltonian matrix (4). Conversely, if the columns of
[

X1

X2

]

span a stable

(semi-stable) Lagrangian invariant subspace of the Hamiltonian matrix (4) and if X1 is non-
singular, then X = X2X

−1
1 is a stabilizing (semi-stabilizing) solution of the ARE (5). But

note that a (semi-)stable Lagrangian subspace of a Hamiltonian matrix may exist even if the
ARE (5) does not have a positive semidefinite solution, see [7, 25].

Conventional numerical methods for the modified optimal H∞ control problem require
the computation of the stabilizing solution of AREs of the form (5) in which F and/or G are
not necessarily semidefinite or for which (K,F ) is not stabilizable or (K,G) is not detectable.
Such AREs may have no positive semidefinite semi-stabilizing solution [33, 37]. This is one
source of trouble in numerical methods for the modified optimal H∞ control problem. This
paper presents a numerical method that circumvents this problem by directly computing the
semi-stabilizing Lagrangian subspace.
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2.2 State-space solution of the optimal H∞ control problem

In this section we discuss the theoretical background for the modified optimal H∞ problem.
We start with a typical set of assumptions [29, 28, 40, 54].

Assumptions:

A1. The pair (A,B2) is stabilizable and the pair (A,C2) is detectable.

A2. D22 = 0 and both D12 and D21 have full rank.

A3. The matrix
[

A−iωI
C1

B2

D12

]

has full column rank for all real ω.

A4. The matrix
[

A−iωI
C2

B1

D21

]

has full row rank for all real ω.

Remark 2.3 The requirement that D22 = 0 (Assumption A2) is for convenience. Systems
that have a feedthrough term can be synthesized by first studying the problem without this
term, see [54].

In the literature, it is often assumed that D12 =
[

0
Im2

]

and D21 = [0 Ip2
] and that D11 = 0.

In principle, this particular form can be obtained from a more general system by transforming
the system in advance as does Matlab’s hinfsyn [2]. Unfortunately, reducing the system
to this form may require ill-conditioned transformations that lead to unnecessary numerical
errors. Thus, we allow general D12, D21 and D11 subject to Assumption A2. Note that
this leads to slightly different solution formulas for the optimal feedbacks and the closed-loop
system than those given in [29, 54], see [7].

To formulate the basic theorem of H∞ control, we introduce the following two symmetric
matrices depending on the Dij and a parameter γ ∈ R,

RH(γ) :=

[

DT
11

DT
12

]

[

D11 D12

]

−
[

γ2Im1
0

0 0

]

,

RJ(γ) :=

[

D11

D21

]

[

DT
11 DT

21

]

−
[

γ2Ip1
0

0 0

]

.
(6)

Conventional H∞ numerical methods require that both RH(γ) and RJ(γ) are nonsingular.
The following proposition provides a convenient test.

Proposition 2.4 [7, 54] If Assumption A2 is not satisfied, then either RH is singular for all
γ or RJ is singular for all γ.

If Assumption A2 holds, then there exist only a finite number of values of γ ≥ 0 for which
one or both of the matrices RH(γ) or RJ(γ) is singular.

Definition 2.5 Define γ̂H , γ̂J and γ̂ by γ̂H := max{γ ∈ R | RH(γ) is singular }, γ̂J :=
max{γ ∈ R | RJ(γ) is singular } and γ̂ := max{γ̂H , γ̂J}.

If D11 = 0, then γ̂ = 0. If D11 6= 0, then γ̂ is typically positive. Let D12 = U12

[

0
Σ12

]

V T
12 and

D21 = V21[0Σ21]U
T
21 be (slightly permuted) singular value decompositions of D12 and D21
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with real orthogonal matrices U12, U21, V12, V21 and positive diagonal matrices Σ12 and Σ21.
Use the orthogonal equivalence transformation

[

UT
12 0

0 V T
21

] [

D11 D12

D21 0

] [

U21 0

0 V12

]

=





D1 D2 0
D3 D4 Σ12

0 Σ21 0





to define D1, D2, D3 and D4.

Proposition 2.6 [54] If Assumption A2 holds, then γ̂H = σmax[D1 D2], γ̂J = σmax

[

D1

D3

]

and

the following equivalences hold.

i) RH(γ) is invertible if and only if D1D
T
1 + D2D

T
2 − γ2I is invertible.

ii) RJ(γ) is invertible if and only if DT
1 D1 + DT

3 D3 − γ2I is invertible.

The next theorem gives the theoretical basis for the γ-iteration.

Theorem 2.7 [54]. Consider system (1), with RH and RJ as in (6). Under assumptions
A1–A4, there exists an internally stabilizing controller such that the transfer function from w
to z, denoted by Tzw, satisfies ‖Tzw‖∞ < γ if and only if the following four conditions hold.

1. γ > γ̂ with γ̂ as in Definition 2.5.

2. There exists a stabilizing positive semidefinite solution XH = XH(γ) of the ARE asso-
ciated with the Hamiltonian matrix

H(γ) =

[

A 0
−CT

1 C1 −AT

]

−
[

B1

−CT
1 D11

B2

−CT
1 D12

]

R−1
H (γ)

[

DT
11C1

DT
12C1

BT
1

BT
2

]

, (7)

3. There exists a stabilizing positive semidefinite solution XJ = XJ(γ) of the ARE associ-
ated with the Hamiltonian matrix

J(γ) =

[

AT 0
−B1B

T
1 −A

]

−
[

CT
1

−B1DT
11

CT
2

−B1DT
21

]

R−1
J (γ)

[

D11B
T
1

D21BT
1

C1

C2

]

. (8)

4. γ2 > ρ(XHXJ). (Here ρ(XHXJ) denotes the spectral radius of XHXJ .)

The solution to the suboptimal control problem, γmo, is the supremum of all γ ≥ 0 for which
at least one of the conditions in Theorem 2.7 fails.

3 Conventional Numerical Methods

This section discusses finite precision arithmetic hazards encountered by typical numerical
methods for checking the four conditions in Theorem 2.7. Some finite precision hazards are
also discussed in [26, 29, 48].

Conventional numerical methods for the solution of the modified optimal H∞ problem
[41, 48] fall into two categories.

The first embeds the problem into an optimization problem with two linear matrix in-
equality (LMI) constraints [13] and employs methods of semidefinite programming to find
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γmo. This is attractive, because easy-to-use methods for semidefinite programming are avail-
able, see, e.g., [38]. In such an approach, LMIs in O(n2) variables need to be solved which in
general results in a complexity of O(n6). Despite recent progress in reducing this complexity
based on exploiting duality in the related semidefinite programs [1, 52], the best complexity
achievable is still larger than O(n4) as compared to the O(n3) cost of the procedure discussed
here.

The second is the category of Riccati methods. A typical Riccati method uses Theorem 2.7
to find upper and lower bounds on γmo which are then refined by bisection also using The-
orem 2.7. A quadratically convergent algorithm based on Newton’s method can be found in
[45]. Each iterative step includes checking whether γ > γ̂, using an ARE solver like those
discussed in [3, 20, 37, 46] to compute stabilizing solutions XH and XJ (if they exist) cor-
responding to (7) and (8), and then checking whether γ2 > ρ(XHXJ). This method has
complexity O(n3) per step. Variations of this approach employ stable Lagrangian invariant
subspaces of the Hamiltonian matrices associated with the AREs (7) and (8) [54] or deflating
subspaces of corresponding matrix pencils [19, 44, 26]. At this writing, Riccati methods are
the only practical choice for higher dimensional problems.

Unfortunately, there are several numerical difficulties associated with Riccati methods.
Primary among these is the fact that often as γ approaches γmo, one of the ARE solutions
XH or XJ either diverges to ∞ or becomes highly ill-conditioned, i.e., tiny errors in the
Hamiltonian matrices H(γ) or J(γ) may lead to large errors in XH or XJ . The following
example demonstrates this.

Example 3.1 Consider the system





A B1 B2

C1 D11 D12

C2 D21



 =













−1 0 ε1 0 1
0 −1 0 ε2 1

α 0 1
2 0 0

0 β 0 1
2 1

δ η 0 1 0













.

If ε1 = ε2 = 0, then (6) becomes

RH(γ) = RJ(γ) =





1
4 − γ2 0 0

0 1
4 − γ2 1

2
0 1

2 1



 ,

and γ̂ = 1
2 . With ζ(γ) := 1 − 1

4γ−2, the Hamiltonian matrices (7) and (8) become

H(γ) =











−1 −β −ζ(γ) −ζ(γ)
0 −1 − β −ζ(γ) −ζ(γ)

− α2

ζ(γ) 0 1 0

0 0 β 1 + β











and

J(γ) =









−1 0 α2γ−2ζ−1(γ) − δ2ζ(γ) −βδ
2 γ−2 − δηζ(γ)

0 −1 −βδ
2 γ−2 − δηζ(γ) (β − η)βγ−2 − η2ζ(γ)

0 0 1 0
0 0 0 1









.
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The matrix J(γ) has a double eigenvalue −1 and the corresponding positive semidefinite
ARE solution is XJ = 0. The matrix H(γ) has the two eigenvalues −1 and −

√

(1 + β)2 + α2

in the open left half complex plane. When γ > 1
2 , setting ν := 1 +

√

(1 + β)2 + α2, the
positive semidefinite ARE solution corresponding to H(γ) is

XH =
α2

ζ(γ)(2β + β2 + α2)
·
[

β(2+β)
2 + α2

ν
β(2 + β)

(

1
ν
− 1

2

)

β(2 + β)
(

1
ν
− 1

2

)

β2
(

1
2 − (2+β)

ν(ν+β)

)

]

.

If β2 + 2β + α2 = 0, then

XH =
α2

8ζ(γ)

[

4 − α2 α2

α2 β2
(

1 + 2
2+β

)

]

.

Note that in this case |α| ≤ 1 and β = −1 ±
√

1 − α2. Moreover, H(γ) has the double
eigenvalues 1 and −1.

Since the semi-stabilizing ARE solutions XH and XJ exist and ρ(XJXH) = 0 for all γ > γ̂,
we have γmo = γ̂ = 1

2 . As γ approaches γmo, the function ζ(γ) approaches 0. The matrices
RH and RJ become singular, the Hamiltonian matrices H(γ) and J(γ) become ill-defined,
and the ARE solution XH converges to infinity.

Typical numerical ARE solvers are unable to succeed on problems as extreme as those in
Example 3.1 with γ ≈ γ̂. Failing to solve an ARE may cause a computation to abort before
attaining a close approximation to γmo [29]. In the most extreme case, H(γ), J(γ) or the
associated ARE solution may have entries larger than the overflow threshold and may not be
representable in the working floating point number system, thus leading to the failure of any
numerical method that explicitly constructs any of the matrices in Theorem 2.7!

A more subtle and more likely problem (also observed in [26]) is that explicitly forming
the Hamiltonian matrices themselves may lead to large inaccuracies. If the matrices RH(γ) or
RJ(γ) are ill-conditioned or if cancellation errors occur in computing the blocks of H(γ) and
J(γ), then the input data for the ARE solvers may be corrupted. Example 3.1 demonstrates
how the matrices RH(γ) and RJ(γ) become nearly singular and highly ill-conditioned as γ
approaches γ̂ = γmo.

As suggested in [19, 44, 26], a suitable embedding of the Hamiltonian matrices into ma-
trix pencils may avoid problems caused by explicitly forming the Hamiltonian matrices. In
Section 4, we will discuss a new variant of this approach which is similar to the structured
embedding technique introduced in [4]. The method discussed in [26] avoids much of the
trouble with the Riccati method, but it has some drawbacks. First of all, it computes explicit
solutions to the AREs. Also, since it uses the general QZ algorithm to compute deflating
subspaces, it does not make use or preserve the special structure of the eigenvalue problem.
This becomes critical when there are eigenvalues close to or on the imaginary axis as may
happen near γmo. Unstructured numerical methods are not reliable when there are eigenval-
ues on or near the imaginary axis as roundoff errors may cause stable eigenvalues to become
computed unstable eigenvalues, see [25]. In such a situation, it is likely that a wrong decision
is taken by the γ-iteration.

To facilitate our discussion, we introduce some notation for several critical points of γ
that play a role in determining γmo.
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Definition 3.2 Define γ̂R
H , γ̂R

J and γ̂R = max(γ̂R
H , γ̂R

J ) by

γ̂R
H = inf

{

γ ≥ γ̂

∣

∣

∣

∣

The ARE corresponding to (7) has a positive
semi-definite, semi-stabilizing solution.

}

,

γ̂R
J = inf

{

γ ≥ γ̂

∣

∣

∣

∣

The ARE corresponding to (8) has a positive
semi-definite, semi-stabilizing solution.

}

.

Definition 3.3 Define γ̂L
H , γ̂L

J and γ̂L = max(γ̂L
H , γ̂L

J ) by

γ̂L
H = inf

{

γ ≥ γ̂

∣

∣

∣

∣

The Hamiltonian matrix H(γ) in (7) has a
semi-stable Lagrangian invariant subspace.

}

,

γ̂L
J = inf

{

γ ≥ γ̂

∣

∣

∣

∣

The Hamiltonian matrix J(γ) in (8) has a
semi-stable Lagrangian invariant subspace.

}

.

Definition 3.4 Define γ̂I
H , γ̂I

J and γ̂I = max(γ̂I
H , γ̂I

J) by

γ̂I
H = sup

{

γ > γ̂

∣

∣

∣

∣

The Hamiltonian matrix H(γ) in (7) has an
eigenvalue on the imaginary axis.

}

,

γ̂I
J = sup

{

γ > γ̂

∣

∣

∣

∣

The Hamiltonian matrix J(γ) in (8) has an
eigenvalue on the imaginary axis.

}

.

If both H(γ), J(γ) have no eigenvalues on the imaginary axis for all γ > γ̂, then γ̂ I does not
exist. Note that under Assumptions A1-A4, γ̂, γ̂L and γ̂R satisfy 0 ≤ γ̂ ≤ γ̂L ≤ γ̂R. If γ̂I

exists, then γ̂I = γ̂L > γ̂.
If γ = γ̂I , then one or both of the Hamiltonian matrices H(γ) or J(γ) have eigenvalues on

the imaginary axis. Even with otherwise robust numerical methods like the QR algorithm,
rounding errors made while calculating eigenvalues and invariant subspaces may introduce
non-Hamiltonian perturbations of the Hamiltonian matrix. Unstructured, non-Hamiltonian
rounding errors may destroy the uniqueness of the semi-stable Lagrangian invariant subspace
[42, 43] causing any Riccati solver to fail. Even the number of eigenvalues in the closed
left-half plane may drop below its theoretical value of n.

Many Riccati equation solvers begin their work by extracting the stable invariant sub-
space of a Hamiltonian matrix [3, 34, 37, 46]. A naive algorithm may in this case select an
incorrect invariant subspace and either conclude that there is no solution to the Riccati equa-
tion or simply return a far-from-symmetric and/or non-stabilizing solution. A Hamiltonian
perturbation of H will not create confusion, because the ± pairing of eigenvalues is preserved.
For Hamiltonian matrices, numerically stable algorithms that fully exploit the Hamiltonian
structure are derived in [9, 18].

Some of the problems discussed above are illustrated in the following example.

Example 3.5 Consider Example 3.1 with α = β = δ = η = ε2 = 1 and ε1 = 0. In this case,
the Riccati solution associated with (8) has semi-stabilizing solution XJ = 0, independent of
γ. We constructed H(γ) in (7) for 91 values of γ equally spaced in the interval [0.1, 1] and
used the Matlab builtin function eig (based on the QR algorithm, see, e.g., [27]) to calculate
the eigenvalues of each H(γ). In no case did any computed eigenvalue have zero real part. If
a Hamiltonian matrix has no eigenvalue with zero real part, then there is a unique stabilizing
solution of the corresponding algebraic Riccati equation. A naive program to calculate γmo

might use this result to conclude that the algebraic Riccati equation corresponding to each
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H(γ) has a stabilizing solution for γ ∈ [.5, 1]. Such a program might even construct “solutions”
XH , calculate ρ(XHXJ) = 0 and ultimately conclude that γmo = γ̂ = 1/2.

In fact, γmo = γ̂I ≈ 0.806. In this example, the algebraic Riccati equation corresponding
to (7) has a stabilizing positive semidefinite solution if and only if γ > γ̂ I . As γ approaches
γ̂I , a ±λ pair of real eigenvalues of the Hamiltonian matrix H(γ) in (7) coalesces into a double
eigenvalue at 0 corresponding to a 2-by-2 Jordan block. As γ decreases further, this double
eigenvalue splits into two complex conjugate eigenvalues with zero real part.

Rounding errors constructing H(γ) and computing its eigenvalues perturb eigenvalues off
the imaginary axis. If these rounding errors are of magnitude ε then the eigenvalues of the
2-by-2 Jordan block are perturbed by O(

√
ε). Similar eigenvalue perturbations result from

perturbations of γ near γ̂I . Thus, eigenvalues may be relatively distant from the imaginary
axis even when γ̂ ≈ γ̂I . Consequently, it is problematic to use the computed eigenvalues to
determine whether H(γ) has eigenvalues with zero real part and whether the corresponding
algebraic Riccati equation has a stabilizing solution.

For further discussion on the benefits of structure-exploitation and mishaps caused by un-
structured methods see [7, 10, 11, 24, 32].

Finally, we introduce another quantity characterizing critical cases related to the spectral
radius condition in Theorem 2.7.

Definition 3.6 Let XH = XH(γ), XJ = XJ(γ) be the positive semi-definite stabilizing
solutions of the Riccati equations associated with H(λ) and J(λ) in Theorem 2.7, respectively.
Define γ̂ρ as the largest number γ ≥ γ̂ satisfying γ2 = ρ(XHXJ).

If no such number γ exists, then γ̂ρ does not exist. If γ̂ρ exists, then γ̂ρ ≥ γ̂R.
We conclude this section by noting that the solution to the modified optimal H∞ control

problem is determined by the quantities introduced in this section:

γmo = max(γ̂, γ̂L, γ̂R, γ̂ρ).

Table 1 summarizes the definitions of the different γ̂’s.

4 Reformulations

In this section we review the properties of Lagrangian invariant subspaces and Riccati solu-
tions associated with H(γ) and J(γ) along with the relationship between γmo and the various
γ̂’s. This section also reformulates Theorem 2.7 in order to overcome numerical difficulties.

4.1 Avoiding explicit solution of Riccati equations

The solution of the algebraic Riccati equations is only an intermediate step toward solving
the H∞ control problem. Avoiding explicit solution of algebraic Riccati equations is the only
way to avoid numerical instabilities like those in Example 3.1. A similar situation occurs in
H2 control problems. There, the solution of algebraic Riccati equations is an intermediate
step toward the closed-loop matrix and optimal feedback. Explicit Riccati solutions may be
avoided by computing deflating subspaces of matrix pencils [4, 5, 51].

The following reformulation of conditions 2 and 3 in Theorem 2.7 suggested in [54, The-
orem 16.4, p. 419] employs this idea.
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γ̂ sup{γ ≥ 0 | either RH or RJ is singular. }

γ̂L inf {γ ≥ γ̂ |Both H(γ) and J(γ) have a semi-stable Lagrangian invariant subspace.}

γ̂R inf {γ ≥ γ̂ |Both XH(γ) and XJ(γ) exist.}

γ̂I sup

{

γ > γ̂

∣

∣

∣

∣

Either H(γ) or J(γ) has an eigenvalue with zero real
part. Note that γ̂I may or may not exist.

}

γ̂ρ Largest number γ ≥ γ̂ satisfying γ2 = ρ(XHXJ). Note that γ̂ρ may
or may not exist.

Table 1: Summary of definitions of the γ̂’s. Here XH = XH(γ) and XJ = XJ(γ) are
the positive semi-definite stabilizing solutions of the Riccati equations corresponding to the
Hamiltonian matrices H(γ) and J(γ) in Theorem 2.7. The γ̂’s satisfy 0 ≤ γ̂ ≤ γ̂L ≤ γ̂R. If
γ̂I exists, γ̂I = γ̂L > γ̂. If γ̂ρ exists, then γ̂ρ ≥ γ̂R.

2’. There exist matrices XH,1, XH,2 ∈ R
n,n with XH,1 nonsingular such that the columns

of
[

XH,1

XH,2

]

, span a semi-stable Lagrangian invariant subspace of H(γ), i.e., there exists

a semi-stable matrix TH for which

H(γ)

[

XH,1

XH,2

]

=

[

XH,1

XH,2

]

TH . (9)

3’. There exist matrices XJ,1, XJ,2 ∈ R
n,n with XJ,1 nonsingular such that the columns of

[

XJ,1

XJ,2

]

, span a semi-stable Lagrangian invariant subspace of J(γ), i.e., there exists a

semi-stable matrix TJ for which

J(γ)

[

XJ,1

XJ,2

]

=

[

XJ,1

XJ,2

]

TJ . (10)

(Below, we will further reformulate the invariant subspace approach and remove the non-
singularity requirement for XH,1 and XJ,1.)

The reformulation by the alternative conditions 2′ and 3′ is helpful, because when γ = γ̂I
H

(or γ = γ̂I
J), then H(γ) (or J(γ)) may have a unique semi-stable Lagrangian subspace but no

positive semi-stabilizing solution to the associated Riccati equation. Furthermore, there exist
Hamiltonian matrices for which the computation of the unique semi-stable Lagrangian invari-
ant subspace is well-conditioned, but the solution of the Riccati equation is ill-conditioned,
see e.g. [7, 6].
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4.2 Avoiding the spectral radius condition

In order to avoid explicit Riccati solutions entirely, we must also reformulate the 4th condition
of Theorem 2.7, ρ(XHXJ) < γ2, in terms of the semi-stable, Lagrangian invariant subspaces
(9) and (10). See also [54, Section 16.11] and [44]. Here, we propose a new formulation that
requires solely numerically backward stable matrix factorizations.

Let
[

XH,1(γ)
XH,2(γ)

]

and
[

XJ,1(γ)
XJ,2(γ)

]

be as in (9) and (10), respectively, and set

Y(γ) :=

[

γXT
H,2XH,1 XT

H,2XJ,2

XT
J,2XH,2 γXT

J,2XJ,1

]

. (11)

Note that all the blocks of Y are functions of γ, even if γ does not appear explicitly in the
off-diagonal blocks. If one of the semi-stable, Lagrangian invariant subspaces does not exist,
then Y(γ) is undefined. We will show that Y(γ) is positive semidefinite with a particular rank
if and only if the Riccati solutions XH and XJ in Theorem 2.7 exist and γ2 > ρ(XHXJ).

Theorem 4.1 [22, 31, 53] Under assumptions A1-A4, γmo exists. The solutions XH =
XH(γ) and XJ = XJ (γ) of the algebraic Riccati equations associated with H(γ) and J(γ)
in (7) and (8) as well as the spectral radius ρ(XHXJ ) = ρ(XH(γ)XJ (γ)) are monotonically
decreasing functions of γ on the infinite interval I = (γmo,∞), i.e., if γmo < γ1 ≤ γ2,
then XH(γ2) ≤ XH(γ1), XJ (γ2) ≤ XJ(γ1) and ρ(XH(γ2)XJ(γ2)) ≤ ρ(XH(γ1)XJ(γ1)). In
addition, the ranks of XH = XH(γ) and XJ = XJ(γ) are constant on I.

Proof. See [22, 53]. For particularly complete proofs, see [31, Theorems 2.4, 4.1, 5.1].
The following well-known theorem on the CS decomposition of orthonormal bases of

Lagrangian subspaces helps display the internal structure of Y(γ).

Lemma 4.2 [39] If X1, X2 ∈ R
n,n and the columns of

[

X1

X2

]

form an orthonormal basis of a

Lagrangian subspace, then there exist orthogonal matrices U ∈ R
n,n and V ∈ R

n,n such that
UT X1V = C and UT X2V = S are both diagonal and C2 + S2 = I.

Apply Lemma 4.2 to
[

XH,1(γ)
XH,2(γ)

]

,
[

XJ,1(γ)
XJ,2(γ)

]

separating diagonal elements of C and S that

equal zero or one, we get

UT
HXH,1VH = CH =:





rH kH n − tH

rH 0 0 0
kH 0 ΣH 0
n − tH 0 0 I



, (12)

UT
HXH,2VH = SH =:





rH kH n − tH

rH I 0 0
kH 0 ∆H 0
n − tH 0 0 0



, (13)

UT
J XJ,1VJ = CJ =:





rJ kJ n − tJ

rJ 0 0 0
kJ 0 ΣJ 0
n − tJ 0 0 I



, (14)
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UT
J XJ,2VJ = SJ =:





rJ kJ n − tJ

rJ I 0 0
kJ 0 ∆J 0
n − tJ 0 0 0



, (15)

where kH +rH = tH , kJ +rJ = tJ , ΣH , ∆H , ΣJ and ∆J are diagonal, nonsingular and satisfy
Σ2

H + ∆2
H = I and Σ2

J + ∆2
J = I. If rH = rJ = 0, then kH = tH , kJ = tJ . In this case both

XH , XJ exist and

UT
HXHUH =

[

kH n − kH

kH ∆HΣ−1
H 0

n − kH 0 0

]

, (16)

UT
J XJUJ =

[

kJ n − kJ

kJ ∆JΣ−1
J 0

n − kJ 0 0

]

. (17)

Also, Theorem 4.1 shows that kH = rankXH and kJ = rankXJ are constant for γ > γmo.
Define Ỹ(γ) by

Ỹ(γ) =

[

V T
H

0

0

V T
J

]

Y(γ)

[

VH

0

0

VJ

]

(18)

=

















rH kH n − tH rJ kJ n − tJ

rH 0 0 0 Q11 Q12∆J 0
kH 0 γ∆HΣH 0 ∆HQ21 ∆HQ22∆J 0
n − tH 0 0 0 0 0 0
rJ QT

11 QT
21∆H 0 0 0 0

kJ ∆JQT
12 ∆JQT

22∆H 0 0 γ∆JΣJ 0
n − tJ 0 0 0 0 0 0

















where the blocks Q11, Q12, Q21, and Q22 are sub-blocks of the orthogonal matrix

UT
HUJ =





rJ kJ n − tJ

rH Q11 Q12 Q13

kH Q21 Q22 Q23

n − tH Q31 Q32 Q33



. (19)

The following lemma shows the relationship between Y(γ), XH , XJ , and γ2 − ρ(XHXJ).

Lemma 4.3 Let k̂H = rankXH(γ0) and k̂J = rankXJ(γ0) for some γ0 > γmo.

i) Y(γ) ≥ 0 if and only if each of the blocks Q11, Q12, Q21 in (19) are either zero or void
and

[

γ∆HΣH ∆HQ22∆J

∆JQT
22∆H γ∆JΣJ

]

≥ 0.

ii) Y(γ) ≥ 0 and rankY(γ) = k̂H + k̂J if and only if the (semi-)stabilizing, positive semidef-
inite Riccati solutions XH and XJ in Theorem 2.7 exist and γ2 > ρ(XHXJ).
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Proof. The matrix Y(γ) is a congruence transformation of Ỹ(γ) in (18). Hence Y(γ) is
positive (semi)definite if and only if Ỹ is positive (semi)definite. Statement i) now follows
immediately from (18).

ii) Note that n − tH and n − tj are independent of γ, [31]. By Theorem 4.1, it is clear

that k̂H = n − tH and k̂J = n − tJ . If Y(γ) ≥ 0 and rankY(γ) = k̂H + k̂J , then it follows
from (18) that rH = rJ = 0. If XH = XH(γ) and XJ = XJ(γ) exist, then it follows from
(12)–(15) that rH = rJ = 0. So, in either the forward hypothesis of Statement ii) or the
converse hypothesis, it holds that rH = rJ = 0 and that Q11, Q12 and Q21 are void.

Using (16) and (17), the product XHXJ can be written as

UT
J XHXJUJ = UT

J UH

[

Σ−1
H ∆H 0

0 0

]

UT
HUJ

[

Σ−1
J ∆J 0
0 0

]

=

[

QT
22Σ

−1
H ∆HQ22Σ

−1
J ∆J 0

QT
23Σ

−1
H ∆HQ22Σ

−1
J ∆J 0

]

.

Hence, ρ(XHXJ ) = ρ(QT
22Σ

−1
H ∆HQ22Σ

−1
J ∆J), and

γ2 − ρ(XHXJ) > 0

⇐⇒ γ2 − ρ(QT
22Σ

−1
H ∆HQ22Σ

−1
J ∆J) > 0

⇐⇒ γ2 − ρ((Σ−1
J ∆J)

1

2 QT
22Σ

−1
H ∆HQ22(Σ

−1
J ∆J)

1

2 ) > 0 (20)

⇐⇒ γ2I − (Σ−1
J ∆J)

1

2 QT
22Σ

−1
H ∆HQ22(Σ

−1
J ∆J)

1

2 > 0

⇐⇒ γ2Σ−1
J ∆J − Σ−1

J ∆JQT
22Σ

−1
H ∆HQ22Σ

−1
J ∆J > 0.

The matrix Ỹ(γ) factors as

Ỹ(γ) = T









γΣ−1
H ∆H 0 0 0
0 0 0 0

0 0 Y33 0
0 0 0 0









T T , (21)

where
Y33 = γΣ−1

J ∆J − γ−1Σ−1
J ∆JQT

22∆HΣ−1
H Q22∆JΣ−1

J ,

and

T =









ΣH 0 0 0
0 I 0 0

γ−1∆JQT
22 0 ΣJ 0

0 0 0 I









.

Hence,

Y(γ) ≥ 0, and rankY = k̂H + k̂J

⇐⇒ Ỹ(γ) ≥ 0, and rank Ỹ = k̂H + k̂J

⇐⇒ Σ−1
H ∆H > 0, and Σ−1

J ∆J > 0, and Y33 > 0

⇐⇒ XH ≥ 0 and XJ ≥ 0 and

γ2I − (Σ−1
J ∆J)

1

2 QT
22∆HΣ−1

H Q22(∆JΣ−1
J )

1

2 > 0

⇐⇒ XH ≥ 0 and XJ ≥ 0 and γ2 − ρ(XHXJ) > 0.
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In summary, the problem of finding γmo reduces to the problem of finding the largest
value of γ ≥ γ̂ at which Y(γ) ≥ 0 does not hold, or Y(γ) changes rank or fails to exist. The
following theorem summarizes these observations.

Theorem 4.4 For all γ > γmo, Y(γ) ≥ 0 and rankY(γ) = k̂H + k̂J is constant. For all
γ̂ < γ < γmo, either Y(γ) is not defined, or rankY(γ) < k̂H + k̂J , or Y(γ) is not positive
semidefinite.

Example 4.5 Returning to Example 3.1, observe that checking the semi-definiteness of XH

and XJ and the spectral radius ρ(XJXH) may not be a viable procedure as γ approaches γmo,
because XH = XH(γ) diverges to infinity. In contrast, Y(γ) and Ỹ(γ) remain bounded as γ
approaches γmo. Using the CS decomposition to check the rank of Ỹ(γ) is reliable as long as
orthogonal bases of the semi-stable Lagrangian invariant subspaces are computed accurately.

Remark 4.6 Theorem 4.1 states that XH = XH(γ), XJ = XJ(γ) and ρ(XHXJ) are mono-
tone in γ. However, neither Y(γ) nor Ỹ(γ) are monotone in γ, see Figure 1.

Remark 4.7 Let f(γ) be the (k̂H + k̂J)-th largest eigenvalue of Y(γ). Theorem 4.4 shows
that γmo is often the largest root of f(γ). In principle, rapidly convergent one dimensional
root finding methods can be applied. However, it is our observation that the paths of the
eigenvalues of Y(γ) often intersect near γmo, thus creating a discontinuity in the first derivative
of f(γ), see Figure 1. Consequently, rapidly converging methods like the secant method
accelerate convergence only after a more slowly converging method like bisection has already
attained a good approximation to γmo.

4.3 Avoiding R−1
H and R−1

J

The formulas (7) and (8) of the Hamiltonian matrices H(γ) and J(γ) involve inverses of matri-
ces that may be ill-conditioned along with many matrix products and matrix sums that may
involve subtractive cancellation of significant digits. The Hamiltonian matrices constructed in
the presence of finite precision arithmetic may become so corrupted by rounding errors that
accurate calculation of the semi-stable invariant subspaces is impossible, see Example 3.1.

In order to avoid these difficulties we employ a structured version of the embedding in-
troduced in [19, 26]. Here, we embed the Hamiltonian eigenvalue problems into so called
even generalized eigenvalue problems, see [15, 36], which generalize Hamiltonian matrices and
skew-Hamiltonian/Hamiltonian pencils, see [4].

Definition 4.8 A matrix pencil λN −M with N,M ∈ R
2n+r,2n+r is called even if N = −NT

and M = MT .

Real even matrix pencils have Hamiltonian eigensymmetry, i.e. the finite eigenvalues are
symmetric about both the real axis and the imaginary axis, see [36]. The analysis of even
pencils and appropriate Kronecker and staircase forms have been presented in [15, 49].

Set r = m1 + m2 + p1, r̃ = m1 + p1 + p2 and form the pencils

λN − MH(γ) := λ













0 In 0 0 0
−In 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













−













0 −AT 0 0 −CT
1

−A 0 B1 B2 0

0 BT
1 γ2Im1

0 DT
11

0 BT
2 0 0 DT

12

−C1 0 D11 D12 Ip1













(22)
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and

λN − MJ(γ) := λ













0 In 0 0 0
−In 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













−













0 −A 0 0 −B1

−AT 0 CT
1 CT

2 0

0 C1 γ2Ip1
0 D11

0 C2 0 0 D21

−BT
1 0 DT

11 DT
21 Im1













(23)

Let us consider the pencils λN − MH and λN − MJ in more detail.

Proposition 4.9 i) The pencil λN − MH(γ) is regular and of index at most one if and
only if RH(γ) is invertible. In this case, λN −MH(γ) has exactly 2n finite eigenvalues.

ii) The pencil λN − MJ(γ) is regular and of index at most one if and only if RJ(γ) is
invertible. In this case, λN − MJ(γ) has exactly 2n finite eigenvalues.

Proof. See, e.g. [15, 37].
This leads us to a characterization for the existence and uniqueness of deflating subspaces.

Theorem 4.10 Suppose that the assumptions A1–A4 are satisfied.

i) If γ̂I
H exists, then for all γ > γ̂I

H the even pencil λN−MH(γ) has a unique n-dimensional
stable deflating subspace. At γ = γ̂I

H , λN −MH(γ̂I
H) has a unique n-dimensional semi-

stable deflating subspace.

If γ̂I
H does not exist, then for all γ > γ̂H , λN − MH(γ) has a unique n-dimensional

stable deflating subspace.

ii) If γ̂I
J exists, then for all γ > γ̂I

J the even pencil λN −MJ(γ) has a unique n-dimensional
stable deflating subspace. At γ = γ̂I

J , λN − MJ(γ̂I
J ) has a unique n-dimensional semi-

stable deflating subspace.

If γ̂I
J does not exist, then for all γ > γ̂J , λN −MJ(γ) has a unique n-dimensional stable

deflating subspace.

Furthermore, if

QH =













QH,1

QH,2

QH,3

QH,4

QH,5













∈ R
2n+r,n, QJ =













QJ,1

QJ,2

QJ,3

QJ,4

QJ,5













∈ R
2n+r̃,n (24)

are matrices partitioned conformally with (22) and (23) and whose columns span the unique
(semi-)stable deflating subspaces of λN − MH(γ) and λN − MJ(γ) then the columns of

[

QH,1

QH,2

]

,

[

QJ,1

QJ,2

]

(25)

span the (semi-)stable Lagrangian invariant subspaces of H(γ) and J(γ), respectively.
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Proof. We only prove i), the proof of ii) is analogous. Since γ̂ I
H > γ̂, (when γ̂I

H exists), the
matrix RH(γ) and thus the pencil λN − MH(γ) is regular and has index at most one for all
γ > γ̂I

H . By Proposition 4.9 the pencil λN −MH(γ) have exactly 2n finite eigenvalues. If γ̂I
H

does not exist, the same is true for all γ > γ̂. Because λN − MH(γ) is an even pencil, these
finite eigenvalues have the Hamiltonian eigensymmetry. Hence there exists an n-dimensional
deflating subspace associated with all eigenvalues in the open left half plane.

If the columns of QH span such a subspace, i.e. MHQH = NQHTH for some matrix TH

with eigenvalues in the open left half plane, then













0 −AT 0 0 −CT
1

−A 0 B1 B2 0

0 BT
1 γ2Im1

0 DT
11

0 BT
2 0 0 DT

12

−C1 0 D11 D12 Ip1

























QH,1

QH,2

QH,3

QH,4

QH,5













=













QH,2

−QH,1

0
0
0













TH

Since




Im1
0 −DT

11

0 I −DT
12

0 0 Ip1









γ2Im1
0 DT

11

0 0 DT
12

D11 D12 Ip1



 =

[ −RH 0

D11 D12 Ip1

]

and RH is invertible, we can first use the last diagonal block Ip1
to eliminate in the last block

column and then the resulting new diagonal block RH to obtain that

([

−CT
1 C1 −AT

−A 0

]

+

[

CT
1 D11 CT

1 D12

B1 B2

]

R−1
H

[

DT
11C1 BT

1

DT
12C1 BT

2

])[

QH,1

QH,2

]

=

[

QH,2

−QH,1

]

TH .
(26)

A simple calculation shows that this is equivalent to (9). The same is true for the pencil
λN − MJ .

At γ̂I
H , as shown in [25], the pencil has a unique semi-stable deflating subspace.

It follows from this theorem that in the computation of γmo it suffices to compute de-
flating subspaces of the even pencils in (22) and (23) associated with the closed left half
plane eigenvalues. It is important that the deflating subspaces be computed with a struc-
ture preserving numerical method. It has been shown in [42, 43] that the uniqueness of a
Lagrangian invariant subspace is not invariant under non-structured perturbations, see also
[25]. Also, rounding errors in a non-structure preserving method may destroy the eigenvalue
symmetry. In particular, if eigenvalues lie near or on the imaginary axis, rounding errors in a
non-structure preserving method like the QZ algorithm may cause the numerical method to
find fewer than n eigenvalues in the closed left half plane. This in turn makes it difficult or
impossible to determine the desired Lagrangian invariant subspace, see, e.g., [10, 11, 24, 32]
or [7, Example 4.5]. In contrast, structure-preserving methods typically compute a nearby
Lagrangian subspace even when eigenvalues are near or on the imaginary axis.

Remark 4.11 The columns of
[

QH,1

QH,2

]

and
[

QJ,1

QJ,2

]

in (25) may not be orthonormal even when

the matrices QH and QJ in (24) do have orthonormal columns. A numerically stable, structure
preserving numerical method for extracting an orthonormal basis of a Lagrangian subspace

17



is the symplectic QR decomposition, see [14]. The symplectic QR decomposition determines
orthogonal symplectic matrices

SH =

[

SH,1 −SH,2

SH,2 SH,1

]

, SJ =

[

SJ,1 −SJ,2

SJ,2 SJ,1

]

,

such that

SH

[

QH,1

QH,2

]

=

[

VH

0

]

, SJ

[

QJ,1

QJ,2

]

=

[

VJ

0

]

.

The matrix Ỹ(γ) may then be constructed from the CS decompositions of
[

SH,1

SH,2

]

and
[

SJ,1

SJ,2

]

.

A difficulty that could arise here, is that
[

QH,1

QH,2

]

and/or
[

QJ,1

QJ,2

]

may be ill-conditioned or

may be small norm sections of the matrices with orthonormal columns QH and QJ in (24).
Such a problem may be either traced back to an ill-conditioning of the problem of computing
the invariant subspace or to a near failure of one or some of assumptions A1-A4. In both
cases we cannot expect a solution to be accurate, but clearly then the same or worse problems
arise in the reduced pencils such as (26).

If RH(γ) or RJ(γ) are nearly singular, then the pencils (22) and (23) are close to pencils
that are either not regular or have index greater than one. In this case we are close to a
situation, where the dimension of the deflating subspace associated with the open left half
plane eigenvalues becomes less than n. If γ̂H < γmo and γ̂J < γmo, then this does not happen
for γ ≥ γmo. Example 3.1 demonstrates that γmo = γ̂H is possible and the pencil λN + MH

becomes singular near γmo.
In summary, numerical computations based on the even pencils (22) and (23) avoid un-

necessary rounding errors caused by explicitly forming H(γ), J(γ), and the corresponding
algebraic Riccati solutions. Deflating subspaces of the even pencils (22) and (23) provide the
desired Lagrangian subspaces, and the factors of Y(γ) and Ỹ(γ) without explicitly forming
the inverses, sums and products that occur in (7) and (8).

5 Computation of γmo

In this section we synthesize the above observations in a new numerical method for the
modified optimal H∞ control problem.

The simplest approach to finding γmo is to use a bisection method. Given a number γ ≥ 0,
the following procedure may be used to determine whether γ ≤ γmo or γ ≥ γmo.

Algorithm 1 (Basic bisection procedure)

1. Form the even pencils (22) and (23).

2. Use a structure preserving method such as those discussed in [5, 15] to compute the
deflating subspaces QH and QJ associated with the eigenvalues in the closed left half
plane.

3. If the dimension of one or both of these subspaces is less than n, then report γ < γmo

and STOP.
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4. Compute the symplectic QR decomposition of the two matrices in (25) followed by the
CS decompositions (12)–(15).

5. If any diagonal element of ∆HΣH or ∆JΣJ is negative, then report γ < γmo and STOP.

6. Form the matrix Ỹ.

7. If Ỹ is not positive semidefinite, then report γ < γmo and STOP.

8. If Ỹ is positive semidefinite and rank Ỹ < k̂H + k̂J then report γ < γmo and STOP

(k̂H and k̂J can be computed with a sufficiently large γ.)

9. Report γ > γmo.

Often, γmo is a root of the function f(γ) described in Remark 4.7. Since the eigenvalues
of a symmetric matrix are continuous functions of the entries of the matrix (hence also of
γ) and continuously differentiable as long as the eigenvalue is simple [47], the secant method
applies. We then have the following basic structure of the optimization procedure.

Algorithm 2 (Basic optimization procedure)

1. Compute upper and lower bounds γup and γlow for γmo.

2. Use the bisection method (Algorithm 1) to determine a sufficiently small interval [γ0, γ1]
in which γmo lies.

3. Use a superlinearly convergent method such as the secant method to determine γ.

This algorithm needs to fall back upon the bisection procedure in case the secant method
produces an approximate root γ for which Y(γ) does not exist.

6 Numerical Examples

In this section we solve several H∞ control problems and compare our experimental implemen-
tation of Algorithm 2 with Hinfopt (version 1.8) from the Matlab Robust Control Toolbox
(version 2.0.7) [17]. We used the same highly demanding stopping criterion tolX = 10−14 for
stopping the γ iteration in both programs. All the numerical examples were run on a Dell
530 workstation using Matlab (version 6.0.0.88) with IEEE754 conforming floating point
arithmetic. The unit round is approximately 2.22 × 10−16.

Example 6.1 For

A =













−a 0 1 −2 1
0 −100 0 0 0
0 0 0 −2a a
0 0 0 0 1
0 0 0 3 2













, B1 =













1
0
a
0
0













, B2 =













0
−90
0
0
1













C1 =

[

1 0 0 0 0
0 1 0 0 0

]

, D11 = 0, D12 =

[

0
1

]

,

C2 =
[

0 0 1 −2 1
]

, D21 = 1, D22 = 0
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γmo is independent of the choice of a. As is typical, γ̂ρ is greater than γ̂, γ̂R, γ̂I and γ̂L,
so γmo = γ̂ρ. Our experimental program determined γmo = γ̂ρ = 7.853923684022 which is
correct to roughly thirteen significant digits. This program computed the same optimal value
of γ to at least thirteen significant digits for values of a between 1 and 10−7. When a = 10−8,
then the pencil λN − MH has finite eigenvalues of magnitude comparable to (and possibly
smaller than) the unit round of the floating point arithmetic. At that point, eigenvalue based
numerical methods are no longer able to reliably extract the stable deflating subspace. The
experimental program delivers an error message. Hinfopt gets the same accuracy for a as
small as 10−10 despite the growing unreliability of the computed eigenvalues as a decreases
below 10−8.

Figure 1 shows the nonzero eigenvalues of Ỹ(γ) as a function of γ for a = 1. In this
example, Y(γ) and Ỹ(γ) have an eigenvalue of magnitude roughly 10−6 in the neighborhood
of γ̂ρ, but it is one of the other, relatively larger eigenvalues that changes sign at γ̂ ρ. This
example demonstrates that, counter to intuition, a relatively small eigenvalue of Y(γ) or Ỹ(γ)
does not necessarily imply that γ ≈ γ̂ρ.

Example 6.2 (Example 3.1 continued) In this example γmo = γ̂. With α = β = δ = η =
1 and ε1 = ε2 = 0, the experimental program determined γmo = γ̂ = .5000000000000 which
agrees with the theoretical value to thirteen significant digits.

Note that RH(γ) is singular at γ = γmo = γ̂. Hinfopt fails on this example, because it
explicitly inverts the singular matrix RH(γ̂).

Example 6.3 (Example 3.1 continued) Example 3.1 with α = β = δ = η = ε2 = 1 and
ε1 = 0 demonstrates a case in which γmo = γ̂L. As shown in Figure 1, Ŷ(γ) does not change
rank at γ = γmo, instead, it ceases to exist, because the semi-stabilizing Lagrangian subspace
ceases to exist. The Riccati solution to (8) is XJ = 0 independent of γ. The Riccati solution
to (7) is not constant, but remains positive definite in a one sided neighborhood to the right
of γmo. In a neighborhood to the left of γmo, the Hamiltonian matrix H(γ) (7) and the
pencil λN − MH have eigenvalues with zero real part and the required Lagrangian invariant
subspaces fail to exist. Our experimental code reports γmo = γ̂L = .8062257748299. Hinfopt

fails on this example, because it explicitly inverts the singular matrix RH(γ).

Example 6.4 In this example the H∞ norm of Tzw is nearly minimized by a large range of
values γ using the γ-parameterization of Theorem 2.7, including a region below γmo. That is,
using any of these γ’s to construct a controller, nearly the same H∞ norm of Tzw is attained.
Let





A B1 B2

C1 D11 D12

C2 D21 0



 =













2 0 0 1 −1
0 −1 0 1 −2

1 0 α 0 0
0 1 0 −1 1

4 −2 0 1 0













.

Then γ̂ = γmo = α. Taking α = 3 one can verify that, except for γ ∈ [2.7, 3], the Lagrangian
subspaces and Riccati solutions exist. But note that for γ < 3, Condition 1. of Theorem 2.7
is not satisfied, so ‖Tzw‖∞ < 3 cannot be achieved. Using the formulas in [54] we constructed
a controller for each γ ∈ [1.5, 4] \ [2.7, 3] and found that ‖Tzw‖∞ = 3.00 to three significant
digits independent of γ.

Figure 1 shows the nonzero eigenvalues of Ỹ(γ) for γ ∈ [.5, 3.5]. The Riccati solutions XH

of (7) and XJ of (8) have the peculiar property that XJ (γ) ≡ 0 and limγ→γmo+ XH(γ) = 0, so
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Example 6.1 with a = 1:
γmo = γ̂ρ ≈ 7.853923684022.

Example 6.2: γmo = γ̂ = .5.
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Example 6.3: γmo = γ̂L = .806 . . .. Example 6.4: γmo = γ̂ = 3.

Figure 1: Nonzero eigenvalues of Ỹ(γ) from Examples 6.1, 6.2, 6.3 and 6.4 as a function of
γ. Graphs of the eigenvalues of Y(γ) are similar.

ρ(XHXJ) = 0 independent of γ. When γ ≈ γmo, a small error in XJ may lead to a relatively
large error in the computed spectral radius ρ(XJXH). An inaccurately computed spectral
radius may limit the accuracy attainable by conventional algorithms that rely on Theorem 2.7
and explicit calculation of Riccati solutions. Nevertheless, Hinfopt correctly determined γmo

to within an absolute error of 10−13 as did our experimental algorithm described in this paper.

7 Conclusion

This paper discusses the design of a robust numerical method for the modified H∞ control
problem. The proposed method avoids matrix sums, products and inverses needed to con-
struct Hamiltonian matrices and avoids potentially ill-conditioned algebraic Riccati equations
by working with even pencils and its deflating subspaces. The computation of the optimal
γ reduces to a one-dimensional optimization problem for which, in principle, one can apply
quadratically convergent methods. Several examples illustrate the numerical hazards and the
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properties of the proposed numerical method. The new approach effectively increases the set
of problems to which H∞ control may be applied.
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