
A Backward Stable Hyperbolic QR Factorization Method for

Solving Indefinite Least Squares Problem

Hongguo Xu∗

Dedicated to Professor Erxiong Jiang on the occasion of his 70th birthday.

Abstract

We present a numerical method for solving the indefinite least squares problem. We
first normalize the coefficient matrix. Then we compute the hyperbolic QR factorization
of the normalized matrix. Finally we compute the solution by solving several triangular
systems. We give the first order error analysis to show that the method is backward
stable. The method is more efficient than the backward stable method proposed by
Chandrasekaran, Gu and Sayed.

Keywords. Indefinite least squares, hyperbolic rotation, Σp,q-orthogonal matrix, hyperbolic
QR factorization, bidiagonal factorization, backward stability
AMS subject classification. 65F05, 65F20, 65G50

1 Introduction

We consider the indefinite least squares (ILS) problem

min
x

(Ax− b)TΣp,q(Ax− b), (1)

where A ∈ R(p+q)×n, b ∈ Rp+q, and Σp,q =
[
Ip
0

0
−Iq

]
is a signature matrix. This problem

has several applications. Examples include the total least squares problems ([5]) and the H∞

smoothing problems ([7, 10]). It is known that the ILS problem has a unique solution if and
only if

ATΣp,qA > 0, (2)

e.g., [7, 5, 2]. In this note we assume that the condition (2) always holds. Note under this
condition we have p ≥ n.

The ILS problem is equivalent to its normal equation

ATΣp,qAx = ATΣp,qb. (3)

Since the normal equation is usually more ill-conditioned than the ILS problem, numerically
one prefers to solve the problem by directly working on the original matrix A and the vector
∗Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA. xu@math.ukans.edu. The

author was partially supported by National Science Foundation grant 0314427, and the University of Kansas
General Research Fund allocation # 2301717.

1

b. A typical example is the method that uses the QR factorization to solve the standard least
squares problem (which is the special case of the ILS with q = 0), see, e.g., [1, 9], and [6, Sec.
5.3]. Following the idea of the QR factorization method, recently two methods were developed
to solve the general ILS problem. The method proposed in [5] uses the QR factorization of A
to solve the ILS problem. The precise procedure is as follows. First compute the compacted
QR factorization

A = QR,

where Q is orthonormal and R is square upper-triangular. Then compute the Cholesky
factorization

LLT = QTΣp,qQ.

Finally compute the solution x by solving three triangular systems successively,

Lz = QTΣp,qb, LT y = z, Rx = y.

It is easily verified that the solution x satisfies QTΣp,qQRx = QTΣp,qb. By pre-multiplying
RT , it is just the normal equation (3). In [5] it is shown that this method is numerically
backward stable.

The method proposed in [2] uses the hyperbolic QR factorization, an analog of the QR
factorization, to solve the ILS problem.

Definition 1 Let Σp,q =
[
Ip
0

0
−Iq

]
a) The matrix H ∈ R(p+q)×(p+q) is Σp,q-orthogonal or hyperbolic if HTΣp,qH = Σp,q.

b) Let A ∈ R(p+q)×n. The factorization

A = H

[
R
0

]
,

is called the hyperbolic QR factorization of A if H is Σp,q-orthogonal and R is upper-
triangular.

The method given in [2] consists of the following steps. First compute the hyperbolic factor-
ization

A = H

[
R
0

]
and simultaneously update the vector

g =
[
In 0

]
HTΣp,qb.

Then compute x by solving the triangular system

Rx = g.

This method is very similar to the QR factorization method for the standard least squares
problem. Unlike the first method, which still needs to work on the product QTΣp,qQ, this
method directly work on A and b. Therefore it is less expensive (e.g., [2]). In [2] it is also
proved that under some mild assumptions the hyperbolic QR factorization method is forward
stable. However, it is not clear whether the method is also backward stable. The main

2

problem is that one can only show that the computed hyperbolic QR factorization and vector
g satisfy a mixed backward-forward stable error model ([2]).

In this note we combine the ideas that were used for the previous two methods to develop
the third method. We will also use the hyperbolic QR factorization. But for numerical
stability we will compute the hyperbolic QR factorization of a normalized matrix. The general
procedure of the method is given in the following algorithm.

Algorithm 1. Given A =
[
A1

A2

]
∈ R(p+q)×n and b =

[
b1
b2

]
∈ Rp+q, where A1 ∈ Rp×n,

A2 ∈ Rq×n, b1 ∈ Rp, b2 ∈ Rq, and ATΣp,qA > 0, the algorithm computes the solution of the
indefinite least squares problem (1).

Step 1. Compute the permuted bidiagonal factorization

A1 = U

[
0
D

]
V T ,

where U, V are orthogonal and D is upper-bidiagonal.

Compute d1 = UT b1.

Step 2. Solve the matrix equation
SD = A2V

for S.

Step 3. Compute

f =
[

0 In −ST
] [d1

b2

]
.

Compute the hyperbolic QR factorization[
In
S

]
= H

[
R
0

]
, (4)

where H is Σn,q-orthogonal and R is upper triangular.

Step 4. Compute y by solving the triangular systems successively,

RTw = f, Rz = w, Dy = z.

Compute x = V y.

We will discuss the detailed computation process in the next section. In section 3 we will
give the first order error analysis and show that the algorithm is numerically backward stable.

For error analysis we will use the standard model of floating point arithmetic ([8, pp. 44]):

fl(a ◦ b) = (a+ b)(1 + δ), f l(
√
a) =

√
a(1 + δ), |δ| ≤ u,

where u is the machine precision and ◦ = +,−,×, /. The spectral norm for matrices and the
2-norm for vectors are denoted by || · ||. The ith column of the identity matrix I is denoted
by ei.

3

2 Implementation details

In the algorithm Step 1 and 2 actually compute the factorization

A =
[
U 0
0 Iq

] 0
In
S

DV T .

Step 3 is equivalent to compute the hyperbolic QR factorization of the normalized matrix 0
In
S

 =
[
Ip−n 0

0 H

] 0
R
0

 .
By using these two forms the normal equation (3) becomes

V DTRTRDV Tx = V DT
[

0 In ST
] [U 0

0 Iq

]T
Σp,qb,

which is equivalent to

RTRDV Tx =
[

0 In −ST
] [U 0

0 Iq

]T
b = f.

The solution x is then obtained from Step 4.
Note

ATΣp,qA > 0 =⇒ AT1 A1 −AT2 A2 > 0 =⇒ DTD − V TAT2 A2V > 0.

So D is nonsingular, and from the last inequality we have I − STS > 0. This implies that
||S|| < 1.

We will discuss Step 1 and Step 3 in details. Other steps are trivial.
In Step 1 the factorization can be obtained by applying the bidiagonal factorization meth-

ods followed by a block row permutation. The Householder transformation method for com-
puting the bidiagonal factorization can be found in [6, pp. 252]. Since U is only used for
computing d1, we only need to apply the Householder transformations to b1 directly during
the factorization process without storing U . The matrix V can be stored in the factored form,
i.e., only the vectors for the Householder transformations. When p >> n a faster method
was proposed in [4]. It consists of two steps. First compute the QR factorization of A1. Then
compute the bidiagonal factorization of the upper-triangular factor.

In Step 3 the hyperbolic QR factorization can be computed by the method as in [2]. But
here the top block of the normalized matrix is In. So we can use the following simple version.
We first introduce the hyperbolic rotation matrices

Gij(α, β) = In+q + (α− 1)(eieTi + eje
T
j)− β(eieTj + eje

T
i),

where 1 ≤ i ≤ n, n + 1 ≤ j ≤ n + q and α, β satisfy α2 − β2 = 1. Clearly Gij(α, β) is
Σn,q-orthogonal. Given a vector x ∈ Rn+q with |xi| > |xj |, where the integers i, j satisfy
1 ≤ i ≤ n and n+ 1 ≤ j ≤ n+ q, a hyperbolic rotation Gij(α, β) can be constructed to zero

xj . The parameters α, β may be chosen as α = xi/
√
x2
i − x2

j , β = xj/
√
x2
i − x2

j .

4

We compute the hyperbolic QR factorization (4) by applying the Householder transfor-
mations and the hyperbolic rotations to eliminate the entries of

[
In
S

]
column by column. The

algorithm is given below. In the algorithm we will use the Matlab forms to denote the entries,
rows and columns of matrices.

Algorithm for computing the hyperbolic QR factorization of
[
In
S

]
Step 0. Set R = In.

Step 1. For k = 1 : n

a) Construct the Householder matrix Qk such that QkS(:, k) = xke1,

Compute S(:, k : n) := QkS(:, k : n)

b) % Construct the hyperbolic rotation Gk,n+1(αk, βk) to eliminate S(1, k) (= xk).

% The parameter βk(= xkαk) is not needed.

Compute R(k, k) =
√

1− x2
k, αk = 1/R(k, k)

c) % Compute
[
R
S

]
:= Gk,n+1(αk, βk)

[
R
S

]
.

S(1, k + 1 : n) = αkS(1, k + 1 : n)

R(k, k + 1 : n) = −xkS(1, k + 1 : n)

End For

Under the condition (2), initially we have I −STS > 0. Obviously the positive definiteness
of RTR − STS is preserved during the reduction process. From this one can verify that
|xk| < 1 for all 1 ≤ k ≤ n. So the algorithm will not break down.

We discuss the cost of Algorithm 1.

Step 1. It needs about 4pn2 − 4n3/3 flops for the bidiagonal factorization. If the method in [4]
is employed, it needs about 2pn3 + 2n3 flops. Computing d1 needs about 4pn flops.

Step 2. It needs about 2qn2 flops for computing A2V , and about 3qn flops for solving the
bidiagonal system for S.

Step 3 It needs about 2qn flops for computing the vector f . It needs about 2qn2 flops for
computing R. The hyperbolic matrix H doesn’t need to be updated.

Step 4. It needs about 2n2 flops for solving three systems of equations to get y. Finally com-
puting x needs about 2n2 flops.

Table 1 compares the cost of Algorithm 1 with the costs of the methods proposed in [5] and
[2]. So about the cost Algorithm 1 is between other two methods.

5

Algorithm 1 Algorithm in [5] Algorithm in [2]
(4p+ 4q − 4n/3)n2

or (2p+ 4q + 2n)n2 (5p+ 5q − n)n2 (2p+ 2q − 2n/3)n2

p >> n (2p+ 4q)n2 (5p+ 5q)n2 (2p+ 2q)n2

p ≈ n (8n/3 + 4q)n2 (4n+ 5q)n2 (4n/3 + 2q)n2

Table 1: Costs of methods for solving the ILS problem.

3 Error analysis

We will only consider the first order error bounds and ignore the possibility of overflow or
underflow. We will use the letters with a hat for the matrices, vectors, or scalars computed in
finite arithmetic. To show the backward stability we need the following two auxiliary results.

Lemma 2 Suppose D ∈ Rn×n is nonsingular upper bidiagonal and B ∈ Rq×n. Let X̂ be the
numerical solution of the equation

XD = B,

computed by forward substitution. Then X̂ satisfies

(X̂ + ∆X)D = B + ∆B,

where ||∆X|| ≤ 3nu||X̂||, ||∆B|| ≤ 3nu||B||.

Proof. See Lemma 8 in [3].

Lemma 3 Suppose R,∆R1,∆R2 ∈ Rn×n, and ||∆R1||, ||∆R2|| = O(u||R||). Then the vector
y = (R+ ∆R1)T (R+ ∆R2)x can be expressed as

y = (RTR+ ∆R3)x,

where ∆R3 is symmetric and ||∆R3|| ≤ O(u||R||2).

Proof. See [5].
The bidiagonal matrix D̂ computed in Step 1 satisfies

A1 + ∆A1 = U

[
0
D̂

]
V T , (5)

where U , V are orthogonal and ||∆A1|| = 0(u||A1||), (see, e.g.,[6, Sec. 5.5]).
The computed vector d̂1 satisfies

d̂1 = UT (b1 + ∆b1), (6)

where U is orthogonal, same as that in (5), and ||∆b1|| = O(u||b1||), ([8, Lemma 18.3]). Based
on the same error analysis for the product A2V and using Lemma 2, the matrix Ŝ computed
in Step 2 satisfies

(Ŝ + ∆S1)D̂ = (A2 + ∆A2)V, (7)

where V is orthogonal, same as that in (5), ||∆S1|| = O(u||Ŝ||), ||∆A2|| = O(u||A2||).

6

In Step 3, the computed factor R̂ in the hyperbolic factorization satisfies ([2])[
R̂+ ∆R1

Ŝ + ∆S2

]
= Q

[
I + ∆E1

0

]
, (8)

where Q is orthogonal (which is related to H), ||∆R1||, ||∆S2|| = O(u max{||R̂||, ||Ŝ||}), ||∆E1|| =
O(u).

The computed vector f̂ satisfies

f̂ =
[

0 In
]

(d̂1 + ∆d1)− (Ŝ + ∆S3)b2, (9)

where ||∆d1|| = O(u||d̂1||) = O(u||b1||), ||∆S3|| = O(u||Ŝ||) (see [8, pp. 76]). The vectors
computed in Step 4 satisfy

(R̂+ ∆R2)T ŵ = f̂ (10)
(R̂+ ∆R3)ẑ = ŵ (11)
(D̂ + ∆D)ŷ = ẑ, (12)

where ||∆R2||, ||∆R3|| ≤ nu||R̂||, ||∆D|| ≤ 3u||D̂||, see, e.g., [8, Sec. 8.1].
Finally the computed solution x̂ satisfies

x̂ = (V + ∆V)ŷ, (13)

where ||∆V || = O(u), (see [8, Lemma 18.2]).
By using the formulas (10) – (13), and (6), (9), we have

f̂ = (R̂+ ∆R2)T (R̂+ ∆R3)(D̂ + ∆D)(V + ∆V)T x̂

=

 0
In

Ŝ + ∆S3

T [U 0
0 Iq

]T
Σp,q(b+ ∆b2), (14)

where ∆b2 =
[

∆b1 + U∆d1

0

]
. So

||∆b2|| = O(u||b1||). (15)

Taking (D̂ + ∆D)(V + ∆V)T x̂ as a single vector, by Lemma 3 we have

(R̂+ ∆R2)T (R̂+ ∆R3)(D̂ + ∆D)(V + ∆V)T x̂ = (R̂T R̂+ ∆R4)(D̂ + ∆D)(V + ∆V)T x̂

where ∆R4 = (∆R4)T and ||∆R4|| = O(u||R̂||2).
From (8) we have

(R̂+ ∆R1)T (R̂+ ∆R1) + (Ŝ + ∆S2)T (Ŝ + ∆S2) = (In + ∆E1)T (In + ∆E1). (16)

It can be rewritten as

R̂T R̂ = In − (Ŝ + ∆S1)T (Ŝ + ∆S1) + ∆R5,

7

where ∆S1 is defined in (7)

∆R5 = (∆E1)T + ∆E1 − R̂T∆R1 − (∆R1)T R̂− ŜT (∆S2 −∆S1)− (∆S2 −∆S1)T Ŝ +O(u2)

is symmetric. Then

R̂T R̂+ ∆R4 = In + ∆R4 + ∆R5 − (Ŝ + ∆S1)T (Ŝ + ∆S1).

Note (16) also implies that ||R̂||, ||Ŝ|| ≤ 1 +O(u). So ||∆R4 + ∆R5|| = O(u). If

||∆R4 + ∆R5|| < 1, (17)

the matrix In + ∆R4 + ∆R5 is symmetric positive definite. In this case it is well known that
In+∆R4 +∆R5 has a unique principle square root, i.e., there exists a symmetric matrix ∆E2

such that
(In + ∆E2)2 = In + ∆R4 + ∆R5,

and ||∆E2|| ≤ 1
2 ||∆R4 + ∆R5|| = O(u). With this form we have

R̂T R̂+ ∆R4 = (In + ∆E2)2 − (Ŝ + ∆S1)T (Ŝ + ∆S1) =: F̃ TΣp,qF̃ ,

where

F̃ =

 0
In + ∆E2

Ŝ + ∆S1

 .
The first equation in (14) now becomes

f̂ = (F̃ TΣp,qF̃)(D̂ + ∆D)(V + ∆V)T x̂. (18)

The matrix
F̃ T F̃ = (In + ∆E2)2 + (Ŝ + ∆S1)T (Ŝ + ∆S1)

is positive definite. When (17) holds, we have

||(F̃ T F̃)−1|| ≤ ||(I + ∆E2)−2|| = 1 +O(u). (19)

Denote

∆F =

 0
∆E2

∆S1 −∆S3

 .
Obviously ||∆F || = O(u), and 0

In
Ŝ + ∆S3

 = F̃ −∆F.

Applying the same trick used in [5] to the right-hand side vector in (14),

f̂ = (F̃ −∆F)T
[
U 0
0 Iq

]T
Σp,q(b+ ∆b2)

8

= (F̃ −∆F (F̃ T F̃)−1F̃ T F̃)T
[
U 0
0 Iq

]T
Σp,q(b+ ∆b2)

= F̃ T
[
U 0
0 Iq

]T
Σp,q

(
Σp,q

[
U 0
0 Iq

](
Ip+q − F̃ (F̃ T F̃)−1(∆F)T

)[U 0
0 Iq

]T
Σp,q(b+ ∆b2)

)

= F̃ T
[
U 0
0 Iq

]T
Σp,q

(
b+ ∆b2 − Σp,q

[
U 0
0 Iq

]
F̃ (F̃ T F̃)−1(∆F)T

[
U 0
0 Iq

]T
Σp,qb+O(u2)

)
.

Let

∆b = ∆b2 − Σp,q

[
U 0
0 Iq

]
F̃ (F̃ T F̃)−1(∆F)T

[
U 0
0 Iq

]T
Σp,qb+O(u2).

Then by (19),

||F̃ (F̃ T F̃)−1|| =
√
||(F̃ T F̃)−1F̃ T F̃ (F̃ T F̃)−1|| =

√
||(F̃ T F̃)−1|| ≤ 1 +O(u).

So by (15) and the fact that ||∆F || = O(u), we have

||∆b|| ≤ ||∆b2||+ ||b||||∆F || = O(u||b||).

Now we have

f̂ = F̃ T
[
U 0
0 Iq

]T
Σp,q(b+ ∆b). (20)

By (18) and (20) we have

(F̃ TΣp,qF̃)(D̂ + ∆D)(V + ∆V)T x̂ = F̃ T
[
U 0
0 Iq

]T
Σp,q(b+ ∆b).

Let

Ã =
[
U 0
0 Iq

]
F̃ (D̂ + ∆D)(V + ∆V)T .

Then by pre-multiplying (V + ∆V)(D̂ + ∆D)T to the above equation, we have

ÃTΣp,qÃx̂ = ÃΣp,q(b+ ∆b).

By using (5) and (7)

∆A := Ã−A =
[

∆A1

∆A2

]
+
[
U 0
0 Iq

] 0
∆E2D̂V

T + D̂(∆V)T + ∆DV T

Ŝ∆DV T +A2V (∆V)T

+O(u2).

Since ||D̂|| = ||A1||+O(u||A1||), ||∆D|| = O(u||D̂||), ||Ŝ|| ≤ 1 +O(u), and ||∆E2||, ||∆V || = O(u),
we have

||∆A|| = O(u||A||).
Therefore the solution x̂ computed by Algorithm 1 satisfies

(A+ ∆A)TΣp,q(A+ ∆A)x̂ = (A+ ∆A)TΣp,q(b+ ∆b),

or equivalently, x̂ solves the perturbed ILS problem

min
x

((A+ ∆A)x− (b+ ∆b))T Σp,q ((A+ ∆A)x− (b+ ∆b))T ,

where ||∆A|| = O(u||A||) and ||∆b|| = O(u||b||). So Algorithm 1 is backward stable.

9

4 Conclusion

We proposed a numerically backward stable method for solving the indefinite least squares
problem. The method employs the hyperbolic QR factorization. It is more efficient than the
backward stable method based on the QR and Cholesky factorizations. It is known that in
general the hyperbolic QR factorization methods are mixed stable. But for the ILS problem by
carefully implementing such a method, a backward stable algorithm still can be constructed.

References

[1] Å. Björck, Numerical Method for Least Squares Problems, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1996.

[2] A. Bojanczyk, N.J. Higham, and H. Patel, Solving the indefinite least squares
problem by hyperbolic QR factorization, SIAM J. Matrix Anal. Appl., 24 (2003), pp.
914-931.

[3] R. Byers and H. Xu, A rapidly converging, backward stable matrix sign function method
for computing polar decomposition, In progress.

[4] T.F. Chan, An improved algorithm for computing the singular value decomposition, ACM
Trans. Math. Soft. 8 (1982), pp. 72-83.

[5] S. Chandrasekaran, M. Gu, and A.H. Sayed, A stable and efficient algorithm for
the indefinite linear least-squares problem, SIAM J. Matrix Anal. Appl., 20 (1998), pp.
354-362.

[6] G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins University
Press, Baltimore, third edition, 1996.

[7] B. Hassibi, A.H. Sayed, and T. Kailath, Linear estimation in Krein spaces - Part
I: Theory, IEEE Trans. Automat. Control, 41 (1996), pp. 18-33.

[8] N.J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1996.

[9] C.L. Lawson and R.J. Hanson, Solving Least Squares Problems, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1995.

[10] A.H. Sayed, B. Hassibi, and T. Kailath, Inertia properties of indefinite quadratic
forms, IEEE Signal Process. Lett., 3 (1996), pp. 57-59.

10

