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Abstract

We study two matrix pencils that arise, respectively, in discrete-
time and continuous-time optimal and robust control. We introduce
a one-to-one transformation between these two pencils. We show that
for the pencils under the transformation, their regularity is preserved
and their eigenvalues and deflating subspaces are equivalently related.
The eigen-structures of the pencils under consideration have strong
connections with the associated control problems. Our result may
be applied to connect the discrete-time and continuous-time control
problems and eventually lead to a unified treatment of these two types
of control problems.

Keywords. D-type pencil, C-type pencil, eigen-structure, eigenvalue, deflat-
ing subspace, spectral subspace, regularity, discrete-time control, continuous-
time control.
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1 Introduction

We consider two matrix pencils with special block structures. The first pencil
is

λED −AD = λ

[
0 F
−G∗ 0

]
−

[
0 G
−F ∗ D

]
, (1)

where F, G,∈ Cn,m, and D ∈ Cm,m is Hermitian. The second pencil is

λEC −AC = λ

[
0 F̃

−F̃ ∗ 0

]
−

[
0 G̃

G̃∗ D̃

]
, (2)
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where F̃ , G̃ ∈ Cn,m, and D̃ ∈ Cm,m is Hermitian. Both pencils play the
central role in optimal and robust control, see, e.g., [11, 14, 7, 18]. The
pencils (1) and (2) arise in the discrete-time and continuous-time optimal and
robust control, respectively. For instance, the discrete-time linear quadratic
optimal control problem,

min
uk

1

2

∞∑
k=0

[
xk

uk

]∗ [
Q S
S∗ R

] [
xk

uk

]
subject to Exk+1 = Axk + Buk x0 = x0

with Q∗ = Q, R∗ = R, can be related to the eigenvalue problem of the pencil

λ

 0 E 0
−A∗ 0 0
−B∗ 0 0

−
 0 A B
−E∗ Q S

0 S∗ R

 , (3)

see, e.g., [13, 15, 1, 2, 11, 7]. The continuous-time linear quadratic optimal
problem,

min
u

1

2

∫ ∞

0

[
x
u

]∗ [
Q̃ S̃

S̃∗ R̃

] [
x
u

]
dt

subject to Ẽẋ = Ãx + B̃u x(0) = x0

with Q̃∗ = Q̃, R̃∗ = R̃, can be related to the eigenvalue problem of the pencil

λ

 0 Ẽ 0

−Ẽ∗ 0 0
0 0 0

−
 0 Ã B̃

Ã∗ Q̃ S̃

B̃∗ S̃∗ R̃

 , (4)

see, e.g., [8, 15, 11, 7]. With the block forms as indicated the pencils (3) and
(4) have the same forms as (1) and (2), respectively. For this reason we call
λED − AD of the form (1) the D-type pencil and λEC − AC of the form (2)
the C-type pencil.

The pencils λED − AD and λEC − AC have many properties that are
similar to each other. For instance, λED − AD is determined by the matrix
triplet (F, G, D) and λEC − AC is determined by the same type of matrix
triplet (F̃ , G̃, D̃). The eigenvalues of λED−AD are in pairs (λ, λ̄−1), i.e., they
are symmetric about the unit circle, whereas the eigenvalues of λEC − AC

are in pairs (λ,−λ̄), i.e., they are symmetric about the imaginary axis, e.g.,
[9, 11]. These similarities lead to the investigation on equivalence trans-
formations between the D-type and C-type pencils. The ultimate goal is
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to find such a transformation that also connects the underlying discrete-
time and continuous-time control problems so that both problems can be
treated in a unified way. One popular candidate is the Cayley transforma-
tion c : C ∪ {∞} → C ∪ {∞}, defined by

µ = c(λ) = (λ− 1)(λ + 1)−1.

Its generalization in the space of matrix pairs (which we still call the Cayley
transformation and denote by c) is

(F ,B) = c(E ,A) = (A+ E ,A− E),

see, e.g., [9, 11, 7]. Let
(Ẽ , Ã) = c(ED,AC),

where ED,AD are from the D-type pencil λED − AD. Then each eigenvalue
pair (λ, λ̄−1) of λED − AD is transformed to the eigenvalue pair (µ,−µ̄) of
λẼ − Ã with µ = c(λ) (also −µ̄ = c(λ̄−1)). So the eigenvalues of λẼ − Ã
share the same symmetric pattern that the eigenvalues of λEC − AC have.
Unfortunately, λẼ − Ã does not have the same block structure as λEC −AC ,
and it can not be put into the continuous-time control setting. One possi-
ble way to remedy this is as follows. First, reduce λED − AD to a so-called
symplectic matrix by deflating the subpencil associated with the eigenvalue
infinity. Then apply the Cayley transformation to the symplectic matrix to
obtain a Hamiltonian matrix that can be viewed as the one reduced from
a C-type pencil, e.g., [9, 11, 7, 12]. However, new problems arise with this
approach. Firstly, a successful reduction from λED − AD to a symplectic
matrix requires the nonsingularity of certain matrices associated with the
blocks in ED and AD. This may not always hold, e.g., [4, 11]. Secondly, even
if the nonsingularity conditions hold, with the presence of matrix inversions
the resulting Hamiltonian matrix is complicated and may be still hard to in-
terpret. Also, explicit matrix inversion may cause sever numerical instability
for numerical computations (see, e.g., [15]).

In this paper we will connect the D-type pencil and the C-type pencil
directly by using the simple one-to-one transformation

(EC ,AC) = t(ED,AD)

described in the following diagram:
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λED −AD = λ

[
0 F
−G∗ 0

]
−

[
0 G
−F ∗ D

]
c ↓↑ c−1

λẼ − Ã = λ

[
0 G + F

−(G + F )∗ D

]
−

[
0 G− F

(G− F )∗ D

]
Drop D from Ẽ ↓↑ add D to Ẽ

λEC −AC = λ

[
0 G + F

−(G + F )∗ 0

]
−

[
0 G− F

(G− F )∗ D

]

=: λ

[
0 F̃

−F̃ ∗ 0

]
−

[
0 G̃

G̃∗ D̃

]
.

The transformation t is just the Cayley transformation c followed by a
drop/add transformation. The transformation t is simple, since it acts di-
rectly on the matrix triplets (F, G, D) and (F̃ , G̃, D̃), and it only involves
matrix additions and subtractions. In addition, it sets up an equivalence
relation between the eigen-structures of the D-type and C-type pencils. As
we will see below, under the transformation t the eigenvalue relation between
λED −AD and λEC −AC can be described by the Cayley transformation c.
The equivalence relation between the deflating subspaces of λED − AD and
λEC −AC can be formulated explicitly by the corresponding bases.

The paper is organized as follows. Section 2 gives some basic defini-
tions and properties about the eigen-structure of a general matrix pencil.
Section 3 contains the eigen-structure properties of the D-type and C-type
pencils, and some well-known properties of the Cayley transformation. Sec-
tion 4 introduces the transformation t and describes the relations about the
eigenvalues and the deflating subspaces of the D-type and C-type pencils un-
der the transformation t. In the same section a generalized transformation
is also introduced and its behavior is discussed. The conclusions are given in
Section 5.

Throughout the paper, C, Ck, Cp,q are the sets of complex numbers, col-
umn vectors of dimension k, and p × q matrices, respectively. X∗ is the
complex conjugate transpose of matrix X. X−∗ = (X−1)∗. span X is the
subspace spanned by the columns of matrix X. If X has full column rank,
X is called an basis matrix of span X. null X is the null space of matrix X.
rank X is the rank of matrix X. dimX is the dimension of space X . 0p×q is
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the p× q zero matrix and Ip (or simply I when the size is not important) is
the p× p identity matrix.

2 Preliminaries

In this section we introduce some basic concepts and properties about the
eigen-structure of a matrix pencil. Define

Lk(λ) =

 λ 1
. . . . . .

λ 1


k×(k+1)

, Nk(λ) =


λ 1

. . . . . .
. . . 1

λ


k×k

.

Theorem 1 ( Kronecker Canonical Form [6, 5]). Let E ,A ∈ Cp,q. Then
there exist nonsingular matrices Y ∈ Cp,p and X ∈ Cq,q such that

Y∗(λE − A)X = diag(O, SR, SL, J , N ), (5)

where

1. O = λ0α×β − 0α×β,

2. SR = diag(Lε1(λ), . . . , Lεi
(λ)),

3. SL = diag(LT
δ1

(λ), . . . , LT
δj

(λ)),

4. J = λI − diag(J1, . . . , Jr) with Jk = diag(Nξ1,k
(λk), . . . , Nξsk,k

(λk)) for
k = 1, . . . , r, and the scalars λ1, . . . , λr being distinct,

5. N = λ diag(Nη1(0), . . . , Nηt(0))− I.

Definition 2 Let the pencil λE −A have the Kronecker canonical form (5).
The distinct scalars λ1, . . . , λr from the block J are called the finite eigenval-
ues of λE − A. For each finite eigenvalue λk, the integer sk is its geometric
multiplicity, the indices ξ1,k, . . . , ξsk,k are its partial multiplicities, and the
sum

∑sk

j=1 ξj,k is its algebraic multiplicity.
If N in (5) has the size greater than zero, ∞ is also an eigenvalue of

λE −A. Its geometric multiplicity is t, its partial multiplicities are η1, . . . , ηt,
and its algebraic multiplicity is

∑t
j=1 ηj.

We denote by Λ(E ,A) the set of all finite eigenvalues and the eigenvalue ∞
of λE − A. For convenience, we denote Λ(A) = Λ(I,A).
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Definition 3 Consider the pencil λE − A with E ,A ∈ Cp,q.

(a) Suppose ∞ 6= λ0 ∈ Λ(E ,A) with algebraic multiplicity `.

1. The columns of U ∈ Cq,` span a right spectral subspace of λE −A
corresponding to λ0, if

EUT = AU, rank EU = `

for some matrix T ∈ C`,` with Λ(T ) = {λ0}.
2. The columns of V ∈ Cp,` span a left spectral subspace of λE − A

corresponding to λ0, if

S∗V ∗E = V ∗A, rank V ∗E = `

for some matrix S ∈ C`,` with Λ(S∗) = {λ0}.

(b) Suppose ∞ ∈ Λ(E ,A) with algebraic multiplicity `∞.

1. The columns of U ∈ Cq,`∞ span a right spectral subspace of λE−A
corresponding to ∞, if

EU = AUT, rankAU = `∞

for some nilpotent matrix T ∈ C`∞,`∞, i.e., Λ(T ) = {0}.
2. The columns of V ∈ Cp,`∞ span a left spectral subspace of λE −A

corresponding to ∞, if

V ∗E = S∗V ∗A, rank V ∗A = `∞

for some nilpotent matrix S ∈ C`∞,`∞.

For each eigenvalue of λE −A its spectral subspaces always exist. In general,
they may not be unique. In [16] it is shown that every eigenvalue of λE −A
has a unique right spectral subspace if and only if in the Kronecker canonical
form the blocks O and SR are void. Similarly, every eigenvalue has a unique
left spectral subspace if and only if O and SL are void. The uniqueness
conditions can also be described in the following way.

Proposition 4 Every eigenvalue in Λ(E ,A) has a unique right spectral sub-
space if and only if κE − A has full column rank for some κ ∈ C.

Similarly, every eigenvalue in Λ(E ,A) has a unique left spectral subspace
if and only if κE − A has full row rank for some κ ∈ C.
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Proof. The result easily follows from the Kronecker canonical form.
If the pencil λE −A is regular, i.e., E ,A are square and det(κE −A) 6= 0

for some κ ∈ C, then from Proposition 4, for every eigenvalue in Λ(E ,A)
both its left and right spectral subspaces are unique. Due to this fact, when
λE − A is regular, we denote by Rλ0 and Lλ0 the right and left spectral
subspaces of λE − A corresponding to λ0 ∈ Λ(E ,A), respectively. Note that
when λE−A is regular, its Kronecker canonical form becomes the Weierstraß
form ([17]), i.e., the blocks O,SR,SL are void in (5).

Proposition 5 Suppose λE − A is regular. Then ∞ 6= λ0 ∈ Λ(E ,A) if and
only if det(λ0E − A) = 0. ∞ ∈ Λ(E ,A) if and only if det E = 0.

Proof. Omitted.

Proposition 6 Consider the regular pencil λE−A with E ,A ∈ Cp,p. Suppose
∞ 6= λ0 ∈ Λ(E ,A) with algebraic multiplicity ` and suppose U, V ∈ Cp,`.
Then span U = Rλ0 and span V = Lλ0 if and only if det V ∗EU 6= 0 and

EUT = AU, S∗V ∗E = V ∗A

for some matrices T, S ∈ C`,` with Λ(T ) = Λ(S∗) = {λ0}.
Similarly, suppose ∞ ∈ Λ(E ,A) with algebraic multiplicity `∞ and sup-

pose U, V ∈ Cp,`∞. Then span U = R∞ and span V = L∞ if and only if
det V ∗AU 6= 0 and

EU = AUT, V ∗E = S∗V ∗A

for some nilpotent matrices T, S ∈ C`∞,`∞.

Proof. The result easily follows from the Weierstraß form of λE − A.

Definition 7 Let λE − A be a regular pencil.

1. If matrix U satisfies

EU = WS, AU = WT,

where W has full column rank and λS−T is a regular subpencil, we call
U a basis matrix of a right deflating subspace of λE −A corresponding
to λS − T .

In the special cases that (a) S = I, (b) S = I and Λ(T ) = {λ0}, and
(c) T = I and S is nilpotent, we simply call U a basis matrix of a right
deflating subspace of λE −A corresponding to (a) T , (b) the eigenvalue
λ0, and (c) the eigenvalue ∞, respectively.
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2. A matrix V is a basis matrix of a left deflating subspace of λE − A
corresponding to λS − T if it is a basis matrix of a right deflating
subspace of λE∗ −A∗ corresponding to λS∗ − T ∗.

In the three special cases of λS − T , similar names for the associated
left deflating subspaces can also be introduced.

Note that when λE −A is regular, for each λ0 ∈ Λ(E ,A), Rλ0 (Lλ0) contains
all right (left) deflating subspaces corresponding to λ0. This also implies that
Rλ0 (Lλ0) is the largest right (left) deflating subspace corresponding to λ0.

3 Eigen-structures of D-type and C-type pen-

cils, Cayley transformation

This section consists of two parts. The first part is about the eigen-structures
of the D-type and C-type pencils. The second part is about the properties of
the Cayley transformation. Hereafter, we only consider the regular D-type
and C-type pencils.

3.1 Eigen-structures of D-type and C-type pencils

We start with the C-type pencil λEC − AC of the form (2). Obviously,
λEC −AC is a skew-Hermitian/Hermitian pencil, i.e., E∗C = −EC and A∗C =
AC . So we just provide the well-known eigen-structure properties of a general
skew-Hermitian/Hermitian pencil.

Proposition 8 Consider the regular pencil λE − A with E ,A ∈ Cp,p and
E∗ = −E ,A∗ = A.

(a) The eigenvalues of λE −A are in pairs (λ0,−λ̄0). Namely, λ0 ∈ Λ(E ,A)
if and only if −λ̄0 ∈ Λ(E ,A). Moreover, λ0 and −λ̄0 have the same
partial, algebraic, and geometric multiplicities.

(b) For every eigenvalue pair (λ0,−λ̄0), Rλ0 = L−λ̄0
and Lλ0 = R−λ̄0

. More
generally, U is a basis matrix of a right deflating subspace of λE − A
corresponding to λS−T if and only if U is also a basis matrix of a left
deflating subspace of λE − A corresponding to λ(−S∗)− T ∗.

When the pencil λE − A is real, there is a similar real version of the result.

Proof. The result easily follows from the structured Kronecker canonical
form of λE − A, see, e.g., [5, 3, 10].
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The eigenvalue pairing (λ0,−λ̄0) actually does not apply to the purely
imaginary eigenvalues, since then one has λ0 = −λ̄0. But for such an eigen-
value λ0, its right and left spectral subspaces are the same, i.e., Rλ0 = Lλ0 .
This is also true for the eigenvalue ∞.

We now turn to the D-type pencil λED − AD of the form (1). First we
need a lemma.

Lemma 9 Suppose that the pencil λED −AD of the form (1) is regular and
suppose ∞ 6= λ0 ∈ Λ(ED,AD) with algebraic multiplicity `.

If λ0 is also an eigenvalue of the pencil λG∗−F ∗ with algebraic multiplicity
r1, then r1 ≤ `, and there exist matrices

U =

[ r1 `− r1

n U11 U12

m 0 U22

]
∈ Cn+m,`, T =

[ r1 `− r1

r1 T11 T12

`− r1 0 T22

]
∈ C`,`

with Λ(T ) = {λ0}, such that

EDUT = ADU, rank EDU = `,

i.e., U11 and U are basis matrices of the right spectral subspaces of λG∗−F ∗

and λED −AD, respectively, corresponding to λ0.
Similarly, if λ0 is also an eigenvalue of the pencil λF −G with algebraic

multiplicity r2, then r2 ≤ `, and there exist matrices

V =

[ r2 `− r2

n V11 V12

m 0 V22

]
∈ Cn+m,`, S =

[ r2 `− r2

r2 S11 S12

`− r2 0 S22

]
∈ C`,`

with Λ(S∗) = {λ0}, such that

S∗V ∗ED = V ∗AD, rank V ∗ED = `,

i.e., V11 and V are basis matrices of the left spectral subspaces of λF −G and
λED −AD, respectively, corresponding to λ0.

Proof. Since λED −AD is regular,

det(κED −AD) = det

[
0 κF −G

−(κG∗ − F ∗) −D

]
6= 0

for some κ ∈ C. It is clear that κG∗ − F ∗ has full column rank. If λ0 ∈
Λ(G∗, F ∗) with algebraic multiplicity r1, by Proposition 4, the associated
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right spectral subspace of λG∗ − F ∗ is unique and one can choose a basis
matrix U11 ∈ Cn,r1 satisfying

G∗U11T11 = F ∗U11, rank G∗U11 = r1

for some T11 ∈ Cr1,r1 with Λ(T11) = {λ0}. Clearly, U11 also satisfies

ED

[
U11

0

]
T11 = AD

[
U11

0

]
, rank ED

[
U11

0

]
= rank G∗U11 = r1.

This implies span
[

U11

0

]
⊆ Rλ0 , where Rλ0 is the right spectral subspace of

λED − AD corresponding to λ0. Hence
[

U11

0

]
can be extended to the basis

matrix U of Rλ0 as required.
Note that the pencil λE∗D−A∗D has the same block structure as λED−AD.

So the second part can be proved in the same way.
In the following theorem we will show the eigen-structure properties of

λED − AD. The result is essentially from [11, Proposition 4.18]. The only
improvement is the relation between the spectral subspaces corresponding to
the eigenvalues 0 and ∞, respectively.

Theorem 10 Suppose that λED −AD of the form (1) is regular.

(a) Let λ0 ∈ Λ(ED,AD) (λ0 6= 0,∞) with algebraic multiplicity `. Then

U =

[ `

n U1

m U2

]
, V =

[ `

n V1

m V2

]
∈ Cn+m,` (6)

satisfy
EDUT = ADU, S∗V ∗ED = V ∗AD

for some T, S ∈ C`,` with Λ(T ) = Λ(S∗) = {λ0}, if and only if

Û =

[
U1T
U2

]
, V̂ =

[
V1S
V2

]
(7)

satisfy
EDV̂ S−1 = ADV̂ , T−∗Û∗ED = Û∗AD.

Moreover, det V ∗EDU 6= 0 if and only if det Û∗EDV̂ 6= 0.

Consequently, the nonzero eigenvalues of λED−AD are in pairs (λ0, λ̄
−1
0 ),

and λ0, λ̄−1
0 have the same partial, geometric, and algebraic multiplici-

ties. For the matrices U, V in (6) and Û , V̂ in (7), span U = Rλ0 and
span V = Lλ0 if and only if span V̂ = Rλ̄−1

0
and span Û = Lλ̄−1

0
.
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(b) Suppose 0 ∈ Λ(ED,AD) with algebraic multiplicity `0 and suppose also
0 ∈ Λ(G∗, F ∗) and 0 ∈ Λ(F, G) with algebraic multiplicities r1 and r2 ,
respectively. (r1, r2 can be zero.) Then there exist matrices

U =

[ r1 `0 − r1

n U11 U12

m 0 U22

]
, V =

[ r2 `0 − r2

n V11 V12

m 0 V22

]
∈ Cn+m,`0 (8)

such that

EDUT = ADU, S∗V ∗ED = V ∗AD, rank EDU = rank V ∗ED = `0,

where

T =

[ r1 `0 − r1

r1 T11 T12

`0 − r1 0 T22

]
, S =

[ r2 `0 − r2

r2 S11 S12

`0 − r2 0 S22

]
are nilpotent, i.e., span U = R0 and span V = L0.

Define

Û =

[
U11 U11T12 + U12T22

0 U22

]
, V̂ =

[
V11 V11S12 + V12S22

0 V22

]
(9)

and

T̂ =

[
T11 T11T12

0 T22

]
, Ŝ =

[
S11 S11S12

0 S22

]
.

Then

EDV̂ = ADV̂ Ŝ, Û∗ED = T̂ ∗Û∗AD, rankADV̂ = rank Û∗AD = `0.

Consequently, if 0 ∈ Λ(ED,AD) with algebraic multiplicity `0, then∞ ∈
Λ(ED,AD) and its algebraic multiplicity is greater than or equal to `0. If
U, V in (8) are basis matrices of R0 and L0, respectively, then for V̂ , Û
in (9), span V̂ and span Û are `0-dimensional right and left deflating
subspaces, respectively, corresponding to the eigenvalue ∞.

Proof. The proof is given in Appendix A.

Corollary 11 Suppose that λED − AD of the form (1) is regular. Let U =[
U1

U2

]
with U1 ∈ Cn,p and U2 ∈ Cm,p, and let T ∈ Cp,p be nonsingular. Then U

is a basis matrix of a right (left) deflating subspace of λED−AD corresponding

to T if and only if Û :=
[

U1T
U2

]
is a basis matrix of a left (right) deflating

subspace of λED −AD corresponding to T−∗.
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Proof. We first consider the special case when Λ(T ) = {λ0} for some
nonzero eigenvalue λ0 ∈ Λ(ED,AD). In this case the result follows from the
fact that span U ⊆ Rλ0 and span Û ⊆ Lλ̄−1

0
, and the relation between Rλ0

and Lλ̄−1
0

shown in Theorem 10 (a).
Note that a general deflating subspace can be expressed as a direct sum

of several deflating subspaces, each corresponding to a single eigenvalue. By
applying the above result to each deflating subspace in the sum we can get
the result for the general case.

When the pencil λED − AD is real, the real versions of Theorem 10 and
Corollary 11 can be derived in the same way.

In Theorem 10 (a) the eigenvalue pairing (λ0, λ̄
−1
0 ) actually does not apply

to the eigenvalues on the unit circle, since then one has λ0 = λ̄−1
0 . But for such

an eigenvalue λ0, its left and right spectral subspaces are related. Namely,
U in (6) is a basis matrix of Rλ0 if and only if Û in (7) is a basis matrix of
Lλ0 .

Theorem 10 (b) shows that the eigenvalues 0 and ∞ are also paired, but
in a weak sense. This is because the algebraic multiplicity of ∞ may be
bigger than that of 0, and R0 and L0 are only related to certain subspaces
of L∞ and R∞, respectively.

Example 1 Consider the D-type pencil

λED −AD = λ

 0 1 0
−1 0 0
−1 0 0

−
 0 1 1
−1 1 1
0 1 1

 .

Let

U1 =

 0
1
−1

 , V1 =

 −1
0
1

 ; U2 =

 0 −1
0 1
1 0

 , V2 =

 0 0
1 1
−1 0

 .

Then one has

EDU1 · 0 = ADU1 0 · V ∗
1 ED = V ∗

1 AD,

and

EDU2 = ADU2

[
0 1
0 0

]
, V ∗

2 ED =

[
0 1
0 0

]∗
V ∗

2 AD.

The pencil λED −AD has two eigenvalues: 0 and ∞. Clearly, span U1 = R0,
span V1 = L0 and span U2 = R∞, span V2 = L∞.
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By (9) with U = U1, V = V1, and T = 0 (and r1 = r2 = 0), we get

Û =

 0
1
−1

 , V̂ =

 0
0
1

 ,

which are just the first column of V2 and U2, respectively.

The results in Theorem 10, Corollary 11, and Proposition 8 show that
the eigen-structure properties of the pencils λED−AD and λEC −AC can be
addressed in parallel.

In the end of this subsection we give some necessary conditions for the
regularity of the D-type and C-type pencils.

Proposition 12 If λED −AD ∈ Cn+m,n+m of the form (1) is regular, then

m− rank D ≤ n ≤ m.

If λEC −AC ∈ Cn+m,n+m of the form (2) is regular, then

m− rank D̃ ≤ n ≤ m.

Proof. If λED −AD is regular, there is a scalar κ ∈ C such that

det(κED −AD) = det

[
0 κF −G

F ∗ − κG∗ −D

]
6= 0.

Then both κF −G, F − κ̄G ∈ Cn,m have full row rank. So we have n ≤ m.
Suppose rank D = p. Let D = Q

[
Σ
0

0
0

]
Q∗ be the Schur form, where

Σ ∈ Cp,p is diagonal and nonsingular and Q is unitary. Denote

FQ =
[ p m− p

n F1 F2

]
, GQ =

[ p m− p

n G1 G2

]
.

We have[
In 0
0 Q

]∗
(κED −AD)

[
In 0
0 Q

]
=

 0 κF1 −G1 κF2 −G2

F ∗
1 − κG∗

1 −Σ 0
F ∗

2 − κG∗
2 0 0


Then both κF2 −G2, F2 − κ̄G2 ∈ Cn,m−p have full column rank. So we have
m− p ≤ n.

The second part can be proved in the same way.
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3.2 Cayley transformation

The Cayley transformation on C is defined by

µ = c(λ) = (λ− 1)(λ + 1)−1.

It can be extended to a one-to-one transformation on C∪{∞}, also denoted
by c, by defining c(−1) =∞ and c(∞) = 1. Its inverse transformation is

λ = c−1(µ) = (1 + µ)(1− µ)−1.

The correspondence between λ and µ = c(λ) is summarized in Table 1.

λ |λ| < 1 |λ| = 1 |λ| > 1 1 0 −1 ∞
µ Re µ < 0 Re µ = 0 Re µ > 0 0 −1 ∞ 1

Table 1: Correspondence between λ and µ = c(λ)

The following relations are obvious.

Proposition 13 If µ = c(λ) then −µ̄ = c
(
λ̄−1

)
. Conversely, if λ = c−1(µ)

then λ̄−1 = c−1(−µ̄).

Proof. the proof is trivial.
The Cayley transformation can be extended to the matrix space Cp,p :

B = c(A) = (A− Ip)(A+ Ip)
−1,

and further to the space Cp,q × Cp,q :

(F ,B) = c(E ,A) = (A+ E ,A− E). (10)

The relation between the eigen-structures of the pencils λF −B and λE −A
connected by (10) is summarized below.

Proposition 14 Consider λE − A and λF − B where (F ,B) = c(E ,A).

(a) λE − A is regular if and only if λF − B is regular.

(b) λ0 ∈ Λ(E ,A) if and only if µ0 = c(λ0) ∈ Λ(F ,B). Moreover, λ0, µ0 have
the same partial, geometric, and algebraic multiplicities.

(c) Suppose λE − A is regular. For any λ0 ∈ Λ(E ,A), let Rλ0, Lλ0 be
the associated right and left spectral subspaces of λE − A, respectively,
and let Rµ0, Lµ0 be the right and left spectral subspaces of λF − B,
respectively, corresponding to µ0 = c(λ0). Then Rλ0 = Rµ0, Lλ0 = Lµ0.

Proof. The result can be found in [9, 11, 12].

14



4 Equivalence relation between D-type and

C-type pencils

In this section we introduce a transformation between the pencils λED −AD

and λEC −AC of the forms (1) and (2), respectively. We will also show the
eigen-structure relation between these two pencils under the transformation.

The transformation, denoted by (EC ,AC) = t(ED,AD), is defined by([
0 F̃

−F̃ ∗ 0

]
,

[
0 G̃

G̃∗ D̃

])
= t

([
0 F
−G∗ 0

]
,

[
0 G
−F ∗ D

])
:=

([
0 G + F

−(G + F )∗ 0

]
,

[
0 G− F

(G− F )∗ D

])
.

Since λED−AD and λEC−AC are determined by the matrix triplets (F, G, D)
and (F̃ , G̃, D̃), a compact version of the transformation can be introduced
though the matrix triplets:

(F̃ , G̃, D̃) = t(F, G, D) = (G + F, G− F, D).

Clearly, t is invertible and the inverse transformation (ED,AD) = t−1(EC ,AC)
can be described by the inverse of the compact version

(F, G, D) = t−1(F̃ , G̃, D̃) =

(
1

2
(F̃ − G̃),

1

2
(F̃ + G̃), D̃

)
.

The transformation t can also be viewed as the composition of the Cayley
transformation c and a ”drop/add” transformation:

λED −AD = λ

[
0 F
−G∗ 0

]
−

[
0 G
−F ∗ D

]
c ↓↑ c−1

λẼ − Ã = λ

[
0 G + F

−(G + F )∗ D

]
−

[
0 G− F

(G− F )∗ D

]
Drop D from Ẽ ↓↑ add D to Ẽ

λEC −AC = λ

[
0 G + F

−(G + F )∗ 0

]
−

[
0 G− F

(G− F )∗ D

]

=: λ

[
0 F̃

−F̃ ∗ 0

]
−

[
0 G̃

G̃∗ D̃

]
.
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Note that when (EC ,AC) = t(ED,AD), the pencil λẼ − Ã with (Ẽ , Ã) =
c(ED,AD) can be expressed as

λẼ − Ã = λ

[
0 F̃

−F̃ ∗ D̃

]
−

[
0 G̃

G̃∗ D̃

]
. (11)

Our first result shows that the regularity of λED −AD and λEC −AC is
preserved under the transformation t.

Theorem 15 The pencil λED −AD is regular if and only if λEC −AC with
(EC ,AC) = t(ED,AD) is regular.

Proof. Let (Ẽ , Ã) = c(ED,AD). Due to Proposition 14 (a), it is sufficient
to show that λẼ − Ã is regular if and only if λEC −AC is regular.

Suppose λẼ − Ã is regular. Then det(λẼ − Ã) 6≡ 0. This implies that
det(λẼ − Ã) is a nonzero polynomial of λ. So one can always choose a scalar
κ 6= −1 such that det(κẼ −Ã) 6= 0. The same argument applies to λEC−AC .

From the block form (11), for κ 6= −1 we have

det(κẼ − Ã) = det

[
0 κF̃ − G̃

−κF̃ ∗ − G̃∗ (κ− 1)D̃

]
= det

([
(1− κ)−1In 0

0 Im

] [
0 κF̃ − G̃

−κF̃ ∗ − G̃∗ −D̃

] [
In 0
0 (1− κ)Im

])
= (1− κ)m−n det(κEC −AC).

Hence, det(κẼ − Ã) 6= 0 if and only if det(κEC −AC) 6= 0.
We turn to study the eigen-structure relation between the D-type and

C-type pencils under the transformation t. In order to avoid confusions, we
denote by RD

λ0
and LD

λ0
the right and left spectral subspaces of λED − AD,

respectively, corresponding to the eigenvalue λ0; and by RC
µ0

and LC
µ0

the
right and left spectral subspaces of λEC −AC , respectively, corresponding to
the eigenvalue µ0.

Theorem 16 Consider the D-type pencil λED−AD of the form (1) and the
C-type pencil λEC −AC of the form (2). Suppose that (EC ,AC) = t(ED,AD)
and λED −AD (or λEC −AC) is regular.

(a) Let λ0 ∈ Λ(ED,AD) (λ0 6= −1,∞) with algebraic multiplicity `. Then

U =

[ `

n U1

m U2

]
, V =

[ `

n V1

m V2

]
∈ Cn+m,` (12)
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satisfy
EDUT = ADU, S∗V ∗ED = V ∗AD

for some T, S ∈ C`,` with Λ(T ) = Λ(S∗) = {λ0}, if and only if

Ũ =

[
U1(I + T )

2U2

]
, Ṽ =

[
V1(I + S)

2V2

]
(13)

satisfy
ECŨ T̃ = ACŨ , S̃∗Ṽ ∗EC = Ṽ ∗AC ,

where T̃ = c(T ), S̃ = c(S), and Λ(T̃ ) = Λ(S̃∗) = {µ0} with µ0 = c(λ0).
Moreover, det V ∗EDU 6= 0, if and only if det Ṽ ∗ECŨ 6= 0.

Consequently, λ0 ∈ Λ(ED,AD) (λ0 6= −1,∞) if and only if µ0 =
c(λ0) ∈ Λ(EC ,AC) (µ0 6= ∞, 1). Both λ0 and µ0 have the same par-
tial, geometric, and algebraic multiplicities. For the matrices U, V in
(12) and Ũ , Ṽ in (13), span U = RD

λ0
and span V = LD

λ0
if and only if

span Ũ = RC
µ0

and span Ṽ = LC
µ0

.

(b) Suppose −1 ∈ Λ(ED,AD) with algebraic multiplicity `−1. Suppose also
−1 ∈ Λ(G∗, F ∗) with algebraic multiplicity r1. Then there exists matrix

U =

[ r1 `−1 − r1

n U11 U12

m 0 U22

]
∈ Cn+m,`−1 , (14)

such that
EDUT = ADU, rank EDU = `−1,

where

T =

[ r1 `−1 − r1

r1 T11 T12

`−1 − r1 0 T22

]
∈ C`−1,`−1

with Λ(T ) = {−1}, i.e., span U = RD
−1.

Define

Ũ =

[
2U11 U12(T22 + I)

0 2U22

]
(15)

and

T̃ =

[
(T11 + I)(T11 − I)−1 (I − T11)

−1T12(T22 + I)(T22 − I)−1

0 (T22 + I)(T22 − I)−1

]
.
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Then T̃ is nilpotent, and Ũ , T̃ satisfy

ECŨ = ACŨ T̃ , rankACŨ = `−1.

Consequently, if −1 ∈ Λ(ED,AD) with algebraic multiplicity `−1, then
∞ ∈ Λ(EC ,AC) and its algebraic multiplicity is greater than or equal
to `−1. If U in (14) is a basis matrix of RD

−1, then the columns of Ũ in
(15) span an `−1-dimensional (both right and left) deflating subspace of
λEC −AC corresponding to the eigenvalue ∞.

(c) Let `−1, `0, and `∞ be the algebraic multiplicities of the eigenvalues
−1, 0,∞ ∈ Λ(ED,AD), respectively; and ˜̀

1 and ˜̀∞ be the algebraic
multiplicities of the eigenvalues 1,∞ ∈ Λ(EC ,AC), respectively. Then
`0 = ˜̀

1 and

˜̀∞ = `∞ − `0 + `−1, `∞ = ˜̀∞ − `−1 + ˜̀
1.

More precisely, with the transformation t, the eigenvalue∞ ∈ Λ(EC ,AC)
is transformed from −1 ∈ Λ(ED,AD) (with multiplicity `−1) and ∞ ∈
Λ(ED,AD) (with multiplicity `∞−`0). With the inverse transformation
t−1, the eigenvalue ∞ ∈ Λ(ED,AD) is transformed from 1 ∈ Λ(EC ,AC)
(with multiplicity ˜̀

1) and ∞ ∈ Λ(EC ,AC) (with multiplicity ˜̀∞− `−1).

Proof. The proof is given in Appendix B.

Corollary 17 Suppose that λED − AD of the form (1) and λEC − AC of

the form (2), with (EC ,AC) = t(ED,AD), are regular. Let U =
[

U1

U2

]
with

U1 ∈ Cn,p and U2 ∈ Cm,p, and let T ∈ Cp,p and −1 6∈ Λ(T ). Then U is a
basis matrix of a right (left) deflating subspace of λED − AD corresponding

to T if and only if Û :=
[

U1(I+T )
2U2

]
is a basis matrix of a right (left) deflating

subspace of λEC −AC corresponding to c(T ).

Proof. The result easily follows from Theorem 16 (a), by using the same
argument used in the proof of Corollary 11.

The real versions of Theorem 16 and Corollary 17 can be derived in the
same way.

The eigenvalue relation between λED − AD and λEC − AC under the
transformation t is summarized in Table 2.

From Theorem 16 (a) and Proposition 13, the transformation t sets up
the correspondence between the eigenvalue pairs (λ0, λ̄

−1
0 ) of λED −AD and

(µ0,−µ̄0) of λEC−AC with µ0 = c(λ0) (and −µ̄0 = c(λ̄−1
0 )). This also applies
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λED −AD |λ| < 1 |λ| = 1 |λ| > 1 1 0 −1 ∞
t l t−1 l l l l l l ↙↗ l

λEC −AC Re µ < 0 Re µ = 0 Re µ > 0 0 −1 ∞ 1

Table 2: Relation between the eigenvalues of λED −AD and λEC −AC

to the weak pair (0,∞) of λED − AD and the pair (−1, 1) of λEC − AC .
Theorem 16 does not show the relation between ∞ ∈ Λ(ED,AD) and 1 ∈
Λ(EC ,AC). However, the information about the eigenvalue 1 ∈ Λ(EC ,AC)
can be easily extracted. By Proposition 8 the eigenvalues −1, 1 ∈ Λ(EC ,AC)
must be paired. This means that if −1 ∈ Λ(EC ,AC) (or equivalently, 0 ∈
Λ(ED,AD)) then 1 ∈ Λ(EC ,AC) and it must be transformed from ∞ ∈
Λ(ED,AD) (since c(∞) = 1). In addition, there is no need to extract the
spectral subspaces RC

1 and LC
1 from the spectral subspaces corresponding to

∞ ∈ Λ(ED,AD), since by Proposition 8, RC
1 = LC

−1 and LC
1 = RC

−1.
Table 2 and Table 1 show that the eigenvalue relation between λED−AD

and λEC −AC under the transformation t is almost the same as the relation
between λED−AD and λẼ −Ã under the Cayley transformation c. The only
difference is that t creates a direct connection between ∞ ∈ Λ(ED,AD) and
∞ ∈ Λ(EC ,AC). So only part of ∞ ∈ Λ(ED,AD) (by counting multiplicity)
is transformed to 1 ∈ Λ(EC ,AC) (to match −1 ∈ Λ(EC ,AC)). The Cayley
transformation c transforms all∞ ∈ Λ(ED,AD) to 1 ∈ Λ(Ẽ , Ã), which causes
the mismatch between the eigenvalues −1, 1 ∈ Λ(Ẽ , Ã). This may explain
why the Cayley transformation alone can not transform a D-type pencil to
a skew-Hermitian/Hermitian pencil.

By Theorem 10, if U =
[

U1

U2

]
is a basis matrix of RD

λ0
, then Û =

[
U1T
U2

]
is a basis matrix of LD

λ̄−1
0

. Theorem 16 shows that when λ0 6= −1, the sum

Ũ = U + Û is just a basis matrix of RC
µ0

. By Proposition 8, Ũ is also a

basis matrix of LC
−µ̄0

. The same argument applies to V , V̂ , and Ṽ . This
describes the precise relation about the right and left spectral subspaces of
λ0, λ̄

−1
0 ∈ Λ(ED,AD) and µ0,−µ̄0 ∈ Λ(EC ,AC).

Theorem 16 shows how to extract the eigen-structure information about
∞ ∈ Λ(EC ,AC) from the information about −1 ∈ Λ(ED,AD). Conversely,
things are still not clear. Certainly, one can always work on the pencil λED−
AD directly. The following result, however, shows that we can still use the
information of λEC −AC if we only need to check if −1 ∈ Λ(ED,AD).

Proposition 18 Suppose that λED −AD of the form (1) and λEC −AC of
the form (2), with (ED,AD) = t−1(EC ,AC), are regular. Suppose that Q is a
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basis matrix of null F̃ . Let D̂ = Q∗D̃Q. Then −1 ∈ Λ(ED,AD) if and only
if at least one of the following conditions holds.

(i) rank F̃ < n.

(ii) D̂ is singular.

Moreover, let p = rank F̃ and q = rank D̂. Then the geometric multiplicity
of −1 ∈ Λ(ED,AD) is

dim null(ED +AD) = n + m− 2p− q.

Proof. Recall Ẽ = ED +AD, where Ẽ is from the pair (Ẽ , Ã) = c(ED,AD)
and has the block form (11). Due to the fact that −1 ∈ Λ(ED,AD) if and only
if rank(ED +AD) < n+m, and dim null(ED +AD) = n+m− rank(ED +AD),
it is sufficient to show that rank Ẽ = 2p + q, and 2p + q < n + m if and only
if p < n and/or q < m− p.

Let

F̃ = W

[
Σ 0
0 0

]
Q̃∗

be the singular value decomposition of F̃ , where Σ ∈ Cp,p is positive diagonal,
W ∈ Cn,n and Q̃ ∈ Cm,m are unitary. Since the last m− p columns of Q̃ also
span the null space of F̃ , without the loss of generality we express

Q̃ =
[

Q̃1 Q
]
.

Let

D̂ = V

[
0 0
0 ∆

]
V ∗

be the Schur form of D̂ = Q∗D̃Q, where ∆ ∈ Cq,q is diagonal and nonsingular,
V ∈ Cm−p,m−p is unitary. Define

P = diag
(
W,

[
Q̃1 QV

])
.

Then by using the block form (11), we have

P∗ẼP =


0 0 Σ 0 0
0 0 0 0 0

−Σ 0 D̃11 D̃12 D̃13

0 0 D̃∗
12 0 0

0 0 D̃∗
13 0 ∆

 .

Clearly, rank Ẽ = 2p + q. So Ẽ is nonsingular if and only if 2p + q = n + m.
Since p ≤ n (due to the fact n ≤ m given in Proposition 12) and q ≤ m− p,
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one can easily verified that 2p+q = n+m if and only if p = n and q = m−n.
Equivalently, Ẽ is singular if and only if p < n or q < m− p, or both.

The reason for causing the above little trouble is because −1 happens to
be the pole of the Cayley transformation c, which introduces the relation
between −1 ∈ Λ(ED,AD) and ∞ ∈ Λ(EC ,AC). One way to fix this problem
is to replace the Cayley transformation c in t by the generalized Cayley
transformation

(F ,B) = cα,h(E ,A) = ((A+ eiαE)I, h(A− eiαE)I),

where 0 ≤ α < 2π, h > 0, and I = diag(e−iαIn, Im). (Here we assume
E ,A ∈ Cn+m,n+m.) By applying cα,h to (ED,AD) followed by the same
drop/add transformation, we get a parameterized transformation from the
D-type pencil to the C-type pencil:

(EC ,AC) = tα,h(ED,AD)

=

([
0 G + eiαF

−(G + eiαF )∗ 0

]
,

[
0 h(G− eiαF )

h(G− eiαF )∗ hD

])
.

Note that tα,h is invertible. Note also that cα,h and tα,h generalize c and t,
respectively, because c = c0,1 and t = t0,1. The eigenvalue relation between
λED−AD and λEC−AC under tα,h can be described by the scalar generalized
Cayley transformation

µ = cα,h(λ) = h(e−iαλ− 1)(e−iαλ + 1)−1 = hc(e−iαλ),

which can be decomposed into three transformations:

λ
Rotation←→ e−iαλ

Cayley←→ c(e−iαλ)
Scaling←→ hc(e−iαλ) = µ.

The transformation tα,h has its advantages. For (EC ,AC) = tα,h(ED,AD), we
are able to select an α such that e−iαλ 6= −1 for all λ ∈ Λ(ED,AD). Then no
finite eigenvalues of λED−AD will be transformed to∞ ∈ Λ(EC ,AC). There-
fore, the problem happened to t will not occur. Similarly, for (ED,AD) =
t−1
α,h(EC ,AC), we are able to select an h > 0 such that h−1µ 6= 1,−1 for all

µ ∈ Λ(EC ,AC). Then no finite eigenvalues of λEC −AC will be transformed
to ∞, 0 ∈ Λ(ED,AD). Under the transformation tα,h, the eigen-structure
relation between λED−AD and λEC −AC is similar to that under t given in
Theorem 16 and Corollary 17, and can be proved in the same way. However,
there is still a problem for real pencils. When λED −AD is real, in order to
keep λEC−AC real one has to select one of the transformations t0,h and tπ,h.
If it happens that both −1 and 1 are eigenvalues of λED −AD, then no one
is able to remove the problem discussed above.
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Finally, we give two examples to illustrate the behavior of the eigenvalue
∞ and its associated deflating subspaces under the transformation t.

Example 2 Consider the D-type pencil

λED −AD = λ

 0 −1 0
−1 0 0
−1 0 0

−
 0 1 1

1 0 a
0 a b

 ,

where a 6= b. Let

U1 =

 a b− a
1 0
0 1

 , V1 =

 a −b
−1 0
0 1

 ; U2 =

 0
0
1

 , V2 =

 0
1
−1

 .

Then

EDU1

[
−1 −1
0 −1

]
= ADU1,

[
−1 −1
0 −1

]∗
V ∗

1 ED = V ∗
1 AD;

EDU2 = ADU2 · 0, V ∗
2 ED = 0 · V ∗

2 AD.

So λED −AD has the eigenvalues −1 and ∞.
Under the transformation t, the corresponding C-type pencil is

λEC −AC = λ

 0 0 1
0 0 0
−1 0 0

−
 0 2 1

2 0 a
1 a b

 .

Simple calculations yield

ECŨ = ACŨ

 0 1
2

0
0 0 1
0 0 0

 , Ũ =

 0 −a a− 2b
2 0 0
0 2 2

 .

So λEC−AC has the only eigenvalue∞. Clearly, t sends both the eigenvalues
−1,∞ ∈ Λ(ED,AD) to ∞ ∈ Λ(EC ,AC).

The relation about the spectral subspaces can be shown as follows. By
(7) with U := U1 and T =

[−1
0

−1
−1

]
, we have

Û =

 [
a b− a

]
T

1 0
0 1

 =

 −a −b
1 0
0 1

 = V1

[
−1 0
0 1

]
.

This shows span Û = LD
−1(= span V1).
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By (15) and the fact that r1 = 0, we have

Ũ = U1 + Û =

 0 −a
2 0
0 2

 ,

which is just the submatrix formed by the first and second columns of Ũ .
There is an interesting observation. Although ∞ ∈ Λ(EC ,AC) is trans-

formed from two different eigenvalues −1,∞ ∈ Λ(ED,AD), it has a single
3× 3 Jordan block.

Example 3 Consider the D-type pencil from Example 1,

λED −AD = λ

 0 1 0
−1 0 0
−1 0 0

−
 0 1 1
−1 1 1
0 1 1

 .

We had

EDU1 · 0 = ADU1, 0 · V ∗
1 ED = V ∗

1 AD;

EDU2 = ADU2

[
0 1
0 0

]
, V ∗

2 ED =

[
0 1
0 0

]∗
V ∗

2 AD,

where

U1 =

 0
1
−1

 , V1 =

 −1
0
1

 ; U2 =

 0 −1
0 1
1 0

 , V2 =

 0 0
1 1
−1 0

 .

Under the transformation t, the corresponding C-type pencil is

λEC −AC = λ

 0 2 1
−2 0 0
−1 0 0

−
 0 0 1

0 1 1
1 1 1

 .

Let

Ũ1 =

 0
2
−2

 , Ṽ1 =

 −1
0
2

 , Ũ2 =

 0
1
−2

 .

We have

−ECŨ1 = ACŨ1, −Ṽ ∗
1 EC = Ṽ ∗

1 AC

EC Ṽ1 = AC Ṽ1, Ũ∗
1EC = Ũ∗

1AC

ECŨ2 = ACŨ2 · 0, Ũ∗
2EC = 0 · Ũ∗

2AC .

Note that Ũ1, Ṽ1 are just the matrices Ũ , Ṽ in (13) derived from U := U1,
V := V1 and T = 0. It is clear that −1 ∈ Λ(EC ,AC) is transformed from
0 ∈ Λ(ED,AD), and both 1,∞ ∈ Λ(EC ,AC) are transformed from ∞ ∈
Λ(ED,AD).
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5 Conclusion

We have introduced a one-to-one transformation between the D-type and
C-type matrix pencils that arise in optimal and robust control. We have
given the precise descriptions about the equivalence eigenvalue and deflat-
ing subspace relations between the pencils under the transformation. The
proposed transformation may be implemented to relate the discrete-time and
continuous-time problems from each specific topic in optimal and robust con-
trol (such as the LQ control, H2 control, H∞ control, etc.), so that the two
types of control problems can be studied, both theoretically and numerically,
in a unified way. Every topic has its own aims, properties, and conditions,
and the associated matrix pencils also have extra structures and properties.
Therefore, the implementation is not trivial. In order to precisely relate the
discrete-time and continuous-time control problems much work still needs to
be carefully done.

Acknowledgements. The author thanks Ralph Byers from the University
of Kansas, Volker Mehrmann from TU Berlin, and the anonymous referee for
their valuable suggestions and comments.

Appendix A

Proof of Theorem 10.
(a) The equation EDUT = ADU yields

FU2T = GU2, −G∗U1T = −F ∗U1 + DU2.

Multiplying the first equation by −1 and post-multiplying the second equa-
tion by T , we have

−GU2 = −FU2T, F ∗(U1T ) = (G∗(U1T ) + DU2)T.

The last two equations can be expressed by a single equation[
0 −G

F ∗ 0

] [
U1T
U2

]
=

[
0 −F

G∗ D

] [
U1T
U2

]
T,

which is just E∗DÛ = A∗DÛT , or equivalently, T−∗Û∗ED = Û∗AD.

Conversely, since T is nonsingular, matrix Û can be expressed as
[

U1T
U2

]
.

Then by reversing the above procedure we obtain EDUT = ADU from
T−∗Û∗ED = Û∗AD.
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Because the pencil λE∗D−A∗D has the same block structure as λED−AD,
the equivalence relation between S∗V ∗ED = V ∗AD and EDV̂ S−1 = ADV̂ can
be established in the same way.

We now prove that det V ∗EDU 6= 0 and det Û∗EDV̂ 6= 0 are equivalent.
By using the relations

FU2T = GU2, GV2S = FV2,

which are from EDUT = ADU and S∗V ∗ED = V ∗AD, respectively, we have

Û∗EDV̂ = T ∗U∗
1 FV2 − U∗

2 G∗V1S = T ∗U∗
1 GV2S − T ∗U∗

2 F ∗V1S

= T ∗(U∗
1 GV2 − U∗

2 F ∗V1)S = −T ∗(V ∗EDU)∗S.

Since det T, det S 6= 0, one has det Û∗EDV̂ 6= 0 if and only if det V ∗EDU 6= 0.
The above relations show that if λ0 ∈ Λ(ED,AD) with algebraic multi-

plicity `, then λ̄−1
0 ∈ Λ(ED,AD) with algebraic multiplicity at least `. The

algebraic multiplicity of λ̄−1
0 can not be bigger, since otherwise by the duality,

the algebraic multiplicity of λ0 would be bigger than `. Thus, both λ0 and
λ̄0 have the same algebraic multiplicity `.

The rest follow simply from the above relations and arguments.

(b) The existence of U, V in (8) is shown in Lemma 9 with λ0 = 0.
The equation EDUT = ADU implies

FU22T22 = GU22,

G∗U11T11 = F ∗U11,

−G∗(U11T12 + U12T22) = −F ∗U12 + DU22. (16)

By using the above equations, we have

A∗DÛ T̂ =

[
0 −F

G∗ D

] [
U11 U11T12 + U12T22

0 U22

] [
T11 T11T12

0 T22

]
=

[
0 −FU22T22

G∗U11T11 G∗U11T11T12 + [G∗(U11T12 + U12T22) + DU22]T22

]
=

[
0 −GU22

F ∗U11 F ∗U11T12 + F ∗U12T22

]
=

[
0 −G

F ∗ 0

] [
U11 U11T12 + U12T22

0 U22

]
= E∗DÛ ,

or equivalently, Û∗ED = T̂ ∗Û∗AD.
Next, we show that rank EDU = `0 implies rank Û∗AD = `0. By the last

equation in (16) we have

A∗DÛ =

[
0 −FU22

G∗U11 G∗(U11T12 + U12T22) + DU22

]
=

[
0 −FU22

G∗U11 F ∗U12

]
.
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If rankA∗DÛ < `0, then there exists a nonzero vector x =
[

x1

x2

]
with x1 ∈ Cr1

and x2 ∈ C`0−r1 , such that A∗DÛx = 0. This implies

−FU22x2 = 0, G∗U11x1 + F ∗U12x2 = 0.

The vector x2 is nonzero. Otherwise x1 6= 0 and G∗U11x1 = 0, but then

EDU

[
x1

0

]
=

[
0 FU22

−G∗U11 −G∗U12

] [
x1

0

]
=

[
0

−G∗U11x1

]
= 0,

contradicting to rank EDU = `0.
Now combining G∗U11x1 + F ∗U12x2 = 0 with G∗U11T11 = F ∗U11, the

second equation in (16), we have

G∗ [
U11 U12x2

] [
T11 −x1

0 0

]
= F ∗ [

U11 U12x2

]
.

Since U11 is a basis matrix of the spectral subspace λG∗ − F ∗ corresponding
to the eigenvalue 0, we have

U12x2 = U11x3

for some vector x3 ∈ Cr1 .

Now
[
−x3

x2

]
6= 0, but

EDU

[
−x3

x2

]
=

[
FU22x2

G∗(U11x3 − U12x2)

]
= 0,

which again contradicts to rank EDU = `0. Therefore, rankA∗DÛ = `0.
It becomes obvious that the algebraic multiplicity of ∞ ∈ Λ(ED,AD) is

at least `0, and the columns of Û span an associated left deflating subspace.
By the duality, the result associated with V̂ can be proved in the same

way.

Appendix B

Proof of Theorem 16. Let (Ẽ , Ã) = c(ED,AD) = (AD + ED,AD − ED).
(a) It is easily verified that the equations

EDUT = ADU, S∗V ∗ED = V ∗AD

are equivalent to

ẼUc(T ) = ÃU, c(S∗)V ∗Ẽ = V ∗Ã.
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By Proposition 14, Λ(c(T )) = Λ(c(S∗)) = {µ0}, where µ0 = c(λ0). Because
λ0 6= −1,∞, we have µ0 6=∞, 1.

By using (11), the equation ẼUc(T ) = ÃU yields

F̃U2c(T ) = G̃U2, −F̃ ∗U1c(T ) = G̃∗U1 + D̃U2(I − c(T )).

Multiplying the first equation by 2 and post-multiplying the second equation
by T + I, by using the fact that c(T ) and T + I commute, and the identity

I − c(T ) = I − (T − I)(T + I)−1 = 2(T + I)−1,

we have

F̃ (2U2)c(T ) = G̃(2U2), −F̃ ∗U1(T + I)c(T ) = G̃∗U1(T + I) + D̃(2U2),

or equivalently,[
0 F̃

−F̃ ∗ 0

] [
U1(I + T )

2U2

]
c(T ) =

[
0 G̃

G̃∗ D̃

] [
U1(I + T )

2U2

]
,

i.e., ECŨ T̃ = ACŨ .
Conversely, suppose that Ũ satisfies ECŨ T̃ = ACŨ , with Λ(T̃ ) = {µ0}

and µ0 6= ∞, 1. Let T = c−1(T̃ ). Then Λ(T ) = {λ0}, where λ0 = c−1(µ0) 6=
−1,∞. Since I + T is invertible, we can express Ũ =

[
U1(I+T )

2U2

]
. Define

U :=
[

U1

U2

]
. By reversing the above steps we can show that U and T satisfy

EDUT = ADU.
Similarly, we can show that S∗V ∗ED = V ∗AD and S̃∗Ṽ ∗EC = Ṽ ∗AC are

equivalent.
We now prove that det V ∗EDU 6= 0 and det Ṽ ∗ECŨ 6= 0 are equivalent.

From the equations EDUT = ADU and S∗V ∗ED = V ∗AD, we have

FU2T = GU2, S∗V ∗
2 G∗ = V ∗

2 F ∗.

Then

Ṽ ∗ECŨ = 2(I + S)∗V ∗
1 (G + F )U2 − 2V ∗

2 (G + F )∗U1(I + T )

= 2(I + S)∗V ∗
1 (GU2 + FU2)− 2(V ∗

2 G∗ + V ∗
2 F ∗)U1(I + T )

= 2(I + S)∗V ∗
1 (FU2T + FU2)− 2(V ∗

2 G∗ + S∗V ∗
2 G∗)U1(I + T )

= 2(I + S)∗V ∗
1 FU2(I + T )− 2(I + S)∗V ∗

2 G∗U1(I + T )

= 2(I + S)∗(V ∗
1 FU2 − V ∗

2 G∗U1)(I + T )

= 2(I + S)∗(V ∗EDU)(I + T ).
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Since (I + S)∗ and (I + T ) are nonsingular, one has det Ṽ ∗ECŨ 6= 0 if and
only if det V ∗EDU 6= 0. The rest are obvious.

(b) The existence of U in (14) is shown in Lemma 9 with λ0 = −1.
The equation EDUT = ADU implies ẼU = ÃUT̂ , where

T̂ = (T + I)(T − I)−1

=

[
(T11 + I)(T11 − I)−1 −2(T11 − I)−1T12(T22 − I)−1

0 (T22 + I)(T22 − I)−1

]
=:

[
T̂11 T̂12

0 T̂22

]
.

By (11), the equation ẼU = ÃUT̂ then yields

F̃U22 = G̃U22T̂22,

−F̃ ∗U11 = G̃∗U11T̂11,

−F̃ ∗U12 = G̃∗(U11T̂12 + U12T̂22) + D̃U22(T̂22 − I).

Multiplying the first and the second equations by 2, post-multiplying the 3rd
equation by (T22 + I), and using T̂22 − I = 2(T22 − I)−1, we have

F̃ (2U22) = G̃(2U22)T̂22,

−F̃ ∗(2U11) = G̃∗(2U11)T̂11,

−F̃ ∗U12(T22 + I) = G̃∗[−(2U11)(T11 − I)−1T12T̂22 + U12(T22 + I)T̂22]

+D̃(2U22)T̂22.

These equations yield ECŨ = ACŨ T̃ .
We now show that rank EDU = `−1 implies rankACŨ = `−1. From the

equation EDUT = ADU , we have

FU22T22 = GU22,

G∗U11T11 = F ∗U11,

−G∗(U11T12 + U12T22) = −F ∗U12 + DU22.

By using these equations,

ACŨ =

[
0 2(G− F )U22

2(G− F )∗U11 (G− F )∗U12(T22 + I) + 2DU22

]
=

[
0 2FU22(T22 − I)

2G∗U11(I − T11) (G + F )∗U12(I − T22)− 2G∗U11T12

]
.
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If rankACŨ < `−1, then there is a nonzero vector x =
[

x1

x2

]
such that

ACŨx = 0. This implies

FU22(T22 − I)x2 = 0 (17)

and

2G∗U11(I − T11)x1 + ((G + F )∗U12(I − T22)− 2G∗U11T12) x2 = 0. (18)

We have x2 6= 0. Otherwise x1 6= 0 and G∗U11(I − T11)x1 = 0. Because
Λ(T11) = {−1}, one has (I − T11)x1 6= 0. Then

EDU

[
(I − T11)x1

0

]
=

[
0

−G∗U11(I − T11)x1

]
= 0,

contradicting to rank EDU = `−1. Now rewrite (18) as

G∗[2U11((I − T11)x1 − T12x2) + U12(I − T22)x2] = −F ∗U12(I − T22)x2.

Combining it with G∗U11T11 = F ∗U11, which is from EDUT = ADU , we have

G∗ [
U11 −U12(I − T22)x2

] [
T11 2((I − T11)x1 − T12x2)
0 −1

]
= F ∗ [

U11 −U12(I − T22)x2

]
.

Since U11 is a basis matrix of the spectral subspace λG∗ − F ∗ corresponding
to the eigenvalue −1, we have

U12(I − T22)x2 = U11x3 (19)

for some vector x3. Let z =
[

−x3

(I−T22)x2

]
. Because Λ(T22) = {−1} and x2 6= 0,

we have z 6= 0. Then (17) and (19) imply

EDUz =

[
FU22(I − T22)x2

−G∗(−U11x3 + U12(I − T22)x2)

]
= 0,

which again contradicts to rank EDU = `−1. Therefore, rankACŨ = `−1.
The rest are obvious.
(c) By Theorem 10, `∞ ≥ `0. From part (a), 0 ∈ Λ(ED,AD) and

−1 ∈ Λ(EC ,AC) have the same algebraic multiplicity, i.e., `0 = ˜̀−1. By
Proposition 8 (a), −1, 1 ∈ Λ(EC ,AC) are paired and have the same algebraic
multiplicity. So we have

˜̀
1 = ˜̀−1 = `0. (20)
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Under the transformation t, the eigenvalue −1 ∈ Λ(ED,AD) is transformed
to ∞ ∈ Λ(EC ,AC). From parts (a) and (b), the eigenvalue ∞ ∈ Λ(ED,AD)
has to be transformed to 1,∞ ∈ Λ(EC ,AC). From the relation between
−1,∞ ∈ Λ(ED,AD) and 1,∞ ∈ Λ(EC ,AC) discussed above, we have

`−1 + `∞ = ˜̀
1 + ˜̀∞. (21)

The result then follows from (20) and (21), and the arguments given above.
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