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Abstract

We introduce a transformation between the discrete-time and continuous-
time algebraic Riccati equations. We show that under mild conditions
the two algebraic Riccati equations can be transformed from one to
another, and both algebraic Riccati equations share common Hermi-
tian solutions. The transformation also sets up the relations about
the properties, commonly in system and control setting, that are im-
posed in parallel to the coefficient matrices and Hermitian solutions
of two algebraic Riccati equations. The transformation is simple and
all the relations can be easily derived. We also introduce a general-
ized transformation that requires weaker conditions. The proposed
transformations may provide a unified tool to develop the theories
and numerical methods for the algebraic Riccati equations and the
associated system and control problems.

Keywords Algebraic Riccati equation, reducing subspace, eigenvalue, con-
trollability, stability, regularizability, Cayley transformation.
AMS subject classification. 93B40, 93B36, 15A18, 15A22, 65F15.

1 Introduction

We consider the relation between two types of algebraic Riccati equations
(AREs). The first type is the discrete-time algebraic Riccati equation (DARE)

Rd(X) := A∗dXAd − E∗
dXEd + Md

−(A∗dXBd + Nd)(Rd + B∗
dXBd)

−1(A∗dXBd + Nd)
∗ = 0, (1)
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where Ed, Ad, Md ∈ Cn,n, Rd ∈ Cp,p, Bd, Nd ∈ Cn,p, and Md, Rd are Her-
mitian. The second type is the continuous-time algebraic Riccati equation
(CARE)

Rc(X) := E∗
c XAc + A∗cXEc + Mc

−(E∗
c XBc + Nc)R

−1
c (E∗

c XBc + Nc)
∗ = 0, (2)

where Ec, Ac, Mc ∈ Cn,n, Rc ∈ Cp,p, Bc, Nc ∈ Cn,p, and Mc, Rc are Hermitian.
The AREs play a fundamental role in linear optimal and robust control.

For instance, the solvability of the discrete-time linear quadratic optimal
control problem,

min
uk

1

2

∞∑
k=0

[
xk

uk

]∗ [
Md Nd

N∗
d Rd

] [
xk

uk

]
subject to Edxk+1 = Adxk + Bduk x0 = x0

with M∗
d = Md, R∗d = Rd, depends on the solvability of the DARE (1), e.g.,

[21, 24, 2, 3, 19, 16, 12]. Likewise, the solvability of the continuous-time
linear quadratic optimal problem,

min
u

1

2

∫ ∞

0

[
x
u

]∗ [
Mc Nc

N∗
c Rc

] [
x
u

]
dt

subject to Ecẋ = Acx + Bcu x(0) = x0

with M∗
c = Mc, R∗c = Rc, depends on the solvability of the CARE (2), e.g.,

[13, 1, 15, 17, 24, 19, 16]. Due to the important applications in system and
control, in the past decades the AREs have been extensively studied. The
theoretical results and numerical methods have been well developed, see, e.g.,
[13, 1, 15, 17, 21, 24, 5, 6, 18, 19, 16, 4, 8, 12, 7] and the references therein.
Although in literature the AREs (1) and (2) are usually treated separately,
it is well-known that, due to the similar background, their structures and
properties appear in parallel. For instance, the AREs (1) and (2) are charac-
terized by the same type of coefficient matrix tuples (Ed, Ad, Bd, Md, Nd, Rd)
and (Ec, Ac, Bc, Mc, Nc, Rc). Both Riccati operators Rc and Rd can be con-
sidered as transformations in the set of Hermitian matrices. For the AREs
arising from system and control, special concepts and properties, such as con-
trollability, stability, etc., are usually introduced in parallel to the coefficient
matrices. These similarities lead to the investigation on equivalence relations
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between the two AREs. In [20], it is shown that under certain conditions the
AREs can be related by the Cayley transformation. However, the conditions
may be too strong for many AREs and the relation between two sets of co-
efficient matrices may be very complicated. The transformation proposed in
[11] is less restrictive. However, it still needs certain invertibility conditions.

In this paper we introduce the following invertible transformation for the
AREs (1) and (2). Given (Ed, Ad, Bd, Md, Nd, Rd), let W be an invertible
matrix such that

[
Ad + Ed Bd

]
W−1 =

[
H 0

]
with H ∈ Cn,n. Then

we define

fW : (Ed, Ad, Bd, Md, Nd, Rd) 7→ (Ec, Ac, Bc, Mc, Nc, Rc),

[
Ec 0
Ac Bc

]
=

√
2

2

[
Ad + Ed Bd

Ad − Ed Bd

]
W−1,[

Mc Nc

N∗
c Rc

]
= W−∗

[
Md Nd

N∗
d Rd

]
W−1.

We will show that under mild conditions the AREs related by the transfor-
mation fW share the same Hermitian solutions.

The Hermitian solutions of the AREs are related to reducing (or deflat-
ing) subspaces of certain matrix pairs determined by the coefficient matrices
of the AREs ([17, 19, 16]). In [26], an equivalence transformation between
the corresponding matrix pairs and reducing subspaces was given. We will
see below that the transformation in [26] can be considered as an interme-
diate one of fW . However, the relation between ARE solutions and reducing
subspaces is not an equivalence relation ([16]). For this reason, we will di-
rectly study the relation between the solutions of two types of AREs under
the transformation fW .

The paper is organized as follows. Section 2 gives some necessary defini-
tions and properties about matrix pairs and AREs, and some other auxiliary
results. The proposed transformation has a strong tie with the Cayley trans-
formation. So a brief review about the Cayley transformation is also given
in this section. Section 3 formally introduces the above transformation. Re-
lations about some controllability properties of the coefficient matrices are
also described. The transformation introduced in [26] is also presented in this
section. Section 4 gives several sufficient conditions under which a DARE can
be transformed to a CARE by the proposed transformation. It also gives the
relation between their Hermitian solutions. Section 5 is parallel to Section 4.
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It gives sufficient conditions under which a CARE can be transformed to
a DARE by the inverse transformation. Section 6 introduces a generalized
transformation. Section 7 contains the conclusions.

Throughout the paper, R denotes the set of real numbers. C, Ck, Cm,q

denote the set of complex numbers, the k-dimensional complex vector space,
and the space of m× q complex matrices, respectively. Hk,k denotes the set
of k × k complex Hermitian matrices. C+, C−, and C0 denote the sets of
complex numbers with positive , negative, and zero real parts, respectively.
O−, O+, and O0 denote the sets of complex numbers inside, outside, and on
the unit circle, respectively. rank X is the rank of matrix X. null X is the
null space of matrix X. span X is the subspace spanned by the columns of
matrix X. X∗ is the complex conjugate transpose of X. X−∗ = (X∗)−1.
0p×q (0p) is the p× q (p× p) zero matrix and Ip is the p× p identity matrix.
When the sizes are obvious from the context, they are simply denoted by 0
and I, respectively.

2 Preliminaries

Definition 1 Two matrix pairs (E ,A), (F ,B) ∈ Cm,q×Cm,q are called equiv-
alent if there exist nonsingular matrices X and Y such that

(F ,B) = (XEY , XAY).

Definition 2 Consider the matrix pair (E ,A) ∈ Cm,q × Cm,q. If m = q and
det(A− λE) 6= 0 for some λ ∈ C, the pair (E ,A) is regular. If either m 6= q
or m = q and det(A− λE) = 0 for all λ ∈ C, the pair (E ,A) is singular.

Theorem 3 ([14, 9]). Any pair (E ,A) ∈ Cm,q×Cm,q is equivalent to a pair
of the block form

(diag(0, Er, El, Eg), diag(0, Ar, Al, Ag)), (3)

where αEr−βAr and αEl−βAl have full row and column ranks, respectively,
for all α, β ∈ C not both zero, and (Eg, Ag) is regular. The regular subpair
(Eg, Ag) is unique (up to equivalence transformations).

When (E ,A) is regular, any number λ0 ∈ C satisfying det(λ0E −A) = 0 is a
finite eigenvalue of (E ,A). If E is singular, then ∞ is also an eigenvalue of

4



(E ,A). For a general pair (E ,A), its eigenvalues are just those of the sub-
pair (Eg, Ag) defined in (3). We denote by Λ(E ,A) the set of all (finite and
infinite) eigenvalues of (E ,A).

Definition 4 For a given subspace S, X is called a basis matrix of S if the
matrix X has full column rank and span X = S.

Definition 5 Consider the pair (E ,A) ∈ Cm,q × Cm,q.

1. If U ∈ Cq,k has full column rank and satisfies

EU = Y S, AU = Y T,

where Y ∈ Cm,k has full column rank and S, T ∈ Ck,k, then U is a
basis matrix of a right reducing subspace of (E ,A) associated with the
sub-pair (S, T ).

2. V is a basis matrix of a left reducing subspace of (E ,A) associated with
(S, T ) if it is a basis matrix of a right reducing subspace of (E∗,A∗)
associated with (S∗, T ∗).

Definition 6 Consider (E ,A) ∈ Cm,m × Cm,m.

1. The pair (E ,A) is C-stable (resp. C-semi-stable), if Λ(E ,A) ⊂ C−
(resp. Λ(E ,A) ⊂ C− ∪C0 ∪ {∞} and the eigenvalues in C0 ∪ {∞} are
semi-simple).

2. The pair (E ,A) is D-stable (resp. D-semi-stable), if Λ(E ,A) ⊂ O−

(resp. Λ(E ,A) ⊂ O− ∪O0 and the eigenvalues in O0 are semi-simple).

Definition 7 Consider the matrix triplet (E, A, B) ∈ Cn,n × Cn,n × Cn,p.

1. The triplet is controllable at λ0 ∈ C if rank[A− λ0E, B] = n.

2. Given a set Ω ⊆ C, the triplet is controllable in Ω if it is controllable
at every number in Ω.

3. The triplet is controllable at infinity if rank[E, AT∞, B] = n, where
T∞ is a basis matrix of null E.

4. The triplet is controllable if it is controllable in Ω = C.
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5. The triplet is C-stabilizable (resp., D-stabilizable) if it is controllable
in Ω = C+ ∪ C0 (resp., Ω = O+ ∪O0).

6. The triplet is regularizable if it is controllable at some λ ∈ C.

Proposition 8 Suppose (E, A, B) ∈ Cn,n × Cn,n × Cn,p.

(i) There exist unitary matrices P, Q such that

E = P

[
E11 E12

0 E22

]
Q, A = P

[
A11 A12

0 A22

]
Q, B = P

[
B1

0

]
, (4)

where (E11, A11, B1) is controllable.

(E, A, B) is controllable if and only if (E22, A22) is void.

(ii) For any set Ω ⊆ C, there exist unitary matrices P, Q such that the triplet
(E, A, B) has the form (4), where (E11, A11, B1) is controllable in Ω,
and Λ(E22, A22) ⊆ Ω.

(E, A, B) is controllable in Ω if and only if (E22, A22) is void.

Proof. (i) The factorization (4) is from [23].
(ii) It follows from (i) by reducing (E22, A22) further to a generalized

Schur form and extracting the regular sub-pair with no eigenvalue in Ω to
(E11, A11).

Lemma 9 Consider the Hermitian matrix

A =

[ n p

n A11 A12

p A∗12 A22

]
∈ Cn+p,n+p,

Suppose that rank A = p, and
[

Y1

Y2

]
∈ Cn+p,n (with Y1 ∈ Cn,n) is a basis

matrix of null A. Then det Y1 6= 0 if and only if det A22 6= 0.

Proof. Necessity. Let Y =
[

Y1

Y2

0
Ip

]
. Since det Y1 6= 0, Y is nonsingular.

Then from

Y ∗AY =

[
0 0
0 A22

]
,
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one has
p = rank A = rank Y ∗AY = rank A22,

i.e., det A22 6= 0.

Sufficiency. Since rank A22 = rank A = p,
[

In

−A−1
22 A∗12

]
is a basis matrix

of null A. Then
[

Y1

Y2

]
=
[

In

−A−1
22 A∗12

]
T for some T ∈ Cn,n with det T 6= 0. So

Y1 = T is nonsingular.
Define the dissipation operators

Dd(X) =

[
Md Nd

N∗
d Rd

]
+

[
Ed 0
Ad Bd

]∗ [ −X 0
0 X

] [
Ed 0
Ad Bd

]
=

[
A∗dXAd − E∗

dXEd + Md A∗dXBd + Nd

B∗
dXAd + N∗

d B∗
dXBd + Rd

]
,

Dc(X) =

[
Mc Nc

N∗
c Rc

]
+

[
Ec 0
Ac Bc

]∗ [
0 X
X 0

] [
Ec 0
Ac Bc

]
=

[
E∗

c XAc + A∗cXEc + Mc E∗
c XBc + Nc

B∗
c XEc + N∗

c Rc

]
,

and the matrix pairs

(Ed,Ad) =

 0 Ed 0
−A∗d 0 0
−B∗

d 0 0

 ,

 0 Ad Bd

−E∗
d Md Nd

0 N∗
d Rd

 , (5)

(Ec,Ac) =

 0 Ec 0
−E∗

c 0 0
0 0 0

 ,

 0 Ac Bc

A∗c Mc Nc

B∗
c N∗

c Rc

 , (6)

where Dd(X) and (Ed,Ad) are related to the DARE (1), and Dc(X) and
(Ec,Ac) are related to the CARE (2). The following equivalence conditions
can be verified directly. Most of the results can be found in [19, 16, 12].

Proposition 10 Suppose X ∈ Hn,n. Then the following statements are
equivalent.

(i) X solves the DARE (1).

(ii) rankDd(X) = rank(Rd + B∗
dXBd) = p.

(iii) rankDd(X) = p and Dd(X)
[

In

Kd

]
= 0 for some Kd ∈ Cp,n.
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(iv) det(Rd + B∗
dXBd) 6= 0 and there is a matrix Kd ∈ Cp,n such that the

nonsingular matrices

Ud =

 In XEd 0
0 In 0
0 Kd Ip

 , Yd =

 In X(Ad + BdKd) BdX
0 In 0
0 Kd Ip


satisfy

Y∗dEdUd =

 0 Ed 0
−(Ad + BdKd)

∗ 0 0
−B∗

d 0 0

 ,

Y∗dAdUd =

 0 Ad + BdKd Bd

−E∗
d 0 0

0 0 Rd + B∗
dXBd

 . (7)

(v) det(Rd + B∗
dXBd) 6= 0 and the matrices

Ud = Ud

 0
In

0

 =

 XEd

In

Kd

 , Yd = Y−∗d

 In

0
0

 =

 In

−A∗dX
−B∗

dX

 (8)

satisfy
EdUd = YdEd, AdUd = Yd(Ad + BdKd),

i.e., Ud is a basis matrix of a right reducing subspace of (Ed,Ad) asso-
ciated with (Ed, Ad + BdKd).

(vi) det(Rd + B∗
dXBd) 6= 0 and the matrices

Vd = Yd

 0
In

0

 =

 X(Ad + BdKd)
In

Kd

 , Zd = U−∗d

 In

0
0

 =

 In

−E∗
dX
0


(9)

satisfy

V ∗
d Ed = −(Ad + BdKd)

∗Z∗d , V ∗
d Ad = −E∗

dZ
∗
d ,

i.e., Vd is a basis matrix of a left reducing subspace of (Ed,Ad) associated
with ((Ad + BdKd)

∗, E∗
d).
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Moreover, if X ∈ Hn,n solves the DARE (1), the matrix Kd in (iii) – (vi) is
the same. It depends on X and has the expression

Kd = −(Rd + B∗
dXBd)

−1(B∗
dXAd + N∗

d ). (10)

Proof. (i) ⇔ (ii) easily follows from taking the Schur complement of
Dd(X). (ii) ⇔ (iii) follows from Lemma 9. (i) ⇔ (v), (i) ⇔ (vi), and (iv)
⇔ (v) are straightforward.

By eliminating Bd with pivoting (Rd + B∗
dXBd), the decomposition (7)

can be reduced further to the block triangular form Ed Bd(Rd + B∗
dXBd)

−1B∗
d 0

0 −(Ad + BdKd)
∗ 0

0 B∗
d 0

 ,

 Ad + BdKd 0 0
0 −E∗

d 0
0 0 Rd + B∗

dXBd

 .

So we have

Λ(Ed,Ad) = Λ(Ed, Ad + BdKd) ∪ Λ((Ad + BdKd)
∗, E∗

d) ∪ Λ(0p, Ip). (11)

Obviously, λ ∈ Λ(Ed, Ad + BdKd) if and only if λ̄−1 ∈ Λ((Ad + BdKd)
∗, E∗

d).
(Here we assume that 0−1 = ∞.) So the eigenvalues of (Ed,Ad) appear in
pairs (λ, λ̄−1), i.e., the spectrum has the symplectic structure. In fact, for any
matrix pair of the form as (Ed,Ad), its spectrum always has the symplectic
structure, e.g., [19, 26]. However, when the DARE has an Hermitian solution,
there are some extra properties about the eigenvalues on the unit circle.
In this case, with an arbitrary Hermitian solution X and its corresponding
Kd, we have (11). If λ0 ∈ Λ(Ed,Ad) ∩ O0, then λ̄−1

0 = λ0. So λ0 must be
contained in both Λ(Ed, Ad +BdKd) and Λ((Ad +BdKd)

∗, E∗
d). The algebraic

multiplicity of λ0 in both spectra is obviously the same. Back to the original
matrix pair (Ed,Ad), the algebraic multiplicity of λ0 must be even. It is also
easily seen from (11) that for any Hermitian solution X and its corresponding
Kd, (Ed, Ad + BdKd) is regular if and only if (Ed,Ad) is regular.

Similarly, for Hermitian solutions of the CARE (2) we have the following
equivalence relations. Again, most of the results can be found in [19, 16, 12].

Proposition 11 Suppose X ∈ Hn,n. Then the following statements are
equivalent.

(i) X solves the CARE (2).

(ii) rankDc(X) = rank Rc = p.
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(iii) rankDc(X) = p and Dc

[
In

Kc

]
= 0 for some Kc ∈ Cp,n.

(iv) det Rc 6= 0 and there is a matrix Kc ∈ Cp,n such that the nonsingular
matrix

Uc =

 In XEc 0
0 In 0
0 Kc Ip


satisfies

U∗c EcUc =

 0 Ec 0
−E∗

c 0 0
0 0 0

 ,

U∗cAcUc =

 0 Ac + BcKc Bc

(Ac + BcKc)
∗ 0 0

B∗
c 0 Rc

 . (12)

(v) det Rc 6= 0 and the matrices

Uc = Uc

 0
In

0

 =

 XEc

In

Kc

 , Yc = U−∗c

 In

0
0

 =

 In

−E∗
c X
0

 (13)

satisfy
EcUc = YcEc, AcUc = Yc(Ac + BcKc),

i.e., Uc is a basis matrix of a right reducing subspace of (Ec,Ac) asso-
ciated with (Ec, Ac + BcKc).

(vi) det Rc 6= 0 and the matrices Uc, Yc defined in (13) satisfy

U∗c Ec = (−Ec)
∗Y ∗

c , U∗cAc = (Ac + BcKc)
∗Y ∗

c ,

i.e., Uc is also a basis matrix of a left reducing subspace of (Ec,Ac)
associated with (−E∗

c , (Ac + BcKc)
∗).

Moreover, if X ∈ Hn,n solves the CARE (2), the matrix Kc in (iii) – (vi) is
the same. It depends on X and has the expression

Kc = −R−1
c (B∗

c XEc + N∗
c ). (14)
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Proof. It is similar to the proof of Proposition 10.
Notice that Ec = −E∗c and Ac = A∗c . So the eigenvalues of (Ec,Ac)

appear in pairs (µ,−µ̄), i.e., the spectrum has the Hamiltonian structure,
e.g., [19, 26]. When the CARE (2) has an Hermitian solution, from (12) we
have

Λ(Ec,Ac) = Λ(Ec, Ac + BcKc) ∪ Λ(−E∗
c , (Ac + BcKc)

∗) ∪ Λ(0p, Ip). (15)

So the Hamiltonian structure is obvious. But in this case, if µ0 ∈ Λ(Ec,Ac)∩
C0, i.e., µ0 = −µ̄0, µ0 must be contained in both Λ(Ec, Ac + BcKc) and
Λ(−E∗

c , (Ac + BcKc)
∗) for any Hermitian solution X and its corresponding

Kc. So the algebraic multiplicity of µ0 (with respect to (Ec,Ac)) must be
even. Moreover, for any Hermitian solution X and its corresponding Kc,
from (15), (Ec, Ac + BcKc) is regular if and only if (Ec,Ac) is regular.

Sufficient conditions for the existence of Hermitian solutions of the AREs
can be found in [19, 16, 8].

Finally, we review the Cayley transformation c : C ∪ {∞} → C ∪ {∞}:

µ = c(λ) := (λ− 1)(λ + 1)−1

with c(−1) = ∞ and c(∞) = 1. The Cayley transformation is invertible and
its inverse is

λ = c−1(µ) = (1 + µ)(1− µ)−1.

The correspondence between λ and µ = c(λ) is summarized in Table 1.

λ |λ| < 1 |λ| = 1 |λ| > 1 1 0 −1 ∞
µ Re µ < 0 Re µ = 0 Re µ > 0 0 −1 ∞ 1

Table 1: Correspondence between λ and µ = c(λ)

The Cayley transformation can be generalized to the space Cm,q × Cm,q.
Let (E ,A) ∈ Cm,q × Cm,q. We can define

(F ,B) = c(E ,A) =: (A+ E ,A− E) ∈ Cm,q × Cm,q. (16)

The eigenvalues of (F ,B) and (E ,A) are related by the scalar Cayley trans-
formation, namely, λ ∈ Λ(E ,A) if and only if c(λ) ∈ Λ(F ,B). Moreover,
λ, c(λ) have the same Jordan structure.
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3 Transformations between the AREs

We introduce the following transformation between the coefficient matrices
of the DARE (1) and CARE (2). Given (Ed, Ad, Bd, Md, Nd, Rd), let W ∈
Cn+p,n+p be nonsingular such that

[
Ad + Ed Bd

]
W−1 =

[
H 0

]
, where

H ∈ Cn,n. Then we define

fW : (Ed, Ad, Bd, Md, Nd, Rd) 7→ (Ec, Ac, Bc, Mc, Nc, Rc),

where Ec, Ac, Bc, Mc, Nc, Rc satisfy[
Ec 0
Ac Bc

]
= X

[
Ed 0
Ad Bd

]
W−1 =

√
2

2

[
Ad + Ed Bd

Ad − Ed Bd

]
W−1, (17)[

Mc Nc

N∗
c Rc

]
= W−∗

[
Md Nd

N∗
d Rd

]
W−1 (18)

with

X =

√
2

2

[
In In

−In In

]
. (19)

Note that (17) can be considered as an LU or LQ factorization of X
[

Ed

Ad

0
Bd

]
([10]). So W depends on (Ed, Ad, Bd), but it always exists and can be chosen
unitary. Note also that fW depends on W . But once W has been chosen, the
transformation fW is uniquely determined.

Similarly, given a tuple (Ec, Ac, Bc, Mc, Nc, Rc), for any nonsingular ma-
trix W̃ ∈ Cn+p,n+p satisfying

[
Ec + Ac −Bc

]
W̃ =

[
H̃ 0

]
with H̃ ∈

Cn,n, we can define

f̃W̃ : (Ec, Ac, Bc, Mc, Nc, Rc) 7→ (Ed, Ad, Bd, Md, Nd, Rd),

where Ed, Ad, Bd, Md, Nd, Rd satisfy[
Ed 0
Ad Bd

]
= X ∗

[
Ec 0
Ac Bc

]
W̃ =

√
2

2

[
Ec − Ac −Bc

Ec + Ac Bc

]
W̃ , (20)[

Md Nd

N∗
d Rd

]
= W̃ ∗

[
Mc Nc

N∗
c Rc

]
W̃ . (21)

For a specific pair of tuples satisfying (17) and (18) with a fixed W , we
have [

Ed 0
Ad Bd

]
= X ∗

[
Ec 0
Ac Bc

]
W =

√
2

2

[
Ec − Ac −Bc

Ec + Ac Bc

]
W,
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[
Md Nd

N∗
d Rd

]
= W ∗

[
Mc Nc

N∗
c Rc

]
W.

So (Ed, Ad, Bd, Md, Nd, Rd) can be recovered from (Ec, Ac, Bc, Mc, Nc, Rc) by
the transformation f̃W̃ with W̃ = W . In this case, f̃W behaves as an inverse
operation of fW . For this reason, from now on we will abuse the notations
by replacing W̃ with W in (20) and (21) and f̃W̃ with f−1

W , the ”inverse”
of fW . This should not cause any confusion, since in the following we will
consider either the transformations fW and f̃W̃ alone or a specific pair of tuples
(Ed, Ad, Bd, Md, Nd, Rd) and (Ec, Ac, Bc, Mc, Nc, Rc) related by (17) and (18)
with a fixed W .

From (18) and (21), it is easily seen that the Hermitian matrices
[

Md

N∗
d

Nd

Rd

]
and

[
Mc

N∗
c

Nc

Rc

]
have the same inertia indices under the transformation fW . The

matrix triplets (Ed, Ad, Bd) and (Ec, Ac, Bc) have the following relations.

Theorem 12 Suppose that the matrix triplets (Ed, Ad, Bd) and (Ec, Ac, Bc)
satisfy (17) or (20).

(a) (Ed, Ad, Bd) is controllable at λ ∈ C (λ 6= −1) if and only if (Ec, Ac, Bc)
is controllable at µ = c(λ) ∈ C (µ 6= 1).

(b) (Ed, Ad, Bd) is controllable at −1 if and only if det Ec 6= 0.

(c) det Ed 6= 0 if and only if (Ec, Ac, Bc) is controllable at 1.

(d) det Ed 6= 0 and (Ed, Ad, Bd) is D-stabilizable if and only if det Ec 6= 0
and (Ec, Ac, Bc) is C-stabilizable.

(e) det Ed 6= 0 and (Ed, Ad, Bd) is controllable if and only if det Ec 6= 0 and
(Ec, Ac, Bc) is controllable.

(f) (Ed, Ad, Bd) is regularizable if and only if (Ec, Ac, Bc) is regularizable.

Proof. Pre-multiplying [−λIn, In] to (20), simple calculations yield

[Ad − λEd, Bd] =

√
2

2
[(λ + 1)Ac − (λ− 1)Ec, (λ + 1)Bc]W. (22)

Similarly, pre-multiplying [−µIn, In] to (17) we have

[Ac − µEc, Bc] =

√
2

2
[(1− µ)Ad − (1 + µ)Ed, (1− µ)Bd]W

−1. (23)
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(a) For any λ ∈ C such that λ 6= −1, we have λ + 1 6= 0. Then (22) can
be written as

[Ad − λEd, Bd] =

√
2

2
(λ + 1)[Ac − µEc, Bc]W

where µ = c(λ) = (λ− 1)(λ + 1)−1. Clearly, µ 6= 1,∞ and

rank[Ad − λEd, Bd] = n ⇐⇒ rank[Ac − µEc, Bc] = n.

(b) When λ = −1, (22) becomes

[Ad + Ed, Bd] =
√

2[Ec, 0]W.

So
rank[Ad + Ed, Bd] = n ⇐⇒ rank Ec = n.

(c) It can be obtained by using (23).
(d) From (c), det Ed 6= 0 is equivalent to (Ec, Ac, Bc) being controllable at

1. From (b), (Ed, Ad, Bd) being controllable at −1 is equivalent to det Ec 6=
0. From (a) and the relation between λ and µ = c(λ) shown in Table 1,
(Ed, Ad, Bd) being controllable at any λ ∈ O0∪O+ with λ 6= −1 is equivalent
to (Ec, Ac, Bc) being controllable at µ = c(λ) ∈ C0 ∪ C+ with µ 6= 1. The
result follows from all these equivalences.

(e) analogous to (d).
(f) If (Ed, Ad, Bd) is regularizable, there exists λ ∈ C such that rank[Ad−

λEd, Bd] = n. If λ 6= −1, by (a), rank[Ac−c(λ)Ec, Bc] = n. So (Ec, Ac, Bc) is
regularizable. If λ = −1, by (b), det Ec 6= 0. Then rank[Ac−µEc, Bc] = n for
some µ 6∈ Λ(Ec, Ac). Again, (Ec, Ac, Bc) is regularizable. Similarly, one can
show that when (Ec, Ac, Bc) is regularizable, (Ed, Ad, Bd) is also regularizable.

Unfortunately, when (Ed, Ad, Bd) is controllable at infinity, the corre-
sponding triplet (Ec, Ac, Bc) is not necessarily controllable at 1 = c(∞).
From Theorem 12 (c), it is true only when det Ed 6= 0. Similarly, only when
det Ec 6= 0, (Ec, Ac, Bc) being controllable at infinity implies (Ed, Ad, Bc)
being controllable at −1 = c−1(∞).

Since the matrix pair (Ed,Ad) in (5) is uniquely determined by the ma-
trix tuple (Ed, Ad, Bd, Md, Nd, Rd) and (Ec,Ac) is uniquely determined by the
matrix tuple (Ec, Ac, Bc, Mc, Nc, Rc), the transformation fW and its inverse
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can be considered the transformations between the matrix pairs (Ed,Ad) and
(Ec,Ac):

(Ec,Ac) = fW (Ed,Ad), (Ed,Ad) = f−1
W (Ec,Ac),

with the blocks determined by the formulas (17) – (18) and (20) – (21),
respectively. Since Rd + B∗

dXBd in (1) and Rc in (2) are required to be
invertible, not every tuple (Ed, Ad, Bd, Md, Nd, Rd) corresponds to a DARE.
Similarly, not every (Ec, Ac, Bc, Mc, Nc, Rc) corresponds to a CARE. How-
ever, if we consider the inverses as formal symbols, we may also consider fW
and f−1

W as transformations defined on the ARE operators:

Rc(X) = fW (Rd(X)), Rd(X) = f−1
W (Rc(X)).

In [26], a transformation t was introduced between the matrix pairs of
the forms

(Fd,Gd) =

([
0 Fd

−G∗
d 0

]
,

[
0 Gd

−F ∗d Dd

])
,

(Fc,Gc) =

([
0 Fc

−F ∗c 0

]
,

[
0 Gc

G∗
c Dc

])
.

The transformation t is defined by

(Fc,Gc) = t(Fd,Gd), Fc = Gd + Fd, Gc = Gd − Fd, Dc = Dd,

and its inverse is

(Fd,Gd) = t−1(Fc,Gc), Fd =
1

2
(Fc−Gc), Gd =

1

2
(Fc +Gc), Dd = Dc.

The transformation t can be considered as an intermediate transformation
of fW . In fact, the pair (Ed,Ad) has the form of (Fd,Gd) with

Fd =
[

Ed 0
]
, Gd =

[
Ad Bd

]
, Dd =

[
Md Nd

N∗
d Rd

]
,

and the pair (Ec,Ac) has the form of (Fc,Gc) with

Fc =
[

Ec 0
]
, Gc =

[
Ac Bc

]
, Dc =

[
Mc Nc

N∗
c Rc

]
.

15



Applying t and t−1 to (Ed,Ad) and (Ec,Ac), respectively, we have

(Ẽc, Ãc) = t(Ed,Ad) =

 0 Ad + Ed Bd

−(Ad + Ed)
∗ 0 0

−B∗
d 0 0

 ,

 0 Ad − Ed Bd

(Ad − Ed)
∗ Md Nd

B∗
d N∗

d Rd

 , (24)

(Ẽd, Ãd) = t−1(EcAc) =

 0 1
2
(Ec − Ac) −1

2
Bc

−1
2
(Ec + Ac)

∗ 0 0
−1

2
B∗

c 0 0

 ,

 0 1
2
(Ec + Ac)

1
2
Bc

−1
2
(Ec − Ac)

∗ Mc Nc
1
2
B∗

c N∗
c Rc

 . (25)

Let W = diag(
√

2In, W ), where W satisfies (17). Then for (Ec,Ac) =
fW (Ed,Ad), we have

(Ec,Ac) = (W−∗ẼcW−1, W−∗ÃcW−1), (26)

i.e., (Ec,Ac) is equivalent to (Ẽc, Ãc). Similarly, for (Ed,Ad) = f−1
W (Ec,Ac),

we have
(Ed,Ad) = (W∗ẼdW , W∗ÃdW),

i.e., (Ed,Ad) is equivalent to (Ẽd, Ãd).
Below, we will also give relations between the ARE solutions and the

reducing subspaces of (Ẽd, Ãd) and (Ẽc, Ãc). Since t is simpler than fW ,
numerically, one may use the transformation t instead of fW .

In the following two sections we will study the relation between the AREs
under the transformation fW .

4 Transforming a DARE to a CARE

In this section we assume that the CARE (2) and (Ec,Ac) are transformed
from the DARE (1) and (Ed,Ad), respectively, by the transformation fW
defined by (17) and (18).

The following theorem gives the existence condition for the CARE and
the relation between the Hermitian solutions of both AREs.

16



Theorem 13 Consider the DARE (1) and the CARE (2), where Rc(X) =
fW (Rd(X)).

(a) If det Rc 6= 0, then every X ∈ Hn,n that solves the DARE (1) also solves
the CARE (2).

(b) If det Rc = 0, then Rc(X) is not defined.

Proof. For the matrix X defined in (19) we have[
−X 0
0 X

]
= X ∗

[
0 X
X 0

]
X .

Then

Dd(X) =

[
Md Nd

N∗
d Rd

]
+

[
Ed 0
Ad Bd

]∗ [ −X 0
0 X

] [
Ed 0
Ad Bd

]
=

[
Md Nd

N∗
d Rd

]
+

[
Ed 0
Ad Bd

]∗
X ∗
[

0 X
X 0

]
X
[

Ed 0
Ad Bd

]
= W ∗

([
Mc Nc

N∗
c Rc

]
+

[
Ec 0
Ac Bc

]∗ [
0 X
X 0

] [
Ec 0
Ac Bc

])
W

= W ∗Dc(X)W.

(a) Suppose X ∈ Hn,n solves the DARE (1). By Proposition 10 (iii),

rankDc(X) = rankDd(X) = p, (27)

and for

S = W

[
In

Kd

]
=:

[ n

n S1

p S2

]
, (28)

where Kd is of the form (10), we have

Dc(X)S = W−∗Dd(X)

[
In

Kd

]
= 0. (29)

If det S1 6= 0, then

Dc(X)

[
In

S2S
−1
1

]
= 0.
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Then by Proposition 11 (iii), X solves the CARE (2). Due to (27), (29), and
Lemma 9, det S1 6= 0 if and only if det Rc 6= 0.

(b) It is obvious.
When det Rc 6= 0, the relation between a DARE solution X and a reduc-

ing subspaces of (Ec,Ac) is described by the following theorem.

Theorem 14 Consider the DARE (1) and the CARE (2), where Rc(X) =
fW (Rd(X)). Let (Ec,Ac) be of the form (6). Suppose X ∈ Hn,n is a solution
of the DARE (1) and the corresponding Kd is of the form (10), and suppose
det Rc 6= 0. Then we have the following results.

(i) The matrices

Uc =

 XEc

In

Kc

 , Yc =

 In

−E∗
c X
0


satisfy

EcUc = YcEc, AcUc = Yc(Ac + BcKc),

as well as

U∗c Ec = −E∗
c Y

∗
c , U∗cAc = (Ac + BcKc)

∗Y ∗
c ,

where Kc is of the form (14).

(ii) The relations between Kd and Kc, (Ed, Ad +BdKd) and (Ec, Ac +BcKc)
are given, respectively, by[

In

Kc

]
= SS−1

1 = W

[
In

Kd

]
S−1

1 , (30)

and

(Ec, Ac + BcKc) = c

(√
2

2
EdS

−1
1 ,

√
2

2
(Ad + BdKd)S

−1
1

)
, (31)

where S, S1 are defined in (28), and c is the Cayley transformation
(16).

Moreover, if X is a stabilizing (resp. semi-stabilizing) solution of the DARE
(1), i.e., (Ed, Ad +BdKd) is D-stable (resp. D-semi-stable), then X is also a
stabilizing (resp. semi-stabilizing) solution of the CARE (2), i.e., (Ec, Ac +
BcKc) is C-stable (resp. C-semi-stable).
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Proof. Part (i) follows simply from Theorem 13 and Proposition 11 (v).
For part (ii), since det S1 6= 0, (30) follows from (29). By (17) and (28),[

Ec

Ac + BcKc

]
=

[
Ec 0
Ac Bc

] [
In

Kc

]
= X

[
Ed 0
Ad Bd

]
W−1W

[
In

Kd

]
S−1

1 =

√
2

2

[
Ad + Ed Bd

Ad − Ed Bd

] [
In

Kd

]
S−1

1

=

√
2

2

[
Ad + BdKd + Ed

Ad + BdKd − Ed

]
S−1

1 .

So we have (31).
The last statement follows from (31) and the property of the Cayley

transformation c.
The following example shows that det Rc = 0 may occur although the

DARE has Hermitian solutions.

Example 1 Consider the DARE

X − (−1)X(−1)− (X + a)(b + X)−1(X + a) = 0,

where a, b ∈ R and a 6= b. The coefficient matrices are Ad = Bd = 1,
Ed = −1, Md = 0, Nd = a, Rd = b. The DARE has a unique solution
X = −a. It is easily verified that any nonsingular matrix W satisfying[

Ec 0
Ac Bc

]
= X

[
Ed 0
Ad Bd

]
W−1 =

√
2

2

[
0 1
2 1

]
W−1

has the form W =
[

0
w21

w12

w22

]
, where w12w21 6= 0. By (18), it is easily verified

that Rc = 0 for all W of the above form.

In the following we give some sufficient conditions for det Rc 6= 0.

Theorem 15 Consider the DARE (1) and the CARE (2), where Rc(X) =
fW (Rd(X)). Suppose that the DARE has (at least) one Hermitian solution.
Let (Ed,Ad) be of the form (5).

(a) If det(Ed +Ad) 6= 0, then det Rc 6= 0 for any W satisfying (17).

(b) If det(Ed +Ad) = 0 and (Ed, Ad, Bd) is controllable at −1, then det Rc =
0 for all W satisfying (17).
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Proof. From the proof of Theorem 13, det Rc 6= 0 if and only if det S1 6= 0.
So we only need to consider det S1.

Partition

W =

[ n p

n W11 W12

p W21 W22

]
.

Let X ∈ Hn,n be a solution to the DARE and Kd be of the form (10). Then

S1 = W11 + W12Kd.

From (17),
Ad + Ed =

√
2EcW11, Bd =

√
2EcW12.

Hence
Ed + Ad + BdKd =

√
2Ec(W11 + W12Kd) =

√
2EcS1. (32)

(a) When det(Ed +Ad) 6= 0, i.e., −1 6∈ Λ(Ed,Ad), by (11), det(Ed + Ad +
BdKd) 6= 0. Then S1, as well as Ec, is nonsingular.

(b) Since (Ed, Ad, Bd) is controllable at −1, by Theorem 12 (b), det Ec 6=
0. On the other hand det(Ed + Ad) = 0 implies det(Ed + Ad + BdKd) = 0.
From (32), we have det S1 = 0.

The following theorem gives an equivalent condition for det(Ed +Ad) 6= 0.

Theorem 16 Consider the pair (Ed,Ad) of the form (5). Let Ld be a basis
matrix of null[Ad+Ed, Bd]. Then det(Ed+Ad) 6= 0 if and only if (Ed, Ad, Bd)

is controllable at −1 and L∗d

[
Md

N∗
d

Nd

Rd

]
Ld is nonsingular.

Proof. See [26].

Remark 1 The condition det(Ed +Ad) 6= 0 implies that (Ed,Ad) is regular
and −1 6∈ Λ(Ed,Ad). By (11) this also implies that (Ed, Ad+BdKd) is regular
and −1 6∈ Λ(Ed, Ad+BdKd) for any Hermitian solution X. Also, Theorem 16
shows that det(Ed +Ad) 6= 0 implies (Ed, Ad, Bd) is controllable at −1.

The condition det(Ed +Ad) = 0 implies −1 ∈ Λ(Ed,Ad) and/or (Ed,Ad)

is singular. Theorem 16 shows that this happens if L∗d

[
Md

N∗
d

Nd

Rd

]
Ld is singular

and/or (Ed, Ad, Bd) is not controllable at −1.
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The situation is complicated when det(Ed +Ad) = 0 and (Ed, Ad, Bd) is not
controllable at −1. In this case we turn to consider a DARE that is reduced
from (1) with the decomposition (4). When (Ed, Ad, Bd) is not controllable
at −1, by Proposition 8 (ii) (with Ω = {−1}), there are unitary matrices
Pd, Qd such that

Ed = Pd

[
E11 E12

0 E22

]
Qd, Ad = Pd

[
A11 A12

0 A22

]
Qd, Bd = Pd

[
B1

0

]
(33)

with (E11, A11, B1) controllable at −1 and Λ(E22, A22) ⊆ {−1}.
Partition

QdMdQ
∗
d =

[
M11 M12

M∗
12 M22

]
, QdNd =

[
N1

N2

]
,

P ∗d XPd =

[
X11 X12

X∗
12 X22

]
, KdQ

∗
d = [K1, K2] (34)

conformably, where X ∈ Hn,n and Kd is of the form (10). It is easily verified
that if X solves the DARE (1), then X11 solves the reduced DARE associated
with the coefficient matrices (E11, A11, B1, M11, N1, Rd), and K1 defined in
(34) has the form

K1 = −(Rd + B∗
1X11B1)

−1(B∗
1X11A11 + N∗

1 ).

The reduced DARE has the associated matrix pair

(Êd, Âd) =

 0 E11 0
−A∗11 0 0
−B∗

1 0 0

 ,

 0 A11 B1

−E∗
11 M11 N1

0 N∗
1 Rd

 .

Let T = [Tij]2×2 be nonsingular and satisfy

√
2

2

[
A11 + E11 B1

A11 − E11 B1

]
T−1 =

[
Ê11 0

Â11 B̂1

]
. (35)

Define

Wd =

 T11 0 T12

0 I 0
T21 0 T22

[ Qd 0
0 Ip

]
=:

[
W11 W12

W21 W22

]
. (36)

Then Wd is nonsingular and satisfies (17). So Wd defines a transformation
fWd

.
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Theorem 17 Consider the DARE (1). Suppose that (Ad, Bd, Ed) is not con-
trollable at −1 and has the condensed form (33), and the DARE has an
Hermitian solution. Consider the CARE

Rc(X) = fWd
(Rd(X)) = 0,

where Wd is defined in (36). If det(Êd + Âd) 6= 0, then the matrix Rc defined
in (18) with W = Wd is nonsingular.

Proof. Once again we only need to prove det S1 6= 0, where S1 is the top
block of S defined in (28) with W = Wd.

By using the block forms of Wd and Kd, we have

S1 = W11 + W12Kd =

[
T11 + T12K1 T12K2

0 I

]
Qd.

So det S1 6= 0 when det(T11 + T12K1) 6= 0. The latter can be obtained by
applying Theorem 15 (a) to the reduced DARE with the transformation fT ,
where T is defined in (35).

In Theorem 17, the non-singularity of Rc depends on the choice of W .
When (Ed, Ad, Bd) is not controllable at −1 and det(Êd + Âd) = 0, Rc

may or may not be nonsingular.

Example 2 Consider the DARE with coefficient matrices

Ad = I2, Ed = −I2, Bd =

[
1
0

]
, Md =

[
0 0
0 c

]
, Nd =

[
a
e

]
, Rd = b,

where a, b, c, e ∈ R and a 6= b, c(b − a) ≥ 0. The general form of Hermitian
solutions to the DARE is

X =

[
−a eiα

√
c(b− a)− e

e−iα
√

c(b− a)− e x22

]
,

where α, x22 ∈ R.
The matrix triplet (Ed, Ad, Bd) is not controllable at −1 and it is already

in the condensed form (33) with A11 = −E11 = B1 = 1, and M11 = 0,
N1 = a, Rc = b. It is easily verified det(Êd + Âd) = 0. On the other hand,
any matrix W−1 satisfying (17) has the form

W−1 =

 w11 w12 w13

w21 w22 w23

w31 w32 0

 .
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So we have

Rc =

 w13

w23

0

∗  0 0 a
0 c e
a e b

 w13

w23

0

 = c|w23|2.

When c 6= 0, for those W−1 with w23 6= 0 (which clearly exist), we have
Rc 6= 0. When c = 0, for all W−1 we have Rc = 0.

Although fW may fail to transform a DARE to a CARE, the Hermitian
solutions of a DARE can always be related to a reducing subspace of the
matrix pair (Ẽc, Ãc) = t(Ed,Ad) defined in (24).

Theorem 18 Consider the DARE (1). Let (Ẽc, Ãc) = t(Ed,Ad), which is
defined in (24). Then X ∈ Hn,n solves the DARE if and only if det(Rd +
B∗

dXBd) 6= 0 and the matrices

Ũc =

 X(Ed + Ad + BdKd)
2In

2Kd

 , Ỹc =

 2In

−(Ad + Ed)
∗X

−B∗
dX


satisfy

ẼcŨc = Ỹc(Ad + BdKd + Ed), ÃcŨc = Ỹc(Ad + BdKd − Ed), (37)

as well as

Ũ∗c Ẽc = −(Ad + BdKd + Ed)
∗Ỹ ∗

c , Ũ∗c Ãc = (Ad + BdKd − Ed)
∗Ỹ ∗

c ,

where Kd is of the form (10).

Proof. The relations in (37) can be verified directly. The last two relations
follow from the first two by taking conjugate transpose.

This result may be useful for numerically solving the DARE.
The result also has some interesting properties. The first property is that

for Ud, Vd in (8) and Yd, Zd in (9), we have

Ũc = Ud + Vd, Ỹc = Yd + Zd.

The second property is that the sub-pairs associated with Ũc and Ud are
related by the Cayley transformation

(Ad + BdKd + Ed, Ad + BdKd − Ed) = c(Ed, Ad + BdKd).
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The third property is that Theorem 18 actually is a generalization of Theo-
rem 14. In fact, by (26) and (37) we have

Ec(WŨc) = (W−∗Ỹc)(Ad+BdKd+Ed), Ac(WŨc) = (W−∗Ỹc)(Ad+BdKd−Ed),

where W = diag(
√

2I, W ). By (28) and (17),

WŨc =


√

2
2

X(Ed + Ad + BdKd)
S1

S2

 , W−∗Ỹc =

√
2

2

 In

−EcX
0

 .

When det S1 6= 0, we have Theorem 14 again.
Finally, when (Ed,Ad) is a real pair, if the matrix W is chosen to be real,

the pair (Ec,Ac) = fW (Ed,Ad) is also real. Obviously, (Ẽc, Ãc) = t(Ed,Ad)
is real too. If only real symmetric ARE solutions are considered, the real
version of all the results in this section can be derived in a similar way.

5 Transforming a CARE to a DARE

In this section we consider the relation between the CARE (2) and the DARE
(1) under the transformation f−1

W . All results giving in this section are parallel
to those in the last section. We will skip the proofs, since they are also similar
to those in the last section.

Theorem 19 Consider the CARE (2) and the DARE (1), where Rd(X) =
f−1
W (Rc(X)) and the coefficient matrices of Rd(X) are obtained from (20)
and (21). Suppose X ∈ Hn,n solves the CARE (2).

(a) If det(Rd + B∗
dXBd) 6= 0, then X also solves the DARE (1).

(b) If det(Rd + B∗
dXBd) = 0, then X cannot be a solution of the DARE.

Theorem 20 Consider the CARE (2) and the DARE (1), where Rd(X) =
f−1
W (Rc(X)). Let (Ed,Ad) be of the form (5). Suppose X ∈ Hn,n is a solution
of the CARE (2) and Kc is of the form (14). If det(Rd + B∗

dXBd) 6= 0, then
the matrices

Ud =

 XEd

In

Kd

 , Yd =

 In

−A∗dX
−B∗

dX
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satisfy
EdUd = YdEd, AdUd = Yd(Ad + BdKd),

and the matrices

Vd =

 X(Ad + BdKd)
In

Kd

 , Zd =

 In

−E∗
dX
0


satisfy

V ∗
d Ed = −(Ad + BdKd)

∗Z∗d , V ∗
d Ad = −E∗

dZ
∗
d ,

where Kd is of the form (10).
Let

Ŝ = W−1

[
In

Kc

]
=:

[
Ŝ1

Ŝ2

]
.

The relations between Kc and Kd, (Ec, Ac + BcKc) and (Ed, Ad + BdKd) are
given, respectively, by [

In

Kd

]
= W−1

[
In

Kc

]
Ŝ−1

1 ,

and
(Ed, Ad + BdKd) = c−1

(√
2EcŜ

−1
1 ,

√
2(Ac + BcKc)Ŝ

−1
1

)
.

Moreover, if X is a stabilizing (resp. semi-stabilizing) solution of the CARE
(2), then X is also a stabilizing (resp. semi-stabilizing) solution of the DARE
(1).

Although Theorem 19 and Theorem 13, Theorem 20 and Theorem 14 are
similar, there is also a big difference: in Theorem 13, 14, the existence of
a CARE is independent of the DARE solutions, but in Theorem 19, 20 the
existence of a DARE does depend on the CARE solutions (more specifically,
det(Rd+B∗

dXBd)). More details about the difference will be discussed below.

Theorem 21 Consider the CARE (2) and the DARE (1), where Rd(X) =
f−1
W (Rc(X)). Suppose that X ∈ Hn,n solves the CARE (2) and Kc is of the
form (14).

(a) If det(Ac + BcKc − Ec) 6= 0, then det(Rd + B∗
dXBd) 6= 0 for any W

satisfying (20).
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(b) If det(Ac + BcKc − Ec) = 0 and (Ec, Ac, Bc) is controllable at 1, then
det(Rd + B∗

dXBd) = 0 for all W satisfying (20).

Theorem 22 Consider the matrix pair (Ec,Ac) of the form (6). Let Lc and
Tc be basis matrices of null[Ac − Ec, Bc] and null[Ac + Ec, Bc], respectively.
Then det(Ac − Ec) 6= 0 if and only if (Ec, Ac, Bc) is controllable at both −1

and 1 and T ∗c

[
Mc

N∗
c

Nc

Rc

]
Lc is nonsingular.

Remark 2 When det(Ac + BcKc − Ec) 6= 0, we have 1 6∈ Λ(Ec, Ac + BcKc)
and (Ec, Ac + BcKc) is regular. By (15), the pair (Ec,Ac) is also regular.
However, it does not mean that det(Ac−Ec) 6= 0, since 1 ∈ Λ(−E∗

c , Ac+BcKc)
is still possible. Certainly, when det(Ac−Ec) 6= 0, then det(Ac+BcKc−Ec) 6=
0 for any Hermitian solution X to the CARE (2).

When det(Ac + BcKc − Ec) = 0, we have 1 ∈ Λ(Ec, Ac + BcKc) and/or
(Ec, Ac + BcKc) is singular. This also implies that 1 ∈ Λ(Ec,Ac) and/or
(Ec,Ac) is singular. Theorem 22 shows that this happens when at least one
of the following holds, (a) (Ec, Ac, Bc) is not controllable at 1, (b) (Ec, Ac, Bc)

is not controllable at −1, (c) T ∗c

[
Mc

N∗
c

Nc

Rc

]
Lc is singular.

When (Ec, Ac, Bc) is not controllable at 1, by Proposition 8 (ii), there are
unitary matrices Pc, Qc such that

Ec = Pc

[
Ê11 Ê12

0 Ê22

]
Qc, Ac = Pc

[
Â11 Â12

0 Â22

]
Qc, Bc = Pc

[
B̂1

0

]
, (38)

where (Ê11, Â11, B̂1) is controllable at 1 and Λ(Ê22, Â22) ⊆ {1}. Partition

QcMcQ
∗
c =

[
M̂11 M̂12

M̂∗
12 M̂22

]
, QcNc =

[
N̂1

N̂2

]
,

P ∗c XPc =

[
X̂11 X̂12

X̂∗
12 X̂22

]
, KcQ

∗
c = [K̂1, K̂2] (39)

conformably, where X ∈ Hn,n and Kc is defined in (14). If X solves the
CARE (2), then X̂11 solves the reduced CARE associated with the coefficient
matrices (Ê11, Â11, B̂1, M̂11, N̂1, Rc), and K̂1 defined in (39) has the expression
K̂1 = −R−1

c (B̂∗
1X̂11Ê11 + N̂∗

1 ). Let T̂ = [T̂ij] be nonsingular and satisfy
√

2

2

[
Ê11 − Â11 −B̂1

Ê11 + Â11 B̂1

]
T̂ =

[
E11 0
A11 B1

]
,
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and define

Wc =

[
Q∗

c 0
0 Ip

] T̂11 0 T̂12

0 I 0

T̂21 0 T̂22

 . (40)

Then Wc is nonsingular and satisfies (20).

Theorem 23 Consider the CARE (2). Suppose that (Ac, Bc, Ec) is not con-
trollable at 1 and it has the condensed form (38). Consider the DARE

Rd(X) = f−1
Wc

(Rc(X)) = 0,

where Wc is defined in (40). Suppose that X ∈ Hn,n is a solution of the CARE
and X̂11, K̂1 are given in (39). If det(Â11 + B̂1K̂1− Ê11) 6= 0, then det(Rd +
B∗

dXBd) 6= 0, where Rd, Bd are determined by (21) and (20), respectively,
with W = Wc.

Proof. The proof is analogous to that of Theorem 17.

Theorem 24 Consider the CARE (2). Let (Ec,Ac) be of the form (6) and
(Ẽd, Ãd) = t−1(Ec,Ac), which is defined in (24). Suppose that X ∈ Hn,n and
Kc is of the form (14). Then the following statements are equivalent.

(i) X solves the CARE.

(ii) det Rc 6= 0 and the matrices

Ũd =

 X(Ec − Ac −BcKc)
In

Kc

 , Ỹd =

 In

−(Ec + Ac)
∗X

−B∗
c X


satisfy

ẼdŨd =
1

2
Ỹd(Ec − Ac −BcKc), ÃdŨd =

1

2
Ỹd(Ec + Ac + BcKc).

(iii) det Rc 6= 0 and the matrices

Ṽd =

 X(Ec + Ac + BcKc)
In

Kc

 , Z̃d =

 In

(Ac − Ec)
∗X

B∗
c X


satisfy

Ṽ ∗
d Ẽd = −1

2
(Ec + Ac + BcKc)

∗Z̃∗d , Ṽ ∗
d Ãd = −1

2
(Ec −Ac −BcKc)

∗Z̃∗d .
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We also have the following properties. Let Uc and Yc be defined in (13).
Then

Ũd + Ṽd = 2Uc, Ỹd + Z̃d = 2Yc.

The matrix pairs associated with Ũd and Uc satisfy(
1

2
(Ec − Ac −BcKc),

1

2
(Ec + Ac + BcKc)

)
= c−1(Ec, Ac + BcKc).

Theorem 24 may also be considered as a generalization of Theorem 20.
Finally, when (Ec,Ac) is a real pair, if the matrix W is chosen to be real,

the pair (Ed,Ad) = f−1
W (Ec,Ac) is also real. Obviously, (Ẽd, Ãd) = t−1(Ec,Ac)

is real too. If only real symmetric ARE solutions are considered, the real
version of all the results in this section can be derived in a similar way.

6 Generalized transformations

Define the nonsingular matrix

Xα,h =
1√
2h

[
αIn In

−αhIn hIn

]
,

where α ∈ O0 and h > 0. Given (Ed, Ad, Bd, Md, Nd, Rd), let W be nonsin-
gular such that

[
Ad + αEd Bd

]
W−1 =

[
H 0

]
, where H ∈ Cn,n. Then

we define the parameterized transformation

fα,h,W : (Ed, Ad, Bd, Md, Nd, Rd) 7→ (Ec, Ac, Bc, Mc, Nc, Rc),

where Ec, Ac, Bc, Mc, Nc, Rc satisfy[
Ec 0
Ac Bc

]
= Xα,h

[
Ed 0
Ad Bd

]
W−1, (41)[

Mc Nc

N∗
c Rc

]
= W−∗

[
Md Nd

N∗
d Rd

]
W−1. (42)

Similarly, we define the corresponding transformation from (Ec, Ac, Bc, Mc, Nc, Rc)
to (Ed, Ad, Bd, Md, Nd, Rd), denoted by f−1

α,h,W (just as f−1
W for f̃W̃ in Section 3),

by [
Ed 0
Ad Bd

]
= X−1

α,h

[
Ec 0
Ac Bc

]
W, (43)[

Md Nd

N∗
d Rd

]
= W ∗

[
Mc Nc

N∗
c Rc

]
W. (44)
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Note that X1,1 = X and f1,1,W = fW . So the transformation fα,h,W is a gen-
eralization of fW . Clearly, the transformation fα,h,W also relates the DARE
(1) and CARE (2), and their associated matrix pairs (Ed,Ad) and (Ec,Ac).

Just as fW has the relation with c, the transformation fα,h,W has the
relation with the generalized Cayley transformation cα,h defined by

µ = cα,h(λ) = h(λ− α)(λ + α)−1 = h(ᾱλ− 1)(ᾱλ + 1)−1 = hc(ᾱλ).

(Note c = c1,1.) The relation between λ and µ is summarized in Table 2.

λ |λ| < 1 |λ| = 1 |λ| > 1 α 0 −α ∞
µ Re µ < 0 Re µ = 0 Re µ > 0 0 −h ∞ h

Table 2: Correspondence between λ and µ = cα,h(λ)

The transformation cα,h can also be applied to matrix pairs:

cα,h(E ,A) = (A+ αE , h(A− αE)) .

For fixed α and h, the transformation fα,h,W behaves completely the same
as fW . In the previous three sections we have seen that −1 and 1, the poles
of c and c−1, respectively, are responsible for the possible failure of fW and
f−1
W . Similarly, the poles of cα,h and c−1

α,h, which are −α and h, respectively,

may cause the same problems to fα,h,W and f−1
α,h,W . The same results as in

Sections 3 – 5 can be derived for fα,h,W and f−1
α,h,W . The only change is that

the poles −1 and 1 are replaced by −α and h, respectively, wherever they
appear.

However, the parameters in fα,h,W give it some advantages. For a given
ARE, we now are able to select α and h so that the problems happened to
fW may possibly be avoided.

Theorem 25 Consider the DARE (1). Let (Ed,Ad) be the associated matrix
pair of the form (5).

(a) If (Ed,Ad) is regular, then one can always select an α0 ∈ O0 such that
det(Ad + α0Ed) 6= 0. Let fα0,h,W be a transformation with arbitrary
h > 0 and W satisfying (41). Then any solution X ∈ Hn,n of the
DARE (1) also solves the CARE

Rc(X) = fα0,h,W (Rd(X)) = 0.
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(b) If (Ed,Ad) is singular and (Ed, Ad, Bd) is controllable in O0, then for
any fα,h,W with α ∈ O0 and h > 0, Rc defined in (42) is singular and
there is no corresponding CARE.

Proof. In part (a) the existence of α0 is based on the regularity of (Ed,Ad).
The rest of the proof is the same as that of Theorem 13.

When (Ed,Ad) is singular and (Ed, Ad, Bd) is not controllable at some
numbers in O0, one may consider the reduced DARE by using the decompo-
sition (4), as did in Theorem 17.

Theorem 26 Consider the CARE (2). Let (Ec,Ac) be the associated matrix
pair of the form (6).

(a) If (Ec,Ac) is regular, then one can always select an h0 > 0 such that
det(Ac − h0Ec) 6= 0. Let fα,h0,W be a transformation with arbitrary
α ∈ O0 and W satisfying (43). Then any solution X ∈ Hn,n of the
CARE (2) also solves the DARE

Rd(X) = f−1
α,h0,W (Rc(X)) = 0. (45)

(b) If (Ec,Ac) is singular and (Ec, Ac, Bc) is controllable in {h|h > 0}, then
for any f−1

α,h,W with α ∈ O0 and h > 0, the matrix Rd + B∗
dXBd with

Rd, Bd defined by (44) and (43) is singular for any solution X ∈ Hn,n of
the CARE, and no Hermitian solution of the CARE solves the DARE
(45).

Proof. In part (a) the existence of h0 is based on the regularity of (Ec,Ac).
The rest of the proof is the similar to that of Theorem 13.

Similarly, when (Ec,Ac) is singular and (Ec, Ac, Bc) is not controllable at
some h > 0, one may consider the reduced CARE by using the decomposition
(4), as did in Theorem 23.

There is also an intermediate transformation tα,h of fα,h,W , which is a
generalization of t. We may apply tα,h and t−1

α,h, respectively, to (Ed,Ad) and
(Ec,Ac) to obtain

(
Êc, Âc

)
= tα,h(Ed,Ad) =

 0 Ad + αEd Bd

−(Ad + αEd)
∗ 0 0

−B∗
d 0 0

 ,

 0 h(Ad − αEd) hBd

h(Ad − αEd)
∗ Md Nd

hB∗
d N∗

d Rd

 ,

30



(
Êd, Âd

)
= t−1

α,h(EcAc) =

 0 ᾱ
2h

(hEc − Ac) − ᾱ
2h

Bc

− 1
2h

(hEc + Ac)
∗ 0 0

− 1
2h

B∗
c 0 0

 ,

 0 1
2h

(hEc + Ac)
1
2h

Bc

− α
2h

(hEc − Ac)
∗ Mc Nc

α
2h

B∗
c N∗

c Rc

 .

The following theorems are parallel to Theorem 18 and Theorem 24, respec-
tively.

Theorem 27 Consider the DARE (1) and the associated pair (Ed,Ad). Let
(Êc, Âc) = tα,h(Ed,Ad). Then X ∈ Hn,n solves the DARE (1) if and only if
det(Rd + B∗

dXBd) 6= 0 and the matrices

Ûc =

 X(Ad + BdKd + αEd)
2hIn

2hKd

 , Ŷc =

 2hIn

−(Ad + αEd)
∗X

−B∗
dX


satisfy

ÊcÛc = Ŷc(Ad + BdKd + αEd), ÂcÛc = Ŷc(Ad + BdKd − αEd)

as well as

Û∗c Êc = −(Ad + BdKd + αEd)
∗Ŷ ∗

c , Û∗c Âc = (Ad + BdKd − αEd)
∗Ŷ ∗

c ,

where Kd is defined in (10).

Proof. The proof is analogous to that of Theorem 18.

Theorem 28 Consider the CARE (2) and the associated pair (Ec,Ac). Let
(Êd, Âd) = t−1

α,h(Ec,Ac). Suppose that X ∈ Hn,n and Kc is of the form (14).
Then the following statements are equivalent.

(i) X solves the CARE (2).

(ii) det Rc 6= 0 and the matrices

Ûd =

 ᾱX(hEc − (Ac + BcKc))
In

Kc

 , Ŷd =

 In

−(hEc + Ac)
∗X

−B∗
c X
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satisfy

ÊdÛd = Ŷd

( ᾱ

2h
(hEc − (Ac + BcKc))

)
,

ÂdÛd = Ŷd

(
1

2h
(hEc + (Ac + BcKc))

)
.

(iii) det Rc 6= 0 and the matrices

V̂d =

 X(hEc + (Ac + BcKc))
In

Kc

 , Ẑd =

 In

α(Ac − hEc)
∗X

αB∗
c X


satisfy

V̂ ∗
d Êd =

(
− 1

2h
(hEc + (Ac + BcKc))

∗
)

Ẑ∗d ,

V̂ ∗
d Âd =

(
− α

2h
(hEc − (Ac + BcKc))

∗
)

Ẑ∗d .

Proof. The proof is analogous to that of Theorem 18.

Remark 3 The transformation given in [11] is a special case of fα,h,W with
h = 1 and

W =

[ √
2(A + αE)−1 −(A + αE)−1B

0 I

]
.

(In [11], E = I.) For this transformation, α needs to be selected such that
A + αE is invertible, and the inverse (A + αE)−1 presents explicitly in W .

We finally mention that fα,h,W also has some limitations. When the DARE
(resp. CARE) is real, i.e., all its coefficient matrices are real, it is natural to
require the corresponding CARE (resp. DARE) to be real. Then among all
the transformations fα,h,W , one can only use either f1,1,W = fW or f−1,1,W .

7 Conclusion

We have introduced the transformations fW and fα,h,W that simply relate the
discrete-time and continuous-time algebraic Riccati equations. The trans-
formations make it possible to study and solve the two types of AREs and
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their associated control problems in a unified way. For the discrete-time and
continuous-times linear quadratic optimal control problems, the transforma-
tions connect not only the associated AREs but also the control problems
themselves. The AREs from robust control are usually more complicated. In
order to use the transformations to connect the discrete-time and continuous-
time robust control problems, further work needs to done. Both transforma-
tions may fail for some AREs. Further study is also needed to deal with this
problem.

Acknowledgments. The author thanks the anonymous referees for their
suggestions and comments.
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